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1 Dept. of Medical Physics and Acoustics, Carl von Ossietzky Universität Oldenburg, Germany
2 Bar-Ilan University, Ramat-Gan, Israel

3 Technical University of Liberec, Liberec, Czech Republic

ABSTRACT
To estimate the direction of arrival (DOA) of multiple speakers with
methods that use prototype transfer functions, frequency-dependent
spatial spectra (SPS) are usually constructed. To make the DOA
estimation robust, SPS from different frequencies can be combined.
According to how the SPS are combined, frequency fusion mechanisms
are categorized into narrowband, broadband, or speaker-grouped,
where the latter mechanism requires a speaker-wise grouping of
frequencies. For a binaural hearing aid setup, in this paper we propose
an interaural time difference (ITD)-based speaker-grouped frequency
fusion mechanism. By exploiting the DOA dependence of ITDs, fre-
quencies can be grouped according to a common ITD and be used for
DOA estimation of the respective speaker. We apply the proposed ITD-
based speaker-grouped frequency fusion mechanism for different DOA
estimation methods, namely the multiple signal classification, steered
response power and a recently published method based on relative
transfer function (RTF) vectors. In our experiments, we compare DOA
estimation with different fusion mechanisms. For all considered DOA
estimation methods, the proposed ITD-based speaker-grouped fre-
quency fusion mechanism results in a higher DOA estimation accuracy
compared with the narrowband and broadband fusion mechanisms.

Index Terms— direction of arrival estimation, frequency fusion,
speaker grouping, binaural hearing aids

1. INTRODUCTION

In multi-microphone speech communication applications like hearing
aids, estimation of the direction of arrival (DOA) of multiple speakers
in noisy and reverberant environments is of crucial importance [1].
Due to their popularity, in this paper we specifically consider DOA
estimation methods based on prototype transfer function matching.
Examples for such methods include the well-established subspace-
based multiple signal classification (MUSIC) [2] or power-based
steered response power (SRP) methods [3], which both use acoustic
transfer function (ATF) vectors, or a recently published method based
on matching of anechoic prototype relative transfer function (RTF)
vectors [4]. In these methods, frequency-dependent spatial spectra
(SPS), i.e., functions of candidate directions, are constructed with the
location of peaks likely corresponding to the true speaker DOAs.

To make the DOA estimation of broadband speech sources ro-
bust, SPS from different frequencies can be combined. Depending on
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how the frequency-dependent SPS are combined, frequency fusion
mechanisms are categorized into narrowband, broadband, or speaker-
grouped [5,6]. With the narrowband fusion mechanism, i.e., no combi-
nation of frequency-dependent SPS, DOAs are first estimated directly
for each frequency and subsequently clustered. From these clustered
DOA estimates, refined estimates are obtained (e.g., [7]). With the
broadband fusion mechanism, DOAs are estimated from a single SPS
obtained from pooling frequency-dependent SPS. With the speaker-
grouped fusion mechanism, DOAs are estimated from multiple SPS,
each obtained from pooling frequency-dependent SPS. As each pooled
SPS is associated with a single speaker solely, DOA estimation with the
speaker-grouped fusion mechanism may overcome the tending over-
emphasis of the dominant speaker and the lobe broadening of the spatial
spectrum which may by introduced with the narrowband and broad-
band fusion mechanisms [5, 6]. However, using the speaker-grouped
fusion mechanism requires a speaker-wise grouping of frequencies.

In this paper, we propose an interaural time difference (ITD)-based
speaker-grouped frequency fusion mechanism, which we apply to
DOA estimation with the MUSIC, SRP and the recently published
RTF-vector-matching-based methods. We exploit the DOA depen-
dence of ITDs such that frequencies can be grouped according to
a common ITD and, thus, be associated with a single speaker. We
compare DOA estimation using the proposed ITD-based speaker-
grouped fusion mechanism with the narrowband and broadband fusion
mechanisms. To further assess the performance of DOA estimation
using the proposed ITD-based speaker-grouped fusion mechanism, we
also compare against DOA estimation with separated speakers, where
the speakers are separated using successive applications of the inde-
pendent vector extraction (IVE) algorithm [8]. Experimental results
with recorded data from the novel BRUDEX database [9] for multiple
reverberant and noisy acoustic scenarios with two static speakers and
a binaural hearing aid setup demonstrate the efficiency of the proposed
ITD-based speaker-grouped frequency fusion mechanism.

