
DICTIONARY-BASED
FUSION OF CONTACT AND ACOUSTIC MICROPHONES FOR WIND NOISE REDUCTION

Marvin Tammen1,2,∗, Xilin Li1, Simon Doclo2, Lalin Theverapperuma1

1Meta Reality Labs Research, California, USA
2University of Oldenburg and Cluster of Excellence Hearing4all, Oldenburg, Germany

ABSTRACT

In mobile speech communication applications, wind noise can lead to a
severe reduction of speech quality and intelligibility. Since the performance
of speech enhancement algorithms using acoustic microphones tends
to substantially degrade in extremely challenging scenarios, auxiliary
sensors such as contact microphones can be used. Although contact
microphones offer a much lower recorded wind noise level, they come
at the cost of speech distortion and additional noise components. Aiming
at exploiting the advantages of acoustic and contact microphones for
wind noise reduction, in this paper we propose to extend conventional
single-microphone dictionary-based speech enhancement approaches by
simultaneously modeling the acoustic and contact microphone signals. We
propose to train a single speech dictionary and two noise dictionaries and
use a relative transfer function to model the relationship between the speech
components at the microphones. Simulation results show that the proposed
approach yields improvements in both speech quality and intelligibility
compared to several baseline approaches, most notably approaches using
only the contact microphones or only the acoustic microphone.

Index Terms— wind noise reduction, sparse coding, sensor fusion

1. INTRODUCTION

In many mobile speech communication scenarios, ambient noise such as
wind noise can lead to a severe reduction of speech intelligibility and quality
in the recorded microphone signals. To increase speech intelligibility in
these scenarios, speech enhancement algorithms using one or more acoustic
microphones can be applied. The performance of such algorithms tends
to decrease in extremely challenging scenarios, as model assumptions
become less valid in case of model-based algorithms or the mismatch
between training and test data becomes too large in case of supervised
learning-based algorithms.

To increase speech enhancement performance in such challenging
scenarios, it has been proposed to include auxiliary information to help
separate the target speaker from ambient noise, e.g., video signals [1] or
signals from more noise-resistant microphones such as bone conduction
microphones [2], [3]. In particular, contact microphones can be exploited
for wind noise reduction, since they offer the advantage of much lower
wind noise levels at the disadvantage of speech distortion and additional
noise components. To alleviate these disadvantages, algorithms performing
color correction or bandwidth extension [4] can be utilized. These algo-
rithms exploit the fact that the signal-to-noise ratio (SNR) at the contact
microphone is often higher than at the acoustic microphone and try to
compensate for the speech distortion by equalizing the frequency response
of the contact microphone or restoring missing harmonic components.
However, these algorithms typically do not make use of the complementary

∗This work was performed while Marvin Tammen was an intern with Meta
Reality Labs Research.

information contained in the acoustic microphone. Thus, an important
question is how to combine conventional acoustic microphones with contact
microphones, aiming at combining the advantages of both while overcom-
ing their disadvantages. A recent popular approach to fuse information
from different sensors or modalities is to leverage big data, e.g., by training
deep neural networks (DNNs) [1], [5], [6]. DNNs perform a non-linear
mapping from the input space to the output space and can perform quite
well, provided that a sufficient amount of representative training data is
available. However, due to their highly complex nature they typically act as
a black box, rendering interpretations of the learned models rather difficult.

Alternatively, prior knowledge about the relationship between the sensors
as well as the typically encountered signals can be exploited, e.g., in the form
of statistical models [7], [8] or dictionary-based sparse signal representa-
tion [9]. While dictionary-based speech enhancement approaches [10]–[13]
also rely on the availability of suitable training data, the required dataset size
is typically in the range of minutes and thus much smaller than for DNNs.
In addition, the interpretability of trained dictionaries is much higher.

Aiming at exploiting the advantages of acoustic and contact microphones
for wind noise reduction, in this paper we propose to extend conventional
single-microphone dictionary-based speech enhancement approaches such
as [12], [13] by simultaneously modeling the acoustic and contact mi-
crophone signals. More specifically, we propose to train a single speech
dictionary and use a relative transfer function to model the relationship
between the speech components at the acoustic and contact microphones.
Furthermore, to increase the speech and noise separation capability, we pro-
pose to use two noise dictionaries: one dictionary for representing typical
noise at the acoustic microphone, and another dictionary for the contact
microphone. Simulation results comprising recorded wind noise at different
wind speeds and SNRs show improvements in both speech quality and in-
telligibility w.r.t. a number of baseline approaches, most notably approaches
using only the contact microphone or only the acoustic microphone.

