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ABSTRACT

In-ear microphones in hearing protection devices can be utilized
to capture the own voice speech of the person wearing the devices
in noisy environments. Since in-ear recordings of the own voice
are typically band-limited, an own voice reconstruction system
is required to recover clean broadband speech from the in-ear
signals. However, the availability of speech data for this scenario is
typically limited due to device-specific transfer characteristics and
the need to collect data from in-situ measurements. In this paper,
we apply a deep learning-based bandwidth-extension system to
the own voice reconstruction task and investigate different training
strategies in order to overcome the limited availability of training
data. Experimental results indicate that the use of simulated training
data based on recordings of several talkers in combination with a
fine-tuning approach using real data is advantageous compared to
directly training on a small real dataset.

Index Terms— Own voice reconstruction, in-ear microphone,
training strategies, data augmentation, domain adaptation

1. INTRODUCTION

In noisy working environments, workers often rely on hearing
protection devices. Since such devices do not only attenuate
external noise, but also hinder direct speech communication, devices
enabling radio communication may present an advantage [1]. One
option for recording the own voice of the person wearing such a
device is the use of a microphone placed inside of the occluded ear
canal. However, the in-ear microphone picks up the own voice at
a limited frequency range up to about 2 kHz with different transfer
characteristics than a close-talking microphone due to occlusion
and body-conduction effects and with body-produced noise (e.g.,
breathing, heartbeats) [2] . Hence an own voice reconstruction
system is required to recover clean broadband speech.
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Fig. 1. Illustration of the considered hearing protection device and
the own voice reconstruction task, aiming at estimating the clean
broadband speech signal so[n] from the noisy and band-limited
in-ear microphone signal yi[n].

For this task, it has been proposed in [3] to first use an adaptive
filter to reduce noise in the in-ear microphone and then apply a basic
bandwidth extension (BWE) system to reconstruct high-frequency
content. For a similar scenario, in [4] an autoencoder neural network
has been applied to directly reconstruct broadband speech from
recordings made with a bone-conduction microphone. In [5], a
neural network is utilized to compute time-varying filters used
to estimate broadband speech from in-ear recordings. Recently,
in [6] a multi-modal approach has been investigated using both a
bone- and an air-conduction microphone as input signals to a fully
convolutional neural network. In [7] a fully convolutional neural
network approach in the time-domain has been proposed to estimate
clean broadband speech using two in-ear microphones. Similarly,
in [8] it has been proposed to utilize a U-Net architecture to enhance
bone-conducted signals in the short-time Fourier transform (STFT)
domain.

In this paper, we consider the deep learning-based BWE
approach proposed in [9], which reconstructs the high-frequency
content using a time-domain U-Net, and adapt it to the own voice
reconstruction task, i.e. not only reconstructing high-frequency
content but also compensating for transfer characteristics and
reducing body-produced noise. Since the transfer characteristics
are device-specific, in-ear own voice recordings have to be made
in-situ with a talker wearing the device, such that the amount of
speech data available for training is typically limited. We propose
to overcome data shortage by simulating artificial recordings for
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use in data augmentation-based training strategies. The simulation
framework relies on modeling the transfer characteristics between
two device microphones using relative transfer functions (RTFs).
We investigate the effects of single- and multi-talker transfer
characteristics, the number of RTFs estimated per talker, the
influence of body-produced noise, and the usage of real data
fine-tuning. Results indicate that employing a training paradigm
adopted from BWE is viable to the own voice reconstruction
task. Experimental results show that training on simulated in-ear
signals can be used to perform reconstruction on recordings of
in-ear signals. In particular, pre-training the proposed system with
simulated data and fine-tuning it with real data leads to the largest
improvement in terms of objective metrics.

2. SIGNAL MODEL

We consider a scenario where a talker is wearing a hearing protection
device equipped with a single microphone located at the inside
of the occluded ear (see Fig. 1). Since a large component of the
own voice speech is transmitted through bone and cartilage [2],
the speech captured by the in-ear microphone exhibits different
characteristics than speech captured by a microphone outside of
the talkers’ body (e.g., a close-talk microphone or a microphone
placed at the outer side of the hearing protection device). Most
prominently, high-frequency components are heavily attenuated,
while low-frequency components are amplified. It is assumed here
that the in-ear microphone does not pick up any external noise from
outside of the device, but picks up body-produced noise such as
breathing sounds. The considered scenario differs from BWE, since
the transfer characteristics may vary based on hearing protection
device, ear canal characteristics, and body-produced noise may
need to be accounted for.