2. SIGNAL MODEL AND NOTATION

We consider a binaural hearing aid setup with M microphones in a
noisy and reverberant acoustic scenario with J simultaneously active
speakers S1:J . We consider stationary DOAs θ1:J (in the azimuthal
plane) and J assumed to be known. In the short-time Fourier transform
(STFT) domain, the m-th microphone signal can be written as

Ym(k,l)=

J∑
j=1

Xm,j(k,l)+Nm(k,l), (1)

where m ∈ {1,...,M}, k ∈ {1,...,K} and l ∈ {1,...,L} denote the
index of the microphone, frequency bin, and the frame, respectively,
and Xm,j (k,l) and Nm(k,l) denote the j-th speech component and
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the noise component in the m-th microphone signal, respectively.
Assuming disjoint speaker activity in the STFT domain [10], each
time-frequency (TF) bin is dominated by a single speaker across all
microphone signals. Stacking all microphone signals into the M -
dimensional vector y (k,l) = [Y1(k,l),...,YM (k,l)]T with (·)T de-
noting the transposition operator, the vector of microphone signals
can be approximated as y(k,l)≈ xd(k,l)+n(k,l), with the vector
xd (k,l) denoting the dominant speech component and the vector
n(k,l) denoting the noise component, both defined similarly asy(k,l).

We assume that each speech component j can be split into a
direct-path component xDP

j (k,l) and a reverberation component
xR
j (k,l), i.e., xj (k,l) = xDP

j (k,l) + xR
j (k,l). Assuming a multi-

plicative transfer function for xDP
j (k,l) in the STFT domain [11],

the direct-path component xDP
d (k,l) can be written in terms of the

direct-path acoustic transfer function (ATF) vector a(k,θd) (relating
the microphone signals with the dominant speaker signal Sd(k,l) with
DOA θd) or equivalently in terms of the direct-path relative transfer
function (RTF) vector g(k,θd) (relating the microphone signals with
the reference microphone signal X1,d(k,l)) as

xDP
d (k,l)=a(k,θd)Sd(k,l)=g(k,θd)X1,d(k,l), (2)

where the first microphone is considered as the reference microphone
(without loss of generality). Condensing the noise and reverberation
components into the undesired component u(k,l)=n(k,l)+xR

d (k,l),
where for conciseness the index d of the dominant speaker was
omitted in u, the microphone signals can be written as y (k,l) =
xDP
d (k,l)+u(k,l).

Assuming uncorrelated direct-path speech and undesired compo-
nents, the covariance matrix Φy(k,l) of the microphone signals can
be approximated as

Φy(k,l)=E
{
y(k,l)yH(k,l)

}
≈ΦDP

xd (k,l)+Φu(k,l), (3)

where the covariance matrix ΦDP
xd (k,l) of the direct-path dominant

speech component and the covariance matrixΦu(k,l) of the undesired
component are defined similarly as Φy(k,l) and (·)H and E{·} denote
the complex transposition and expectation operators, respectively.

3. FREQUENCY-DEPENDENT SPATIAL SPECTRA

In this section, we review the construction of frequency-dependent
spatial spectra (SPS) for the subspace-based MUSIC [2], the power-
based SRP [3, 12] and the RTF-vector-matching-based [4] methods
for binaural DOA estimation. For the construction of these frequency-
dependent SPS a database of anechoic prototype transfer functions for
different candidate directions {θi}Ii=1 is needed which accounts for
head shadow effects. To obtain such a database, analytic diffraction
models [13] or measurements can be used.

For the MUSIC and SRP methods, the frequency-dependent SPS
are obtained from the estimated covariance matrix of the noisy micro-
phone signals Φ̂y(k, l) and a database of anechoic head-related transfer
functions ā(k,θi). MUSIC is based on the orthogonality between the
noise subspace ofΦy(k,l) and the direct-path ATF vectora(k,θd), i.e.,

p̃MUSIC(k,l,θi)=
1

∥Q̂H
y,u(k,l)ā(k,θi)∥2

, (4)

where Q̂y,u denotes the estimated noise subspace of Φ̂y(k, l). SRP
is based on the maximization of the output power of a beamformer.
Accounting for head shadow effects and the signal input power as
in [12], the frequency-dependent SPS is given by

p̃SRP(k,l,θi)=
āH(k,θi)Φ̂y(k, l)ā(k,θi)

