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Abstract—Interfering sources, background noise and reverber-
ation degrade speech quality and intelligibility in hearing aid
applications. In this paper, we present an adaptive algorithm
aiming at dereverberation, noise and interferer reduction and
preservation of binaural cues based on the weighted binaural
linearly constrained minimum power (wBLCMP) beamformer.
The wBLCMP beamformer unifies the multi-channel weighted
prediction error method performing dereverberation and the
linearly constrained minimum power beamformer performing
noise and interferer reduction into a single convolutional beam-
former. We propose to adaptively compute the optimal filter by
incorporating an exponential window into a sparsity-promoting
lp-norm cost function, which enables to track a moving target
speaker. Simulation results with successive target speakers at
different positions show that the proposed adaptive version of
the wBLCMP beamformer outperforms a non-adaptive version
in terms of objective speech enhancement performance measures.

Index Terms—noise reduction, dereverberation, online process-
ing, convolutional beamformer, multi-microphone

I. INTRODUCTION

In many hands-free speech communication systems such as
hearing aids, mobile phones and smart speakers, interfering
sounds, ambient noise and reverberation may degrade the
speech quality and intelligibility of the recorded microphone
signals [1]. To enhance speech quality and intelligibility,
many multi-microphone speech enhancement methods aiming
at noise and interferer reduction and dereverberation have
been proposed in the last decades [2], [3]. For many of
these methods, both non-adaptive versions with time-invariant
parameters as well as adaptive versions with time-varying
parameters exist. When considering binaural hearing aids, it
is often desired to preserve the binaural cues, which provide
spatial awareness of the acoustic scene for the listener [4].

A commonly used multi-microphone noise reduction
method is the minimum power distortionless response (MPDR)
beamformer [5]–[7], which aims at minimizing the output
power while leaving the desired speech component undis-
torted. The linearly constrained minimum power (LCMP)
beamformer generalizes the MPDR beamformer, providing
the possibility of multiple linear constraints, e.g., to perform
controlled reduction of the interfering sources [5], [8], [9].
Often the constraints are formulated in terms of the relative
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transfer functions (RTFs) vectors of the target speaker and
interfering sources [10], [11].

To achieve dereverberation, the weighted prediction error
(WPE) method [12] and its generalization using sparse priors
[13], [14] are commonly employed. WPE uses a convolutional
filter, applied to a number of past frames in the short-time
Fourier transform (STFT) domain, to estimate and subtract the
late reverberation component. Since the WPE cost function
does not have an analytic solution, it has been proposed to
use iterative alternating optimization schemes. In [15], [16]
adaptive versions of the WPE algorithm have been proposed,
e.g., by incorporating an exponential window into the cost
function and incorporating an additional constraint to prevent
overestimation of the late reverberation [16].

Aiming at joint dereverberation and noise reduction, it
has been proposed to perform multiple-input multiple-output
(MIMO)-WPE as a preprocessing stage before MPDR beam-
forming, in a cascade system [17]. By unifying the optimiza-
tion of the convolutional WPE filter and the MPDR beam-
former, the so-called weighted power minimization distortion-
less response (WPD) beamformer [18] and its generalization
using sparse priors [19] were shown to outperform cascade
systems. The unified WPD beamformer is optimized similarly
to the WPE filter with an additional distortionless constraint
using the RTFs of the target speaker. In [20] two adaptive
versions of the WPD algorithm have been proposed.

Aiming at joint dereverberation, reduction of interfering
sources and noise and preservation of the binaural cues of all
sources, the weighted binaural linearly constrained minimum
power (wBLCMP) beamformer in [21] generalizes the WPD
beamformer by unifying the optimization of the convolutional
WPE filter and the LCMP beamformer. Similarly to [16], [20],
in this paper, we derive an adaptive version by incorporating
an exponential window into the cost function, which enables
tracking of a moving target speaker. In addition, similarly
to [19], we explicitly control the sparsity of the STFT co-
efficients by using an ℓp-norm cost function. For a complex
acoustic scenario featuring a target speaker which suddenly
switches position, an interfering source at a fixed position and
diffuse babble noise, simulation results show that the adaptive
version of the wBLCMP beamformer clearly outperforms its
non-adaptive version in terms of objective speech enhancement
performance measures and RTF vector estimation accuracy.
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II. SIGNAL MODEL

