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ABSTRACT

The proliferation of edge-based wireless speech applica-
tions necessitates the development of resource-efficient, low-
latency speech communication systems capable of function-
ing across diverse communication channel conditions. En-
suring intelligible speech communication under conditions of
constrained resources and low-latency presents a challenging
problem within the domain of speech transmission. In this
paper, we introduce a very low-latency configurable speech
transmission system leveraging joint source-channel coding
and deep neural networks (DNNs). Our proposed system
is a unified deep neural network system engineered to op-
erate effectively across a wide range of wireless communi-
cation channel scenarios. The system encompasses both a
joint source-channel encoder and a joint source-channel de-
coder, each with access to channel state information (CSI).
In this context, CSI signifies the type of fading in the wire-
less channel. Notably, our system has a total latency of 2 ms.
Through extensive simulations, we empirically demonstrate
that the proposed configurable system closely approximates
the performance of ideal systems specifically tailored to in-
dividual wireless channel scenarios. Our evaluation is rooted
in the assessment of instrumental measures of speech qual-
ity and intelligibility, affirming the efficacy of our system in
diverse and resource-constrained communication contexts.

Index Terms— low-latency, joint source-channel coding,
speech transmission, edge communication.

1. INTRODUCTION

Conventional approaches to low-latency speech transmission
typically involve the use of separate source-channel coding
methods [1]. Although Shannon’s separation theorem [2] the-
oretically suggests that separate source and channel coding
can attain asymptotic optimality, this theory becomes less ef-
fective when applied to finite block lengths. In the context of
low-latency challenges, conventional digital communication
necessitates employing short block lengths, a scenario where
separation commonly exhibits poor performance.

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No.956369.

Recently, there has been a substantial body of literature
delving into machine learning tasks at the wireless edge, en-
compassing a wide array of studies related to distributed and
remote inference challenges across wireless channels [3–5].
With a specific focus on the wireless transmission of images
[6] and speech [7–9], the deep Joint Source-Channel Coding
(JSCC) scheme has been demonstrated to outperform conven-
tional separation-based benchmarks, demonstrating superior
performance and enhanced resilience to channel alternation.
The deep JSCC paradigm has been effectively extended to nu-
merous novel scenarios, underscoring its potential as a viable
and versatile technology [10, 11].

In the majority of prior research [6, 8, 12], deep JSCC en-
coder decoder pairs have been trained to suit particular com-
munication channel attributes. These attributes encompass
various factors such as channel bandwidth compression ratio,
signal-to-noise ratio (SNR), and the specific type of commu-
nication channel employed. However, this tailored approach
presents a notable constraint when considering the integration
of deep JSCC into real-world systems. The primary challenge
lies in the necessity to retrain an extensive array of deep JSCC
encoder/decoder networks on mobile devices, ensuring their
availability for deployment across diverse channel conditions.
This prerequisite imposes substantial memory demands, thus
making it difficult in practical implementations.

Certain JSCC approaches have demonstrated the capabil-
ity to dynamically configure or adapt to varying channel state
information (CSI). Configurable networks possess direct ac-
cess to the CSI, allowing them to tailor their operation accord-
ingly. Conversely, adaptable networks frequently estimate the
desired CSI information, enabling adaptability based on these
estimates.

Prior research has demonstrated the adaptability of DNNs
in configuring parameters for JSCC problems. In [9], a single
DNN adjusted bandwidth and SNRs for speech and audio
transmission. Similarly, [13] showed DNN configurability
across various SNRs for image transmission. In deep JSCC
for image transmission, [14] employed a transformer-based
DNN adaptable to diverse SNRs and bandwidths. Addi-
tionally, [15] introduced a DNN that dynamically adjusted
bandwidth in response to SNR changes. For orthogonal
frequency division multiplexing (OFDM) image transmis-
sion, [11] presented a channel-configurable DNN using a
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dual attention mechanism to estimate wireless channel gains
and noise power, enhancing system adaptability.

In this paper, we introduce a novel single, small and
wireless channel configurable DNN tailored for low-latency
JSCC-based speech transmission. This system comprises a
JSCC encoder, a non-trainable wireless channel model, and a
JSCC decoder. The proposed system, similar to the traditional
communication system, operates with access to channel state
information (CSI), which characterizes the wireless channel
type. This CSI information is made available to both the en-
coder and decoder. To facilitate this information transfer, we
employ FiLM (Feature-wise Linear Modulation) layers [16]
within the architecture of both the encoder and decoder. We
should note that the proposed system has a very super light
machine compared to the state-of-the-art systems, which has
the advantage that it can be used in small battery-driven
devices.