∥ā(k,θi)∥22∥y(k,l)∥22
. (5)

Similar to [14], in our binaural experiments with MUSIC and SRP
we noted the importance of normalizing the values of the frequency-
dependent SPS to the range [0,1]. Hence, for binaural DOA estimation
we consider the normalized versionspMUSIC(k,l,θi) andpSRP(k,l,θi)
instead of p̃MUSIC(k,l,θi) and p̃SRP(k,l,θi) in the following

pMUSIC(k,l,θi)=
p̃MUSIC(k,l,θi)

max
θj

p̃MUSIC(k,l,θj)
(6)

pSRP(k,l,θi)=
p̃SRP(k,l,θi)

max
θj

p̃SRP(k,l,θj)
. (7)

For the RTF-vector-matching-based method, the frequency-
dependent SPS is obtained from the comparison between estimated
RTF vector ĝ (k,l) and a database of anechoic prototype RTF vec-
tors ḡ(k,θi) for different candidate directions θi. Considering the
Hermitian angle for the comparison of RTF vectors, the frequency-
dependent SPS is obtained as

pRTF(k,l,θi)=−arccos

(
|ḡH(k,θi)ĝ(k,l)|

∥ḡ(k,θi)∥2∥ĝ(k,l)∥2

)
. (8)

To estimate the DOAs θ̂1:J (l), assuming that the number of speaker
J is known, we consider combining the frequency-dependent SPS
p(k,l,θi) using the frequency-fusion mechanisms which are discussed
in Section 4.

4. COMBINATION OF FREQUENCY-DEPENDENT
SPATIAL SPECTRA FOR BINAURAL DOA ESTIMATION

In this section, we first review frequency subset selection criteria and
principles of narrowband, broadband, and speaker-grouped frequency-
fusion mechanisms for DOA estimation (Sections 4.1 and 4.2). In
Section 4.3, we propose for the speaker-grouped frequency-fusion
mechanisms a frequency grouping that is based on estimated interaural
time differences (ITDs).

4.1. Frequency subset selection

Assuming that DOAs can only be reliably estimated at frequencies
where one speaker dominates over all other speakers, noise and
reverberation, we restrict DOA estimation to the subset k ∈ K (l)
which due to time-varying microphone recordings is also time-varying.
In the context of DOA estimation, criteria based on, e.g., speaker
dominance [15], signal-to-noise ratio (SNR) [7,16], speech onsets [16],
or coherence-based quantities such as the coherent-to-diffuse ratio
(CDR) [4, 17] have been proposed for frequency subset selection. In
this paper, we consider the so-called binaural effective-coherence-
based coherent-to-diffuse ratio (CDR) criterion

K(l)=
{
k : ĈDR(k,l)≥CDRthresh

}
, (9)

which is based on a binaural coherence model that accounts for head-
shadowing effects [18] and the average coherence between signals
from all possible microphone pairs between the left and the right
hearing aid. The detailed computation of ĈDR(k,l) is described in [4].

4.2. Frequency fusion mechanisms for DOA estimation

With the narrowband fusion mechanism, i.e., no combination of
frequency-dependent SPS, the frequency-dependent SPS p(k,l,θi) are
maximized directly per frequency, i.e.,

θ̂(k,l)=argmax
θi

p(k,l,θi), (10)
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where due to the assumed disjoint speaker activity [10] only a single
DOA is estimated per frequency. Subsequently, the DOA estimates
of the frequency subset k∈K(l) are combined using, e.g., a histogram
operation H [7] which counts how many DOA estimates correspond
to each candidate direction θi. The speaker DOAs are estimated as the
location of peaks of this histogram, i.e.,

θ̂narrow1:J (l)=findPeaks
θi

H
{
θ̂(k,l)

}
, k∈K(l). (11)

With the broadband frequency-fusion mechanism, the frequency-
dependent SPS p(k,l,θi) are combined using a pooling operation, e.g.,
a summation [4]. The speaker DOAs are estimated as the location of
peaks of this pooled SPS, i.e.,

θ̂broad1:J (l)=findPeaks
θi

∑
k

p(k,l,θi), k∈K(l). (12)

With the speaker-grouped frequency-fusion mechanism, indivi-
dual frequencies are associated with a single speaker solely, allowing
to construct for each individual speaker its own SPS. Let the indicator
function 1j(k,l) denote the association between TF bin (k,l) and the
j-th speaker, i.e.,

1j(k,l)=

{
1 TF bin (k,l) associated with speaker j
0 else.