We consider J acoustic sources captured by a binaural
microphone array setup with M/2 microphones on each of
two head-worn hearing devices (e.g. left and right hearing
aid) in a noisy and reverberant acoustic environment (with
J < M ). Without loss of generality, the first source (j = 1) is
considered to be the target speaker and the remaining J − 1
sources are considered to be interfering sources. The STFT
coefficients of the microphone signals at time frame t are
denoted as

yt =
[
y1,t · · · yM,t

]T ∈ CM×1, (1)

with (·)T denoting the transpose operator. In (1) the frequency
index has been omitted since it is assumed that each frequency
subband is independent and hence can be processed individ-
ually. Similarly to [13], [18]–[21], the multi-channel micro-
phone signal yt in (1) is modeled as the sum of each source
signal sj,t convolved with its possibly time-varying multi-
channel convolutive transfer function (CTF) matrix Aj,t =[
aj,t,0 · · · aj,t,La−1

]
∈ CM×La plus background noise

nt ∈ CM×1, i.e.

yt =

J∑
j=1

La−1∑
l=0

aj,t,lsj,t−l + nt, (2)

where La denotes the number of taps of the CTFs. By splitting
the CTFs into the early reflections and late reverberation using
the integer parameter τ , the reverberant signal for the j-th
source can be decomposed into its direct component dj,t ∈
CM×1 (including early reflections) and its late reverberation
component rj,t ∈ CM×1, i.e.

yt =

J∑
j=1

τ−1∑
l=0

aj,t,lsj,t−l︸ ︷︷ ︸
:=dj,t

+

J∑
j=1

La−1∑
l=τ

aj,t,lsj,t−l︸ ︷︷ ︸
:=rj,t

+ nt. (3)

The direct component for the j-th source dj,t can be approxi-
mated using the multiplicative transfer function (MTF) vector
vj,t ∈ CM×1 as [22]

dj,t ≈ vj,tsj,t = ṽj,m,tdj,m,t, m ∈ {1, ...,M}, (4)

where dj,m,t denotes the direct component of the j-th source
in the reference microphone m at time frame t. The vector

ṽj,m,t = vj,t/vj,m,t ∈ CM×1 (5)

denotes the possibly time-varying RTF vector for the j-th
source, where vj,m,t is the m-th entry of vj,t.

III. SPARSE WBLCMP FILTER

To obtain an estimate of the direct target speech component
d1,ν,t in the left and right reference microphone denoted by
m = ν ∈ {L,R}, it has been proposed in [18]–[21] to apply
a convolutional filter h̄ν,t ∈ CM(Lh−τ+1)×1 to the stacked
noisy STFT vector ȳt, i.e.

d̂1,ν,t = h̄H
ν,tȳt, (6)

where (·)H denotes the conjugate transpose operator and the
stacked noisy STFT vector ȳt is defined as

ȳt =
[
yT
t | yT

t−τ · · · yT
t−Lh+1

]T ∈ CM(Lh−τ+1)×1,
(7)

where Lh denotes the filter length. It should be noted that the
vector ȳt only includes a subset of the Lh most recent frames,
i.e. it includes the current frame but excludes the preceding
τ − 1 frames, aiming at preserving the early reflections.

A. Non-Adaptive Version

By assuming that all CTFs and MTFs and the convolutional
filter h̄ν,t do not change over time, i.e. h̄ν,t = h̄ν for all
time frames t ∈ {1, . . . , T}, a non-adaptive version of the
wBLCMP beamformer aiming at joint dereverberation, noise
and interferer reduction has been derived in [21]. In [21],
assuming that the direct component of the target speaker
follows a zero mean complex Gaussian distribution with a
time-varying variance λn = |d1,ν,n|2, the convolutional filter
in (6) is computed by minimizing the negative log-likelihood
function

argmin
h̄ν

T∑
n=1

lnλn +

∣∣∣d̂1,ν,n∣∣∣2
λn

=

T∑
n=1

lnλn +

∣∣h̄H
ν ȳn

∣∣2
λn

, (8)

subject to a linear constraint for each source using their RTFs
defined in (5), i.e.

h̄H
ν v̄j,ν =βj ∀j ∈ {1, . . . , J} (9)

v̄j,ν =
[
ṽT
j,ν 0T

]T
, (10)

where 0 denotes a vector containing M (Lh − τ) zeros and βj

denotes a scaling factor for the direct component of the j-th
source. The scaling factor β1 is usually set to 1, corresponding
to a distortionless constraint for the target speaker, whereas all
other scaling factors are usually chosen to be close to 0, aiming
at suppressing the interfering sources.

In this paper, we aim at explicitly taking into account that
the STFT coefficients of the direct target speech component
are sparser than the STFT coefficients of the noisy reverberant
mixture recorded by the microphones [13]. Hence, similarly
to the WPE variant in [14] and the WPD variant in [19], we
propose to minimize the convolutional filter in (6) using an
ℓp-norm cost function instead of (8), i.e.

argmin
h̄ν

T∑
n=1

∣∣∣d̂1,ν,n∣∣∣p =

T∑
n=1

∣∣h̄H
ν ȳn

∣∣p (11)

where p ∈ (0, 2] denotes the so-called shape parameter. This
parameter determines the sparsity of the cost function, where
small values of p promote sparsity. It should be noted that for
0 < p < 1 this cost function is non-convex.