2. SIGNAL MODEL

We consider an acoustic scenario containing two microphones with different
characteristics, i.e., an acoustic and a contact microphone, recording a
single speech source and wind noise, which is assumed to be additive.
The acoustic microphone, denoted by superscript ◦A, exhibits a full-band
frequency response and high susceptibility to wind noise, whereas the
contact microphone, denoted by superscript ◦B, captures band-limited
speech while being less susceptible to wind noise and potentially recording
additional independent noise (e.g., clicking noise caused by moving the
mounting device). In the short-time Fourier transform (STFT)-domain
with frequency index f and frame index t, the noisy microphone signals
at both microphones can be written as[

Y A(f,t)
Y B(f,t)

]
=

[
XA(f,t) + NA(f,t)
XB(f,t) + NB(f,t)

]
, (1)
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where XA(f,t), XB(f,t), NA(f,t), and NB(f,t) denote the target
speech and noise components captured by the acoustic microphone ◦A and
the contact microphone ◦B, respectively. Moreover, we assume that the
speech components at both microphones are related using a relative transfer
function (RTF) H(f), i.e., XB(f,t)=H(f)XA(f,t). It should be noted
that the unknown RTF is assumed to be time-invariant over T time frames.
Aggregating all F frequency bins and T time frames, we denote the STFT
matrices of the noisy, target speech, and noise components as YA, YB,
XA, NA, and NB∈CF×T , respectively, such that (1) can be written as[

YA

YB

]
=

[
XA + NA

HXA + NB

]
, (2)

with H=diag({H(f)})∈CF×F a diagonal matrix. The goal of the
proposed microphone fusion algorithm is to estimate the target speech
component at the acoustic microphone XA using the noisy acoustic and
contact microphone signals YA and YB.

3. DICTIONARY-BASED MICROPHONE FUSION

3.1. Dictionary-Based Noise Reduction Using Single Microphone

Previous studies [10], [12], [14]–[16] have shown that speech signals
XA can be compactly represented using an over-complete pre-trained
speech dictionary DA

X and a sparse code CA
X . While most of these studies

considered a real-valued dictionary and sparse code [10], [12], [14], [15],
similarly to [16] we consider a complex-valued dictionary DA

X∈CF×L

and sparse code CA
X ∈ CL×T , where L > F denotes the number of

dictionary atoms, i.e.,

XA≈X̂A=DA
XCA

X, (3)

with ◦̂ denoting the (dictionary-based) estimate of ◦. The speech dictionary
DA

X is typically obtained in a training stage as the solution of the following
non-convex optimization problem:

DA
X,CA

X=argminDX ,CX

∥∥∥XA−DXCX

∥∥∥2

2︸ ︷︷ ︸
Jrec

+λ∥CX∥1︸ ︷︷ ︸
Jspa

, (4)

where Jrec represents the reconstruction cost incurred by the dictionary
representation, and Jspa promotes sparsity of the code CA

X or, in other
words, encourages the usage of only a small number of dictionary atoms
per time frame. The parameter λ enables to trade off between a more
representative vs. a sparser representation. To solve this non-convex op-
timization problem, typically methods which alternate between a dictionary
update step and a sparse coding step are used [11], [17], [18].

The idea of representing speech signals using a dictionary and a corre-
sponding sparse code has been extended [12]–[14] to represent noisy speech
signals with known noise characteristics by considering both speech and
noise dictionaries and sparse codes. Similarly as for the speech component
in (3), the noise component can be represented as NA≈N̂A=DA

NCA
N .

Assuming available speech and noise dictionaries DA
X and DA

N , the speech
and noise sparse codes are estimated from the noisy microphone signals
as the solution of the following non-convex optimization problem:

argminCA
X

,CA
N

∥∥∥YA−ŶA
∥∥∥2

2
+λ

∥∥∥∥[CA
X

CA
N

]∥∥∥∥
1

(5)

=argminCA
X

,CA
N

∥∥∥YA−(DA
XCA

X+DA
NCA

N)
∥∥∥2

2
+λ

∥∥∥∥[CA
X

CA
N

]∥∥∥∥
1

.

Intuitively, components of the noisy microphone signal will be captured
either by the speech dictionary, the noise dictionary, or not at all (e.g., Gaus-
sian noise), depending on their coherence w.r.t. the respective dictionary.

speech

noise 
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Fig. 1: Block diagram of the proposed dictionary-based microphone fusion
approach for wind noise reduction. In the training stage, an arbitrary
clean speech dataset and a wind noise dataset are used to construct an
acoustic speech and dictionary and acoustic and contact noise dictionaries.
In the testing stage, using the composite dictionary and microphone signals,
the speech and noise sparse codes are computed, such that the speech
component can be estimated using the speech dictionary and its sparse code.