(13)

Only frequency-dependent SPS p(k,l,θi) that are associated with the
j-th speaker are combined using a pooling operation. The j-th speaker
DOA is estimated as the location of the maximum of the j-th pooled
SPS, i.e., for j=1,...,J

θ̂groupj (l)=argmax
θi

∑
k

1j(k,l) p(k,l,θi), k∈K(l). (14)

4.3. ITD-based speaker-grouped frequency grouping

In order to compute the association 1j (k,l) in (13), we want to
exploit the spatial information provided by multiple microphone
signals of the binaural hearing aid setup. Since spatially disjoint
speakers can be discriminated by their interaural time differences
(ITDs), we propose to combine the method for the estimation of ITDs
from [19] with the estimation of relative transfer functions (RTFs) and
subsequently group frequencies according to common ITDs. It should
be noted that ITDs are a popular feature for frequency grouping and
binaural DOA estimation [20–22]. However, exploiting ITD-based
frequency grouping for DOA estimation using the MUSIC, SRP and
RTF-vector-matching-based methods have not been considered.

The main assumption of our ITD-based frequency grouping is
that the interaural phase difference between a pair of contra-lateral
microphone signals changes linearly with frequency, with the slope
of this linear relation corresponding to the ITD which depends on the
speaker DOA. For the estimation of ITDs we consider the grid-search
approach with candidate ITDs τn as in [19], where we compare the
phase arg

{
Ĝ(k,l)

}
of the estimated RTF between a pair of contra-

lateral microphone signals against a set of phase differences with
candidate ITDs τn, i.e., arg

{
eiωkτn

}
, with ωk denoting the discrete

angular frequency at frequency bin with index k. Accounting for
the phase wrapping due to the phase extraction operator arg{·} and
considering the non-linear transformation ρ(x) = eβcos(x)/eβ with
hyperparameter β, a score functionΨ(k,l,τn) in τn is constructed, i.e.,

Ψ(k,l,τn)=ρ
(
arg

{
Ĝ(k,l)

}
−arg

{
eiωkτn

})
. (15)

Y1

Y2

YM

DOA

θ̂1(l)

θ̂J(l)

IVE

DOA

DOA

θ̂1(l)

θ̂J(l)

Fig. 1. Comparison of DOA estimation without (left) and with (right)
application of a blind speaker-separation algorithm.

Assuming that the number of speakers J is known, the scores are
frequency-averaged and the J ITDs, each associated with one of the
J speakers, are estimated as the location of peaks of the average score
function as

τ̂1:J(l)=findPeaks
τn

∑
k∈K(l)

Ψ(k,l,τn) (16)

For the estimation of the indicator function 1j (k,l) we propose
a TF-wise maximization of the similarity scores Ψ(k,l,τ̂j) evaluated
using each estimated ITD τ̂1:J(l), i.e.,

1j(k,l)=

1 if j= argmax
j′∈{1,...,J}

Ψ(k,l,τ̂j′(l))

0 else
(17)

5. SPEAKER-SEPARATION-BASED DOA ESTIMATION

To further assess the performance of DOA estimation using the pro-
posed ITD-based speaker-grouped frequency fusion mechanism, in
our experiments in Section 6 we also consider DOA estimation with
blindly separated speakers as an upper performance limit. It should
be noted that DOA estimation based on blind speaker separation
algorithms has previously been investigated in, e.g., [23].

For the speaker separation, we consider successive applications of
the independent vector extraction (IVE) algorithm, which assumes in-
dependent and known number of speakers and exploits inter-frequency
dependencies [8]. The speaker separation is performed offline using
the entire mixture. For further details regarding the speaker separation
algorithm, we refer the readers to [8] and [24] and references therein.
For each separated speaker the DOA is estimated using a method
from Section 3 using the broadband fusion mechanism described in
Section 4.2. In Fig. 1 the concept of DOA estimation with and without
separated speakers is visualized.