2. SYSTEM MODEL

In this section, we present the proposed wireless channel
configurable JSCC-based speech transmission system. The
system’s fundamental components include a joint source-
channel encoder, a wireless communication channel, and a
joint source-channel decoder, as illustrated in Fig. 1.

The encoder and decoder architecture draws inspiration
from [9], a design paradigm that has demonstrated robust per-
formance across diverse applications such as speech compres-
sion [17, 18] and audio codecs [19, 20]. The encoder com-
prises six layers: a convolutional layer, three encoder blocks,
an additional convolutional layer, and a layer normalization
layer. Notably, FiLM layers are interposed between consecu-
tive blocks, serving as conduits for information and enabling
data modulation based on contextual cues. Encoder blocks in-
clude a series of dilated convolutions with skip connections.
The decoder symmetrically mirrors the encoder’s architec-
ture, replacing encoding blocks with decoder blocks, where
the decoder blocks employ transpose convolutions. All con-
volutions are causal, and the non-linearity used in the all lay-
ers is the Parametric Relu activation function [21]. We should
also note that in the proposed configurable system, we as-
sumed both joint source channel encoder and decoder have
access to channel state information (CSI), which is the chan-
nel type in our work.

Let us consider xℓ ∈ Rn as the input speech frame with
length n to the joint source-channel encoder and yℓ ∈ Ck is
the output of it. Then yℓ goes through the wireless channel,
and ŷℓ ∈ Ck is the output of the wireless channel which is
used as input to the joint source-channel decoder. The joint
source channel decoder tries to recover the output signal x̂ℓ ∈
Rn as close as possible to the input speech signal. We define
the bandwidth compression ratio as

R = k/n, (1)
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Fig. 1: Overview of the proposed configurable DNN for JSCC
speech transmission.

which characterizes the difficulty of transmission based on
bandwidth. It is shown in [7], R is linearly related to the
maximum available bitrate for digital communication.

In this paper, we consider four types of wireless commu-
nication channels, namely, (i) Additive White Gaussian Noise
(AWGN), (ii) slow Rayleigh fading channel, (iii) slow Rician
fading channel, and (iv) Phase Invariant slow Rayleigh fad-
ing. We can model all these wireless channels as follows

ŷℓ = hy + n, (2)

where n ∈ Ck is complex Gaussian noise and h ∈ Ck×k is a
diagonal fading matrix. For the AWGN channel, h = Ik is an
identity matrix, and in the case of Rayleigh fading and Phase
invariant Rayleigh fading, the diagonal elements of h has
complex normal and real normal distributions, respectively.
For the Rician fading, h = a + bh1 where h1 is generated
like Rayleigh fading, and a =

√
z

z+1 , b = 1
z+1 in which z is

the Rician factor. In the special case of z = 0, Rician fading
equals the Rayleigh fading channel.

We train two types of systems: i) ”expert system,” which
is trained for a particular wireless channel, and ii) ”general”
system, which is trained for all four types of wireless chan-
nels. All these types of wireless channels are differentiable
which allows us to train the proposed JSSC system in an
end-to-end manner. For the expert system, we use MSE as
the cost function to measure the distortion between input xℓ

and output x̂ℓ speech signals. For the configurable and non-
configurable general systems, where we trained the system
under all the wireless channels, we used weighted MSE as
the cost function.
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(3)

where wi is the weight with respect to the current wireless
channel during training, M is the total type of channels for
training, N is the number of batches in one epoch, and x̂i

ℓ

is the output of the system for ith wireless channel. Using
this weighting scheme, we balance the importance of the error
with respect to each wireless channel. By using only MSE
error as a cost function for general systems, it is clear that the
performance is biased toward the wireless channel that causes
higher MSE errors. For each wireless channel, we choose wi

based on the MSE error of the standalone expert system DNN,
which is trained with that particular wireless channel.

3. SIMULATION RESULTS

In this section, we conduct a comprehensive evaluation of our
proposed configurable general system in comparison to non-
configurable general system and expert systems which are
trained for particular wireless channels versus varying wire-
less channel SNRs. Additionally, we assess the performance
of our proposed method against state-of-the-art alternatives
versus transmission bandwidth. We employ established eval-
uation metrics, including extended short-time objective intel-
ligibility (ESTOI) [22], perceptual evaluation of speech qual-
ity (PESQ) [23], and normalized mean squared error (NMSE)
for the comparison.