Fig. 1 illustrates the signal model for the own voice reconstruction
task. In the absence of external noise, the signal yi[n] recorded at
the in-ear microphone (subscript i is given by

yi[n]=si[n]+vi[n], (1)

where n denotes the discrete time index, si[n] denotes the own
voice speech and vi[n] denotes the body-produced noise recorded at
the in-ear microphone. The objective of own voice reconstruction is
to estimate a clean broadband speech signal (as it would be captured
by a microphone in front of the talkers mouth) from the band-limited
and noisy microphone signal yi[n]. Although own voice captured at
the outer microphone (subscript o) does not have the same long-term
spectrum as speech recorded from a microphone in front of the
talker’s mouth, we still assume that they are similar such that in this
paper we will aim at estimating the own voice captured at the outer
microphone. In this paper, we will use the clean speech signal so[n]
captured by a microphone at the outer side of the hearing protection
device as the desired speech signal. It should be noted that the
speech signal so[n] is only used for training and evaluation purposes
in this paper, but is not available in practice. The speech signals si[n]
and so[n] are related to each other by a linear, time-varying transfer
characteristic (due to body transmission and mouth movements).

yi[n]
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1-dim. U-Net

WOLA
reconstr.

ŝo[n]

Loss computation

yi[l,m] ŝo[l,m]

Fig. 2. Overview diagram of the considered own voice
reconstruction system.

3. OWN VOICE RECONSTRUCTION SYSTEM

In this section, we propose a deep learning-based own voice
reconstruction system based on the BWE system in [9]. In
Section 3.1, we describe the used processing framework and
network architecture. In Section 3.2, we describe a small dataset
recorded using the target device. To overcome the limited availability
of in-ear recordings, in Sections 3.3 and 3.4 we propose procedures
to simulate in-ear recordings. In Section 3.5, we discuss training
strategies for the proposed system.

3.1. Processing framework

The overall system is illustrated in Fig. 2. Following [9], it uses
a weighted overlap-add (WOLA) framework, where the in-ear
microphone signal yi[n] is first segmented in segments yi[l,m] of
length P , where l and m denote the segment and segment time
index. Each segment yi[l,m] is then processed by the U-Net to
estimate the clean speech segment so[l,m] at the outer microphone.
The estimated segments ŝo[l,m] are then reconstructed to obtain
ŝo[n]. The WOLA segmentation and reconstruction is carried out
using a sqrt-Hann window and an overlap of P

2 samples.
In this work, a U-Net architecture as described in [9] is utilized.

This architecture has been used for BWE in [9], but has also
previously been applied to noise reduction [10, 11]. Input frames
consisting ofP=2048 samples are processed in the time domain, at
a sampling frequency of fs=16kHz. The input convolutional layer
in the encoder part increases the number of channels from 1 to 64,
and subsequent layers decrease the sampling frequency towards the
bottleneck while incrementally increasing the amount of filters. All
filters have a length of 11 samples. The decoder part of the network
after the bottleneck mirrors the encoder part. From each encoding
layer, a skip-connection towards the corresponding decoder layer
is added. The skip-connections are realized by concatenating the
additional channels from the encoder to the output signals of the
decoder layer. A parametric rectifier linear unit (PReLU) activation
is utilized after each layer except for the last decoder layer, where
a linear activation is employed. The U-Net has 10.2M parameters.

3.2. Real Dataset

A small dataset of own voice recordings was obtained with 14
different talkers (4 female, 10 male) wearing the closed-vent
variant of the commercially available Hearpiece device [12] in
each ear. The microphones used are the in-ear microphone and
the outer microphone near the concha. Speech was recorded at



these microphones while the talkers are reading a German text
out loud in a sound-proof listening booth. The talkers were seated
during recording, so that body-produced sounds from movement
are not expected. The overall size of the dataset is approximately
thirty minutes, which apparently is not sufficiently large to train the
proposed system and obtain satisfactory results (see Section 4.2).
In addition, recordings of body-produced noise were gathered from
each participant wearning the devices while being silent.

3.3. Simulated Dataset

Data augmentation strategies may help to overcome limitations
imposed by small amounts of available training data [13]. We
therefore propose to train on a larger speech dataset by simulating
data. In order to easily perform data augmentation, we will
approximate this transfer characteristic as time-invariant:

s̃i[n]=h̃[n]∗so[n], (2)

where ∗ denotes the convolution operator, s̃i[n] denotes the
approximated own voice speech component at the in-ear microphone
and h̃[n] denotes the relative impulse response (ReIR) between the
outer and in-ear microphone, which corresponds to the RTF in time
domain.

In-ear own voice signals are simulated according to the signal
model in (2) by convolving broadband speech with ReIRs estimated
from the real dataset and adding body-produced noise vi[n] recorded
at the in-ear microphone from the same talkers as in the real dataset,
i.e.