B. Adaptive Version

To deal with time-varying acoustic scenarios, e.g. moving
sources, in this paper we derive an adaptive version of the
wBLCMP beamformer. Similarly as in [16], [20], we propose
to incorporate an exponential window into the cost function in

96



(11). The resulting minimization problem for each time frame
t is given by

argmin
h̄ν,t

t∑
n=1

γt−n
∣∣∣d̂1,ν,n∣∣∣p =

T∑
n=1

γt−n
∣∣h̄H

ν,tȳn

∣∣p
s.t. h̄H

ν,tv̄j,ν,t = βj ∀j ∈ {1, . . . , J},

(12a)

(12b)

where the smoothing parameter γ ∈ (0, 1] allows adaptation
to possibly time-varying CTFs and MTFs. Note that the cost
function in (12a) reduces to the cost function in (11) for γ = 1
and t = T . Therefore, the following derivations based on the
adaptive cost function in (12a) for the adaptive version also
hold for the cost function in (11) for the non-adaptive version.

C. Filter Optimization

Similarly as in [16], [19], we propose to use an iteratively
reweighted least squares (IRLS) procedure to minimize the
cost function in (12a) subject to the constraints in (12b). The
basic idea is to replace the non-convex ℓp-norm minimization
problem with a series of convex ℓ2-norm minimization sub-
problems, which have an analytic solution. In this paper we
used only the first iteration of IRLS, since preliminary results
indicated sufficient convergence.

1) Constrained ℓ2-Norm Subproblem Minimization:
In each frame, the non-convex cost function in (12a) is
replaced with a convex weighted ℓ2-norm cost function, i.e.

argmin
h̄ν,t

t∑
n=1

γt−nwn

∣∣∣d̂1,ν,n∣∣∣2 =

T∑
n=1

γt−nwn

∣∣h̄H
ν,tȳn

∣∣2 (13)

where the weights wn are real-valued and positive. The filter
minimizing (13) subject to the linear constraints in (12b) is
equal to

h̄ν,t = R̄−1
y,tC̄t

(
C̄H

t R̄
−1
y,tC̄t

)−1
BC̄H

t eν , (14)

where

R̄y,t =

t∑
n=1

γt−nwnȳnȳ
H
n (15)

denotes the weighted noisy spatio-temporal covariance ma-
trix (STCM) of the stacked microphone signals, C̄t =[
v̄1,ν,t · · · v̄J,ν,t

]
denotes the constraint matrix containing

the RTF vectors for all sources, B = diag
([

β1 · · · βJ

]T)
denotes the diagonal scaling matrix containing the scaling
factors for all sources, and eν is a selection vector with its
entry corresponding to the left or right reference microphone
equal to 1 and all other entries equal to 0. Assuming that
the weights wn of past frames n ∈ {1, . . . , t − 1} are well
estimated during processing of these past frames, the weighted
noisy STCM R̄y,t in (15) can be effectively computed by an
recursive update in each frame, i.e. R̄y,t = γR̄y,t−1+wtȳtȳ

H
t .

However, since only the inverse of the weighted noisy STCM
is required in (14) it is more effective to use an update formula

4. wBLCMP Beamformer

3. Estimate R̄y,t and h̄ν t

2. Estimate RTFs C̄t1. MIMO-WPE

yt d̂1,ν,t

zt
C̄t

h̄ν t

Fig. 1. Block diagram of the proposed adaptive wBLCMP algorithm,
incorporating a MIMO-WPE preprocessing stage for estimating the RTFs.

for R̄−1
y,t based on the Woodbury matrix identity, i.e.

R̄−1
y,t =

1

γ

(
R̄−1

y,t−1 −
wtR̄

−1
y,t−1ȳtȳ

H
t R̄

−1
y,t−1

γ + wtȳH
t R̄

−1
y,t−1ȳt

)
(16)

2) Weight Estimation:
Similarly as in [13], [19], in each frame t the weight wt in
(16) is estimated as

wt =

(∑
ν

|yν,t|2
)p/2−1

, (17)

such that (13) is a first-order approximation of (12a). Note
that the shape parameter p only affects the weight update in
(17) of the algorithm, where it is possible to set p = 0.