The Librispeech dataset [24] is used for training and eval-
uating our proposed speech transmission system. With a sam-
pling frequency of 16 kHz, the training phase involved 2200
FLAC files, collectively amounting to a duration of 13100
seconds. For unbiased assessment, we reserved a separate set
of 200 FLAC files, totalling 1300 seconds, for the test phase.
The training phase employed the Adam optimizer [25], uti-
lizing a learning rate of 0.001. To mitigate overfitting, an
early stopping strategy was adopted with a seven-epoch pa-
tience threshold. During training, we used a batch size of
2048. With a frame size of n = 32 samples, the full system
latency of our DNN-based system is 2 ms. The total number
of parameters for the proposed system is almost 25k. For the
systems that are trained for one particular wireless channel,
there is no need to use FiLM layers; however, to be fair with
the number of parameters for configurable and ideal systems
in terms of the number of parameters, we set the number of
parameters to 25k by increasing the number of kernels in en-
coder and decoder for the ideal system.

3.1. Performance vs. wireless channel SNR

In this subsection, a set of four DNNs was trained for dif-
ferent SNRs across four distinct wireless channels: AWGN,
slow Rayleigh fading, slow Phase Invariant Rayleigh fading,

and slow Rician fading channels (expert systems). Further-
more, one DNN was trained with all wireless channel mod-
els without channel type information (non-configurable gen-
eral system). Finally, in our proposed system, the DNN was
trained with all wireless channels and both the encoder and
decoder were informed about the wireless channel type us-
ing FiLM layers (configurable general system). The perfor-
mance of all six DNNs was compared across different wire-
less channel conditions. We set the bandwidth compression
ratio R = 1, and the training loss utilized is MSE without
weights for expert systems (M = 1 in eq.3), while a weighted
MSE, as expressed in eq. 3, is employed for the two general
systems training.

The results are illustrated in Fig.2. The figure comprises
twelve sub-figures organized into three rows, with each row
representing one of the metrics plotted against SNR. Each col-
umn represents an expert system trained for a particular wire-
less channel. Additionally, within each column, the perfor-
mance of the non-configurable and configurable general sys-
tems is depicted for the corresponding wireless channel.

The wireless channels were ranked in terms of difficulty
to handle by channel codes, with the order being AWGN, PI
Rayleigh fading, Rician fading, and Rayleigh fading based
on their characteristics [26]. The expert systems exhibit the
best performance for their corresponding wireless channels.
Furthermore, the expert systems for easy conditions, such as
the AWGN channel, show insufficient performance when ex-
posed to the more challenging Rayleigh and Rician fading
channels. Conversely, the expert systems under more diffi-
cult conditions demonstrate reasonable performance even un-
der easy conditions. This observation emphasizes the impor-
tance of diverse and challenging training conditions to en-
hance the adaptability of DNNs. Moreover, as the training
conditions transitioned from Rayleigh fading to the less chal-
lenging AWGN channel, a significant performance improve-
ment was observed for the expert systems trained for easier
conditions like AWGN and PI Rayleigh fading channels. In
the extreme case, the expert system for the difficult Rayleigh
fading demonstrates similar performance across all four wire-
less channels. Although it suggests robustness and general-
ization capability, an expert system for easier wireless chan-
nels shows better performance, indicating a tradeoff between
adaptability and the performance of the expert systems.

When comparing the configurable and non-configurable
general systems, a clear trend emerged across all scenar-
ios. The configurable system consistently outperformed the
non-configurable counterpart across all three metrics and a
range of SNRs. This performance superiority underscores the
effectiveness of incorporating channel-specific information
through FiLM layers in enhancing the DNN’s capacity to
adapt to diverse wireless channel conditions.

Especially notable was the configurable general system’s
ability to closely approach the performance of DNNs that
were trained for particular wireless channels when both were
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Fig. 2: The performance of the proposed speech transmission system under different wireless channels when it is trained for a
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each figure that represent the performance of the proposed configurable system and the trained system under all communication
channels. The legend is the same for all figures.

evaluated under matched channel conditions. This observa-
tion was particularly pronounced for the challenging Rayleigh
and Rician fading wireless channels. While the configurable
general system showcased remarkable performance, slightly
lower performance were observed in the context of the Rician
and AWGN channels, particularly evident in the PESQ score.