3.2. Dictionary-Based Noise Reduction Using Microphone Fusion

Building upon the above single-microphone approach, we propose to
simultaneously model both the acoustic and contact microphone signals
by integrating the signal model (2) into the dictionary training and sparse
coding steps. More specifically, we model the different noise components
at the acoustic and contact microphone using two separate noise dictionaries
DA

N and DB
N , and we model the relationship of the speech components

with an (unknown) RTF H(f). An overview of the proposed approach
is depicted in Fig. 1.

Inserting the dictionary-based representation of the target speech and
noise components in the signal model (2) yields[

YA

YB

]
≈
[
ŶA

ŶB

]
=

[
DA

XCA
X + DA

NCA
N

HDA
XCA

X + DB
NCB

N

]
. (6)

Based on (6), the reconstruction cost in (4) can be extended to include
both the acoustic and the contact microphone signals, i.e.,

Jrec=η
∥∥∥YA−(X̂A+N̂A)

∥∥∥2

2
+(1−η)

∥∥∥YB−(HX̂A+N̂B)
∥∥∥2

2

=
∥∥∥Ỹ−D̃C̃

∥∥∥2

2
, (7)

where the parameter η allows to control the influence of each microphone,
and where the following composite quantities have been defined:

Ỹ=

[ √
ηYA

√
1−ηYB

]
, C̃=

CA
X

CA
N

CB
N


D̃=

[ √
ηDA

X
√
ηDA

N 0√
1−ηHDA

X 0
√
1−ηDB

N

]
. (8)

Similarly, the sparsity cost Jspa is extended to include the sparse codes of
the speech component as well as the acoustic and contact noise components.
Thus, similarly to (4), the total cost to be minimized can be written as

c=
∥∥∥Ỹ−D̃C̃

∥∥∥2

2
+λ

∥∥∥C̃∥∥∥
1

(9)

3.3. Dictionary Training

The required dictionariesDA
X , DA

N andDB
N for the target speech and noise

components are trained independently for each component by solving the
optimization problem in (4). To this end, we use the alternating optimiza-
tion procedure presented in Alg. 1 [17], [19], where S∈{XA,NA,NB}.



After initializing the dictionary with random unit-normalized STFT frames
from the training data, the procedure alternates between optimizing (4)
w.r.t. the sparse code and the dictionary.

Algorithm 1: Dictionary Training
Input: STFT matrix S, sparsity weight λ, number

of outer iterations Idict, inner iterations Isc, and atoms L
Output: dictionary D

1 init. D0 using randomly chosen STFT frames, init. C0=0
2 for i∈{1, ..., Idict} do
3 Ci=Alg. 2(S,Di−1,Ci−1, λ, Isc)

4 Di=argminD∥S−DCi∥22+λ∥Ci∥1=SCH
i

(
CiC

H
i

)−1

5 Di← normalize columns
6 return DIdict

For the sparse coding step at the i-th iteration, the optimization problem
is given by

Ci=argminC∥S−Di−1C∥22+λ∥C∥1. (10)

To solve this optimization problem, we use the accelerated proximal
gradient method presented in Alg. 2 [19].

Algorithm 2: Sparse Coding
Input: STFT matrix S, sparsity weight λ, number

of inner iterations Isc, initial sparse code C0, dictionary D
Output: updated sparse code C

1 // Lipschitz constant-based step size:

2 µ=
1

max eigenvalue (DHD)
3 for i∈{1, ..., Isc} do
4 wi=

i
i+1

// extrapolation step size

5 Γi=Ci−1+wi(Ci−1−Ci−2)

6 Zi=Γi−µDH(DΓi−S)
7 Ci=proxµg(Γi−µ∇f(Γi))=

(
1− µλ

max(|Zi|,µλ)

)
Zi

8 return CIsc

3.4. Proposed Speech Enhancement Algorithm

Assuming that the speech and noise dictionaries DA
X , DA

N , and DB
N are

available, the cost in (9) is a function of the composite sparse code C̃
defined in (8) as well as the RTF H, which both need to be estimated.
Thus, the proposed speech enhancement algorithm consists of solving the
following optimization problem:

̂̃C, Ĥ=argminC̃, H

∥∥∥Ỹ−D̃C̃
∥∥∥2

2
+λ

∥∥∥C̃∥∥∥
1

(11)