ỹi[n]=h̃[n]∗so[n]+α·ṽi[n], (3)

where the scaling factor α determines the signal-to-noise-ratio
(SNR) of the simulated in-ear signal.

The VCTK corpus containing approximately 44 hours of
recordings is used as source material for broadband speech [14].
We investigate different options for the ReIR estimates h̃[n] between
the outer microphone and the in-ear microphone, which correspond
to RTF estimates in the frequency domain, and the body-produced
noise ṽi[n] in (3):

• RTF estimated using recordings from a single talker (1T) vs.
RTFs estimated using recordings from all talkers (14T)

• Estimation of a single RTF from a single utterance per talker
(s-RTF) vs. estimation of RTFs from a multiple utterances
per talker through temporal segmentation (m-RTF)

• additive randomly chosen body-produced noise segments,
scaled to achieve an SNR randomly varied in [10, 60] dB
between the in-ear speech and the body-produced noise,
included vs. not included

3.4. RTF Estimation

First, the own voice recordings are divided into individual utterances
using an energy threshold of −30dB re. maximum peak value
per recording for voice activity detection. Then, STFTs of the
microphone signals are computed using a STFT frame size of N=
256 samples, a Hann window and an overlap of N

2 samples between
frames. For each utterance, power spectral density (PSD) estimates

are obtained using the Welch method [15] from the STFTs Yi(k,l)
and So(k,l) where k and l denote the STFT frequency and frame
indices, L denotes the number of frames in an utterance, which
varies between utterances, and ·† denotes the complex conjugate:

Φi,o(k)=
1

L

L−1∑
l=0

Yi(k,l)·S†
o(k,l) (4)

Φo(k)=
1

L

L−1∑
l=0

|So(k,l)|2. (5)

Here, Φi,o(k) is the cross-PSD between the in-ear and outer
microphone signals, Φo(k) is the PSD of the outer microphone
signal. The relative transfer function H̃(k) is then estimated as

H̃(k)=
Φi,o(k)

Φo(k)
(6)

and the corresponding ReIR h̃[n] used to generate simulated data
is obtained by performing an inverse Fourier transform of the RTF.

However, due to changes in the speech excitation mechanism, it is
highly likely that the transfer path changes over time. For this reason,
speech RTFs are only estimated on individual utterances. In case of
the s-RTF option, only the longest utterance is selected from which a
single RTF is estimated. In case of the m-RTF option, all utterances
with length over 1 second are used to estimate multiple RTFs.

3.5. Training Strategies

The U-Net (see Section 3.1) is trained using a batch size of 32
examples per batch, where each example is a single segment of
P samples from an utterance randomly chosen from the dataset.
Audio input and target signals are normalized to zero mean and
unit variance for each recording. The U-Net is trained using the
combined time- and phase constrained magnitude (T-PCM) loss
function as proposed for BWE in [9]. The loss is computed between
the output of the network (estimated clean speech) and either the
outer microphone signal in case of the real dataset or the original
corpus recording in case of training with the simulated dataset.
The training is carried out using the Adam optimizer [16] with
an initial learning rate of 10−4, up to a maximum of 100 epochs.
The learning rate is halved if the validation loss does not improve
for 3 epochs, and early stopping is applied after 6 epochs without
loss improvement. Dropout with a factor of 0.2 is performed after
each three layers during training. The real dataset is split based on
the device side: recordings and RTF estimates obtained from the
left-side device are used in training and validation, whereas the right-
side recordings are used as test subset. The training and validation
set is further split into proportions of 0.88 and 0.12, respectively.

Aiming at investigating different training strategies, the U-Net
is trained using differently composed datasets. First, we investigate
suitability only using the real dataset for training. This dataset has
the advantage of closely resembling the own voice reconstruction
scenario, but has the drawback of limited data availability.

Second, we consider several variants of using the much larger
simulated dataset for training. Since the signal model used to
generate the simulated data is only an approximation, differences



between simulated and real data may lead to a lower performance
than when training with the same amount of data from the real
scenario. Finally, we perform a pre-training of the network on
the simulated dataset, and then similarly to [17] fine-tune only the
decoder weights on the real dataset using an initial learning rate
of 5·10−5. It is hypothesized that the encoding features required
for own voice reconstruction may be learned from the simulated
dataset, and the fine-tuning procedure enables the decoder to better
approximate the clean own voice speech at the outer microphone,
which is not available during inference.