On the other hand, the non-configurable general system
consistently displayed weaker performance than expert sys-
tems for all metrics and SNRs. In certain instances, the expert
system exhibits superior performance compared to the non-
configurable general system when tested under unmatched
conditions. For instance, the expert system for Rayleigh fad-
ing exhibits superior performance to the non-configurable
general system in tests involving other wireless channels.
This finding highlights the benefits of channel-specific train-
ing, emphasizing that a system fine-tuned solely under the
conditions of a particular wireless channel, such as Rayleigh
fading, possesses a higher degree of resilience and adapt-
ability compared to a system trained concurrently across all
wireless channels in a non-configurable framework.

The findings underscore how training conditions dis-
tinctly affect system performance: tougher conditions lead to

better adaptability for challenging wireless scenarios but at
the expense of performance in simpler wireless channel con-
texts. This highlights the adaptability-performance trade-off.
The simulation results also highlight the superior efficacy of
the configurable general system, utilizing channel-specific
information to amplify performance across diverse wireless
channel scenarios. Conversely, it underscores the inherent
constraints of the non-configurable general system, under-
scoring the significance of precise training for achieving
robustness and peak performance.

3.2. Performance vs. bandwidth

In this section, we perform a comparison between the pro-
posed configurable general method and state-of-the-art sep-
arate joint source-channel coding systems. The proposed
method employs analogue transmission, while the separate
systems adopt digital transmission. To ensure a fair evaluation
between analogue and digital communication paradigms, we
adopt conditions similar to those employed in [7, 9] that are
designed to equate the performance metrics. Specifically, the
conditions are defined to find the maximum available bitrate
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for digital transmission using the capacity of the transmission
channel and bandwidth compression ratio 1. Additionally,
measures are taken to ensure parity in the number of trans-
mitted symbols between the analogue and digital systems.

The separate digital transmission systems comprise an
Opus speech coder [27] and a Reed Solomon (RS) channel
coder. The RS channel coding is realized by leveraging the
built-in packet loss simulation option within the Opus de-
coder, where packet loss probability calculations for Opus
audio-related information are incorporated into the Opus
encoder. The channel coding rate plays a crucial role in de-
termining the total bitrate allocation between source coding
and channel coding, thus impacting the final performance.
A grid search is conducted to optimize this parameter, with
the NMSE error serving as the cost function. The minimal
latency of the separate system is 7.5 ms. Throughout the
simulation, the SNR is set to 10 dB, and the latency of the
proposed method is established at 2 ms. Meanwhile, the
separate system’s latencies are set at 7.5 ms and 22.5 ms.

The results are illustrated in Figure 3, which encompasses
three subfigures, each depicting the performance trends for
the NMSE, PESQ, and ESTOI metrics against the bandwidth
compression ratio (R). Curves sharing the same marker repre-
sent experiments conducted under identical wireless channel
conditions. In the case of the state-of-the-art digital trans-
mission systems with latencies of 22.5 ms and 7.5 ms un-
der the same wireless channel, these curves exhibit matching
colours and markers, differing solely in the line style (dashed
for the system with a 22.5 ms latency). It is noteworthy that
due to the minimum bitrate requirement of the Opus coder
(set at 6 kbps), the separate method often struggles to operate
at lower compression rates. Across all systems, the order of
performance superiority is consistently AWGN, PI Rayleigh,
Rician, and Rayleigh fading channels. Additionally, the sep-
arate method demonstrates better performance as the latency
increases.

Evaluating across all metrics, the proposed configurable

general method with a 2 ms latency exhibits a significant per-
formance advantage over the separate state-of-the-art method
with a latency of 7.5 ms. Based on the NMSE metric, the
proposed method even outperforms the separate method with
a 22.5 ms latency. However, in terms of PESQ and ESTOI,
the separate method with 22.5 ms latency significantly out-
performs the proposed method with latency 2ms, which are
more important and informative metrics than NMSE metrics.

4. CONCLUSION

In this study, we proposed a configurable speech transmission
system, harmonizing joint source-channel coding and deep
neural networks, which provides an configurable solution for
low-latency, resource-constrained wireless speech communi-
cation. With a minimal latency of 2 ms, our system demon-
strates performance on par with specialized systems for in-
dividual wireless channels, as confirmed by rigorous simula-
tions. This adaptable system holds the potential to enhance
wireless speech communication across diverse conditions.
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