As no closed-form solution exists, the proposed speech enhancement
algorithm presented in Alg. 3 alternates between minimizing (9) w.r.t. the
composite sparse code C̃ and the RTF H. For sparse coding, we consider
the same accelerated proximal gradient method as during dictionary training
(cf. Alg. 2). For estimating the RTF at the i-th iteration while fixing the
sparse code to its current estimate, a closed-form solution can be obtained as

Ĥ=argminH

∥∥∥Ỹ−D̃i
̂̃Ci

∥∥∥2

2
+λ

∥∥∥̂̃Ci

∥∥∥
1

=
(
YB−N̂B

i

)
X̂A,H

i

(
X̂A

i X̂
A,H
i

)−1

.

(12)

(13)

Note that we only consider diagonal RTF estimates Ĥ to avoid interactions
between different frequency bins.

Using the estimated composite sparse code ̂̃C, the speech component
can be estimated by multiplying the estimated speech sparse code with
the speech dictionaries, i.e., X̂A=DA

XĈA
X .

Algorithm 3: Speech Enhancement Algorithm

Input: noisy STFT matrices YA,YB,
composite dictionary D̃, microphone weight η, sparsity
weight λ, number of outer iterations Ise, inner iterations Isc

Output: estimated speech STFT matrix X̂A and RTF Ĥ
1 construct Ỹ using (8)

2 init. Ĥ0 using covariance whitening (CW), init. ̂̃C0=0
3 for i∈{1, ..., Ise} do
4 construct D̃i using (8)

5
̂̃Ci=Alg. 2

(
Ỹ, D̃, ̂̃Ci−1, λ, Isc

)
6 X̂A

i =
[
DA

X 0 0
] ̂̃Ci, N̂B

i =
[
0 0 DB

N

] ̂̃Ci

7 Ĥi=diag

((
YB−N̂B

i

)
X̂A,H

i

(
X̂A

i X̂
A,H
i

)−1
)

(cf. (12))

8 return X̂A
Ise , ĤIse

4. EXPERIMENTS

In this section, the performance of the proposed dictionary-based speech
enhancement algorithm fusing acoustic and contact microphones for wind
noise reduction is compared with several baseline algorithms, which are
discussed in Section 4.1. The used dataset and algorithm settings are
described in Section 4.2. Finally, the results in terms of objective speech
quality and intelligibility metrics are presented in Section 4.3.

4.1. Baseline Algorithms

In addition to the proposed algorithm, the following baseline algorithms
are considered.

First, in order to evaluate the benefit obtained by fusing the acoustic
and contact microphone signals, the proposed approach is used only
with the acoustic microphone spectrogram YA and noise dictionary
DA

N , which is equivalent to setting Ỹ = YA, D̃ =
[
DA

X DA
N

]
,

C̃ =
[
CA,T

X CA,T
N

]
T in (11), and which can be understood as sep-

arating the noisy acoustic microphone signals into speech and noise
components, circumventing the need of estimating an RTF. This approach
exhibits similarities to previous studies such as in [12], [13], which share
the idea of employing both speech and noise dictionaries, but differ
mainly by deriving a real-valued gain from the estimated speech and noise
components instead of using the estimated speech directly.

Second, the proposed approach is used only with the contact microphone
spectrogram YB and noise dictionary DB

N , which is equivalent to setting
Ỹ =YB, D̃=

[
DA

X DB
N

]
, C̃=

[
CA,T

X CB,T
N

]
T in (11), and

which can be understood as separating the noisy contact microphone
signals into a speech component transformed using the estimated RTF and
a noise component.

Third, as a traditional algorithm to combine multiple microphone
signals by exploiting spatial correlations, a (stationary) minimum variance
distortionless response (MVDR) beamformer [20], [21] is considered. This
beamformer aims at minimizing the output noise power while preserving



(a) Proposed algorithms for different sparsity weights λ. (b) Proposed and baseline algorithms for different input SNRs.

Fig. 2: Speech enhancement performance in terms of PESQ and STOI improvements w.r.t. the noisy acoustic microphone signal.

the target speech as described by its RTF vector, i.e.,

wMVDR(f)=
Φ̂

−1

n (f)ĥ0(f)

ĥH
0 (f)Φ̂

−1

n (f)ĥ0(f)
, (14)

where Φn(f) denotes the estimated noise spatial covariance matrix
E
(
n(f,t)nH(f,t)

)
with n(f,t) =

[
NA(f,t) NB(f,t)

]T , ĥ0(f) =[
1 Ĥ0(f)

]T
denotes the RTF vector estimate, and X̂A

MVDR(f,t) =

wH
MVDR(f)

[
Y A(f,t) Y B(f,t)

]T . As such, contrary to the dictionary-
based algorithms, the beamformer does not make use of the spectral
structure of the speech component.