6. EXPERIMENTAL RESULTS

For static two-speaker acoustic scenarios in multiple reverberant
environments with diffuse-like babble noise, in this section we com-
pare the DOA estimation performance for the MUSIC, SRP, and
the RTF-vector-matching-based DOA estimation methods when
applied with the narrowband, broadband, and the proposed ITD-based
speaker-grouped frequency fusion mechanisms. We also consider
DOA estimation with separated speakers using successive applications
of the IVE algorithm. In Section 6.1, we describe the experimental
setup and implementations details. In Section 6.2 we present and
discuss the results in terms of DOA estimation accuracy.

6.1. Experimental setup and implementation details

For the experiments, we consider separate recordings of reverberant
speech and diffuse-like babble noise using hearing aid microphones

733



from the BRUDEX database [9]. We consider three reverberation
environments (’low’, ’medium’, and ’high’), corresponding to median
reverberation times T60≈ [240,485,1170]ms. Excluding co-located
speakers, we consider 132 possible DOA combinations in the range
[−150:30:180]◦ of a female and a male speaker. We cut the speech
signals to a duration of approximately 5 s and use an oracle energy-
based voice activity detector to obtain constantly active speech signals
over the considered duration. We consider equal average broadband
speech power across all microphones for both speakers. The noise
component is scaled according to SNRs in the range [−5:5 :20]dB,
where the SNR is set as the ratio of the average broadband speech
power of one speaker across all microphones to the average broadband
noise power across all microphones.

All microphone signals are downsampled to 16 kHz and processed
within an STFT framework with 32ms square-root Hann windows
with 50% overlap. We estimate the covariance matrices Φ̂y(k, l) of
the noisy microphone signals and Φ̂u(k, l) of the undesired component
for each TF bin using a first-order recursion during speech-and-noise
periods and noise-only periods, respectively, as

Φ̂y(k, l)=αyΦ̂y(k, l−1)+(1−αy)y(k, l)y
H(k, l) (18)

Φ̂u(k, l)=αuΦ̂u(k, l−1)+(1−αu)y(k, l)y
H(k, l), (19)

with smoothing factors αy and αu corresponding to time constants
of 250ms and 500ms, respectively. With a similar recursion the co-
variance matrices of the separated speech components Φ̂x̂,j(k, l) and
noise components Φ̂u,j(k, l) are estimated. To discriminate speech-
and-noise periods from noise-only periods, a speech presence proba-
bility [25] is estimated in all microphones, averaged and thresholded.

We estimate the RTF vector using the state-of-the-art covariance
whitening method [26, 27]. Only the entry of the RTF vector that
relates the front hearing aid microphone signals with each other is
considered for the ITD-based speaker-grouped frequency-fusion
mechanism. Psycho-acoustically motivated, we consider candidate
ITDs in the range [−900:1 :900]µs, and we set the hyperparameter
β=5. The IVE algorithm is implemented according to [24] with at
most 100 iterations.

For the computation of the frequency-dependent SPS, we consider
measured anechoic binaural room impulse responses with an angular
resolution of 5◦ in the range [−180:5 :175]◦ [28] from which the
sets {ā(k,θi)}Ii=1 and {ḡ(k,θi)}Ii=1 of anechoic prototype transfer
functions are obtained for I=72 candidate directions.

We assess the DOA estimation performance using the accuracy
which we define as:

ACC=
1

L

L∑
l=1

ACC(l); ACC(l)=jcorrect(l)/J, (20)

where jcorrect (l) denotes the number of speakers in the l-th frame
for which the DOA is estimated within ±5◦ correctly. For each
DOA estimation procedure, i.e., the combination of DOA estimation
method, frequency fusion mechanism, and (non-) application of
speaker separation algorithm, we compute the median of accuracies
taken over all acoustic scenes which are specified by the DOA pair, the
SNR, and the reverberation condition.

6.2. Results

In Fig. 2, we compare the median DOA estimation accuracy for the
considered DOA estimation procedures. For each procedure we
also compare the median DOA estimation accuracy when selecting
only a subset of frequencies (corresponding to the threshold value

narrowband broadband ITD-based IVE-based50

60

70

80

90

100

-3 dB -5 dB -5 dB -2 dB -1 dB -1 dB -3 dB -4 dB -5 dB 4 dB 5 dB 4 dB

A
cc

ur
ac

y
[%

]

MUSIC SRP RTF-based

Fig. 2. Median DOA estimation accuracy for the investigated DOA
estimation procedures. The white bars denote the median accuracy
without frequency subset selection and the number above each bar indi-
cates the CDR threshold value leading to the highest median accuracy.