4. EXPERIMENTAL EVALUATION

In this section, we compare the reconstruction performance of the
proposed deep learning-based own voice reconstruction system
using different training strategies. Additionally, we compare the
results to our re-implementation of recently proposed single-channel
sinc-dilated fully convolutional network (SDFCN) from [7], which
is trained on our real multi-talker dataset instead of the single-talker
dataset from the original publication.

4.1. Evaluation Procedure and Performance Metrics

For the experimental evaluation, we utilize the test subset of the
real dataset. Speech recordings are cut to 10 seconds. To assess
the own voice reconstruction performance, typical performance
metrics used for bandwidth extension and speech enhancement
tasks are considered. A metric which is often used to evaluate
bandwidth extension systems is the log-spectral distance (LSD) [18].
Additionally, we consider the wideband (WB) setting of the
perceptual evaluation of speech quality (PESQ) metric [19] and the
short-time objective intelligibility index (STOI) [20]. We use the
outer microphone signal, assuming to be only own voice speech, as
the reference signal for the performance metrics. For all measures
except LSD, a higher score indicates a better performance. LSD
is computed on STFT spectra with a frame size of 2048 samples
as in [21].

4.2. Reconstruction Performance

Table 1 shows the experimental results in terms of the considered
objective metrics for the unprocessed in-ear microphone signal yi[n]
and the processed signal ŝo[n] using either the baseline SDFCN [7]
or the U-Net for different training strategies.

Here, [R] denotes training on the real dataset, [S] denotes training
on a simulated dataset without added body-produced noise, [S+]
denotes training on a simulated dataset with added body-produced
noise, and [S+R] indicates pre-training on simulated data with
added body-produced noise and fine-tuning the encoder on real
data. The RTF options are described in Sections 3.3 and 3.4.

First, it can be observed that both the SDFCN and the U-Net
system trained on the real dataset yield improvements over the
unprocessed input signal. Compared to the baseline SDFCN, the
U-Net with a larger network size yields a higher PESQ score and
a lower LSD score, but also a lower STOI score.

When the U-Net is trained with simulated data only, a
performance decrease can be observed with respect to using

Table 1. Mean results for the unprocessed in-ear microphone signal,
the baseline SDFCN system and the proposed U-Net system for
different training strategies. Best performance is highlighted in bold.

System Data RTFs used LSD / dB PESQ STOI
unproc. - - 2.51 1.31 0.79
SDFCN [R] - 1.53 1.47 0.74
U-Net [R] - 1.48 1.64 0.73
U-Net [S] 1T, s-RTF 1.35 1.18 0.70
U-Net [S+] 1T, s-RTF 1.54 1.19 0.69
U-Net [S+] 1T, m-RTF 1.51 1.26 0.74
U-Net [S+] 14T, m-RTF 1.24 1.36 0.72
U-Net [S+R] 14T, m-RTF 1.05 1.80 0.83

real training data in terms of PESQ, and partly in terms of LSD
and STOI. For the single-talker, single-RTF training condition, the
results in terms of STOI and PESQ are actually worse than for
the systems trained with real data. This can probably be attributed
to the fact that in this case the U-Net only compensates the static
transfer function of a single talker, which does not correspond to real
recordings with different and time-varying transfer characteristics.
When considering additive body-produced noise and multiple RTFs
from one talker in the training dataset, the STOI and PESQ scores
slightly improve, but the LSD score degrades compared to the 1T,
s-RTF condition. The only training condition where all metrics are
improved is the condition where the in-ear microphone signals are
simulated using multiple RTFs from multiple talkers. However, it
should be realized that even for the 14T, m-RTF training condition
the STOI and PESQ scores are still worse than for the systems
trained with real data, showing that the assumed signal model in (3)
is probably not realistic enough. Finally, it can be observed that
the training paradigm utilizing the simulated dataset for pre-training
and the real dataset for fine-tuning yield large improvements in
terms of all metrics compared to both the systems trained on only
real data and the systems trained on only simulated data.

Informal listening experiments confirm the signal quality
predictions. It should however be noted that while the band-
limitation of the in-ear signals appears to be accounted for by
the pre-trained and fine-tuned system, there remains an audible
difference between the target and the processed signals, probably
since the proposed system is unable to account for individual
differences in own voice transmission characteristics.

5. CONCLUSION

In this paper, we have investigated several training approaches
for own voice reconstruction from band-limited noisy in-ear
microphone recordings. We have proposed a method to simulate
in-ear data by utilizing relative transfer functions between an outer
and an in-ear microphone of a hearing device. Experimental results
demonstrate a performance improvement from using simulated
data in a pre-training approach. For pre-training, the device transfer
characteristics seem to be best approximated using a multi-talker,
multi-RTF simulation strategy. In future work, the influence of
individual and device-specific own voice transmission factors and
external noise will be further investigated.
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