Fourth, the color correction algorithm uses only the contact microphone
signal Y B(f, t) as an input and aims at equalizing the RTF between
the speech components at the acoustic and contact microphones, i.e.,
X̂A(f,t) = Ĥ−1

0 (f)Y B(f,t), assuming that the SNR at the contact
microphone is higher.

4.2. Dataset and Settings

To train the speech dictionary DA
X , we used 10min of randomly chosen

clean speech utterances from the dev-clean subset of the LibriTTS
dataset [22]. To train the noise dictionaries DA

N and DB
N , we used 2min

of airflow-induced noise generated by a fan recorded by the acoustic and
contact microphones at different wind speeds (3m/s and 5m/s). Each of
the trained dictionaries consists of L=1000 atoms, such that the composite
dictionary D̃ in (8) consists of 3L=3000 atoms. For testing, we consid-
ered clean speech from two stationary female and male speakers each as
well as fan noise at 3m/s and 5m/s recorded by the acoustic and contact
microphones, with a constant fan speed per utterance. Different fan noise
segments were chosen for the train and test datasets. Speech and noise com-
ponents were mixed at broadband SNRs from−10dB to 5dB (computed
at the acoustic microphone), resulting in 10 utterances with a length of 4 s
each per SNR condition. All data was sampled at 16kHz. For the STFT,
we used square root Hann windows for analysis and synthesis with a frame
length of 32ms and an overlap of 50%. Based on preliminary experiments,
we used the microphone weight η=0.4 in (8), placing more weight on
the contact microphone than on the acoustic microphone. To obtain the
RTF estimate Ĥ0 required for the initialization of Alg. 3 and the MVDR
and color correction algorithms, we used the CW method [23], where an
energy-based voice activity detector [24] was used to estimate the noise spa-
tial covariance matrix Φ̂n(f). The maximum numbers of iterations in Algs.
1, 2, and 3 were set to Idict=25, Isc=1000, and Ise=5, respectively.

4.3. Results

Speech enhancement performance is measured as the average improve-
ments w.r.t. the noisy acoustic microphone signals in terms of perceptual
evaluation of speech quality (PESQ) [25] and short-time objective intel-
ligibility (STOI) [26], using the clean speech at the acoustic microphone
as the reference signal.

To investigate the sensitivity of the proposed dictionary-based algorithms
w.r.t. the sparsity weight λ in (9), Fig. 2a shows the average PESQ and
STOI improvements and standard deviations using only the acoustic
microphone, only the contact microphone, or using both microphones for
three different values of λ, where the rule-of-thumb value of λ=F−0.5

originates from [27]. It can be observed that, for larger values of λ, the
performance tends to decrease when only using the acoustic microphone,
increase when only using the contact microphone, and stay approximately
the same when using both microphones. Furthermore, it can be clearly
observed that the proposed algorithm fusing both microphones significantly
outperforms using only one of the microphones. For the following
experiment, the sparsity weight is fixed to λ=F−0.5.

For different input SNRs, Fig. 2b shows the average PESQ and STOI
improvements and standard deviations of the proposed dictionary-based
algorithms and the considered baseline algorithms. Comparing the perfor-
mance of the proposed algorithms using only one microphone, as expected,
the simulation results show that the contact microphone is advantageous
in low-SNR conditions, whereas the acoustic microphone is advantageous
in high-SNR conditions. Comparing the proposed approach using only
the contact microphone signal with the color correction algorithm, the
simulation results show that jointly estimating the speech and noise com-
ponents as well as the RTF is beneficial compared with only utilizing the
estimated RTF. Only the proposed dictionary-based microphone algorithm
fusing both microphones yields consistent PESQ and STOI improvements,
performing similarly or better than all other considered algorithms.

5. CONCLUSION

In this paper we proposed a dictionary-based microphone fusion algorithm
to combine the advantages of acoustic and contact microphones for wind
noise reduction. The algorithm extends conventional single-microphone
dictionary-based speech enhancement algorithms by simultaneously mod-
eling the acoustic and contact microphone speech and noise components.
While the relationship of the speech components at both microphones is
modeled using an RTF, the noise components are modeled using separate
noise dictionaries. Simulation results demonstrate the advantage of fusing
the microphone signals using the proposed algorithm compared with using
either one of the microphones individually.
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