CDRthresh leading to the highest median accuracy, where the respec-
tive threshold value is indicated above each bar) against when using
the whole frequency set (corresponding to CDRthresh = −∞dB,
shown as narrow white bars).

First, it can be observed that similar as in [4] for all considered
DOA estimation procedures the frequency subset selection improves
DOA estimation, with the largest impact with the MUSIC method.
Second, comparing the procedures from the narrowband and broad-
band frequency fusion methods, variations in the estimation accuracy
up to 10% for the same DOA estimation method can be observed.
Third, comparing the proposed ITD-based speaker-grouped frequency
fusion mechanism with the narrowband and broadband frequency
fusion mechanism, for almost all DOA estimation procedures an
increase in localization accuracy can be observed. Comparing the
speaker-grouped frequency fusion mechanism against the broadband
fusion mechanism, the accuracy can be increased by at least 8% for all
DOA estimation methods. Comparing the speaker-grouped frequency
fusion mechanism against the narrowband fusion mechanism, for the
MUSIC method the accuracy can be increased by about 12%, for
the RTF-vector-matching-based method a minor improvement can be
achieved, and for the SRP method there is no improvement, indicating
that both speakers can already be detected in the SPS of the latter meth-
ods. Fourth, comparing the procedures using the batch offline IVE
algorithm with the procedures using the proposed online ITD-based
speaker-grouped frequency fusion mechanism, one sees comparable
results for the SRP and RTF-vector-matching-based methods and
an improvement of 6% for the MUSIC method. In summary, our
experiments highlight the effectiveness of the proposed ITD-based
speaker-grouped frequency fusion mechanism for DOA estimation.

7. CONCLUSION

In this paper, we compared how the combination of frequency-
dependent spatial spectra affect DOA estimation for a binaural hearing
aid setup. We proposed a speaker-grouped frequency fusion me-
chanism based on ITDs and compared it against a narrowband and
broadband frequency fusion mechanism using the MUSIC, SRP, and
RTF-vector-based prototype matching DOA estimation methods. To
further assess DOA estimation using the proposed ITD-based speaker-
grouped frequency fusion mechanism, we also considered DOA
estimation with blindly separated speakers as an upper performance
limit. Our experimental results based on noisy and reverberant recor-
dings from the BRUDEX-database demonstrate the effectiveness of the
proposed ITD-based speaker-grouped frequency fusion mechanism.

734



8. REFERENCES

[1] S. Doclo, W. Kellermann, S. Makino, and S. E. Nordholm,
“Multichannel signal enhancement algorithms for assisted
listening devices: Exploiting spatial diversity using multiple
microphones,” IEEE Signal Processing Magazine, vol. 32, no.
2, pp. 18–30, Mar. 2015.

[2] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. on Antennas and Propagation, vol.
34, no. 3, pp. 276–280, Mar. 1986.

[3] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust
localization in reverberant rooms,” in Microphone Arrays,
M. Brandstein and D. Ward, Eds., pp. 157–180. Springer, Berlin,
Heidelberg, Germany, 2001.

[4] D. Fejgin and S. Doclo, “Coherence-based frequency subset
selection for binaural RTF-vector-based direction of arrival
estimation for multiple speakers,” in Proc. International Work-
shop on Acoustic Signal Enhancement (IWAENC), Bamberg,
Germany, Sep. 2022, pp. 1–5.

[5] C. Blandin, A. Ozerov, and E. Vincent, “Multi-source TDOA esti-
mation in reverberant audio using angular spectra and clustering,”
Signal Processing, vol. 92, no. 8, pp. 1950–1960, Aug. 2012.

[6] S. Thakallapalli, S. V. Gangashetty, and N. Madhu, “NMF-
weighted SRP for multi-speaker direction of arrival estimation:
robustness to spatial aliasing while exploiting sparsity in the
atom-time domain,” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2021, no. 1, pp. 1–18, Mar. 2021.

[7] E. Hadad and S. Gannot, “Maximum likelihood multi-speaker
direction of arrival estimation utilizing a weighted histogram,” in
Proc. International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, May 2020, pp. 586–590.

[8] N. Delfosse and P. Loubaton, “Adaptive blind separation of
independent sources: A deflation approach,” Signal Processing,
vol. 45, no. 1, pp. 59–83, Jul. 1995.

[9] D. Fejgin, W. Middelberg, and S. Doclo, “BRUDEX database:
Binaural room impulse responses with uniformly distributed
external microphones,” in Proc. ITG Conference on Speech
Communication, Aachen, Germany, Sep. 2023, pp. 126–130.

[10] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures
via time-frequency masking,” IEEE Trans. on Signal Processing,
vol. 52, no. 7, pp. 1830–1847, Jul. 2004.

[11] Y. Avargel and I. Cohen, “On multiplicative transfer function ap-
proximation in the short-time Fourier transform domain,” IEEE
Signal Processing Letters, vol. 14, no. 5, pp. 337–340, May 2007.

[12] M. Zohourian, G. Enzner, and R. Martin, “Binaural speaker
localization integrated into an adaptive beamformer for hearing
aids,” IEEE Trans. on Audio, Speech, and Language Processing,
vol. 26, no. 3, pp. 515–528, Mar. 2018.

[13] R. O. Duda and W. L. Martens, “Range dependence of the res-
ponse of a spherical head model,” The Journal of the Acoustical
Society of America, vol. 104, no. 5, pp. 3048–3058, Nov. 1998.

[14] D. Salvati, C. Drioli, and G. L. Foresti, “Incoherent frequency
fusion for broadband steered response power algorithms in noisy
environments,” IEEE Signal Processing Letters, vol. 21, no. 5,
pp. 581–585, May 2014.

[15] L. Madmoni and B. Rafaely, “Direction of arrival estimation
for reverberant speech based on enhanced decomposition of

the direct sound,” IEEE Journal of Selected Topics in Signal
Processing, vol. 13, no. 1, pp. 131–142, Mar. 2019.

[16] N. T. N. Tho, S. Zhao, and D. L. Jones, “Robust DOA estimation
of multiple speech sources,” in Proc. International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Florence,
Italy, May 2014, pp. 2287–2291.

[17] M. Taseska and E. A. P. Habets, “DOA-informed source
extraction in the presence of competing talkers and background
noise,” EURASIP Journal on Advances in Signal Processing,
vol. 2017, no. 1, pp. 1–13, Aug. 2017.

[18] I. M. Lindevald and A. H. Benade, “Two-ear correlation in the
statistical sound fields of rooms,” The Journal of the Acoustical
Society of America, vol. 80, no. 2, pp. 661–664, Aug. 1986.

[19] Z. El Chami, A. Guerin, A. Pham, and C. Servière, “A
phase-based dual microphone method to count and locate
audio sources in reverberant rooms,” in Proc. Workshop on
Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, Oct. 2009, pp. 209–212.

[20] S. Rickard and F. Dietrich, “DOA estimation of many W-disjoint
orthogonal sources from two mixtures using DUET,” in Proc.
Workshop on Statistical Signal and Array Processing, Pocono
Manor, PA, USA, Aug. 2000, pp. 311–314.

[21] M. I. Mandel, R. J. Weiss, and D. P. W. Ellis, “Model-based
expectation-maximization source separation and localization,”
IEEE Trans. on Audio, Speech, and Language Processing, vol.
18, no. 2, pp. 382–394, Feb. 2010.

[22] T. May, S. van de Par, and A. Kohlrausch, “A binaural scene
analyzer for joint localization and recognition of speakers in the
presence of interfering noise sources and reverberation,” IEEE
Trans. on Audio, Speech, and Language Processing, vol. 20, no.
7, pp. 2016–2030, Sep. 2012.

[23] A. Lombard, Y. Zheng, H. Buchner, and W. Kellermann, “TDOA
estimation for multiple sound sources in noisy and reverberant
environments using broadband independent component analysis,”
IEEE Trans. on Audio, Speech, and Language Processing, vol.
19, no. 6, pp. 1490–1503, Aug. 2011.

[24] Z. Koldovský, V. Kautský, P. Tichavský, J. Čmejla, and J. Málek,
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