D. RTF Estimation

The wBLCMP beamformer in (14) requires estimates of
the RTFs for each source, which can be obtained using the
covariance whitening method [11], [23]. It has been shown
in [20] that performing RTF estimation on multi-channel
dereverberated signals zt, obtained by a MIMO-WPE prepro-
cessing stage, is beneficial, since the MTF-based model in (4)
assumes short transfer functions for the direct component. The
block diagram in Fig. 1 shows an overview of the complete
algorithm. Note that the computation time is not significantly
increased by the MIMO-WPE preprocessing stage, since the
wBLCMP filter can be effectively computed using the MIMO-
WPE filter, because both are based on the convolutional signal
model in (2) and can be derived using the ℓp-norm cost
function in (12a) [24]. The RTF vector of the j-th source
can then be estimated based on the generalized eigenvalue
decomposition of the dereverberated covariance matrix Rj,t

of that source and the dereverberated covariance matrix Rv,j,t

of all other sources and the background noise. Since accurately
estimating all of these covariance matrices is far from trivial,
in this paper, we will assume oracle knowledge about a noise-
only period and a noise-plus-interferer period in the beginning
of the signal, which are used to compute fixed covariance
matrices of an interfering source and noise. In contrast, the
covariance matrix and RTF vector of the target are tracked.

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
adaptive version of the wBLCMP beamformer (Sec. III-B)
with the non-adaptive version (Sec. III-A) using different
shape parameters p for a spatially non-stationary acoustic
scenario where the target speaker suddenly switches position.
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non-adaptive (p = 0.5) adaptive (p = 0.5)
non-adaptive (p = 0) adaptive (p = 0)
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Fig. 2. Average FWSSNR and SRR improvement vs. time constant tγ for
different values of the shape parameter p. Note that the non-adaptive method
obviously does not have a time constant.

A. Acoustic Scenario

We considered 2 behind-the-ear (BTE) hearing aids with
2 microphones each, mounted on a dummy head located
approximately in the center of an acoustic laboratory (7m×
6m × 2.7m) with a reverberation time T60 ≈ 510ms. The
acoustic scenario consists of one target speaker (which sud-
denly switches position), one interfering speaker (at a fixed po-
sition) and background noise. The target and interfering speech
components at the microphones were generated by convolving
clean speech signals with room impulse responses measured
from loudspeakers at about 2m from the dummy head. The
target speaker at position 1 (0°, front of dummy head) is a male
speaker which is active in the interval [2 s, 20.4 s], whereas the
target speaker at position 2 (90°, right of dummy head) is a
female speaker which is active in the interval [20.4 s, 39 s].
The interfering speaker is a male speaker which is located at
−120° and is active in the interval [1 s, 39 s]. Quasi-diffuse
babble noise, which is constantly active, was generated by
playing back cafeteria noise using 4 loudspeakers facing the
corners of the laboratory. The noisy mixture is constructed
at a broadband signal-to-noise ratio (SNR) of 0 dB and a
broadband signal-to-interferer ratio (SIR) of 0 dB for both
target positions. Note that there is a noise-only period in the
1st second and a noise-plus-interferer period in the 2nd second.
The sampling frequency was equal to 16 kHz.

B. Algorithm Settings

We applied the wBLCMP beamformer within an STFT
framework with a frame length of 32ms, a frame shift of
ts = 16ms and a sqrt-Hann window for analysis and synthe-
sis. We compared the performance of two shape parameters
p = {0, 0.5}, since it has been shown in [13] that a shape
parameter of p = 0.5 can be beneficial. The filter length
Lh in (7) was set to 16 frames corresponding to 256ms
covering about half of the T60. The prediction delay τ was
set to 3 frames corresponding to 48ms aiming at preserving
the early reflections. The scaling factors of the target speaker
and the interfering source in (9) were set to β1 = 0dB
and β2 = −20 dB, respectively. Since preliminary results

position 1 (adaptive) position 1 (non-adaptive)
position 2 (adaptive) position 2 (non-adaptive)

12 14 16 18 20 22 24 26 28 30
30

35

40

45

50

time [s]

Mean Hermitian Angle [°]

Fig. 3. Mean Hermitian angle between the oracle RTF vector of the active
target speaker and the estimated target RTF vector within the wBLCMP
algorithm (p = 0.5) over time for a time constant tγ = 400ms. The switch
of target speaker occurs at approximately 20.4 s. Note that the non-adaptive
version only provides one constant RTF vector estimate for the whole signal.

indicated reasonable convergence after the initial iteration of
the alternating optimization described in Sec. III-C, we chose
to stop after the first iteration to reduce computational cost. For
the adaptive versions, different time constants are evaluated
between tγ = [100ms, 1500ms]. The smoothing parameter γ
can be computed using the time constant as γ = e−ts/tγ . The
noise-plus-interferer covariance matrix Rv,2 and RTF vector of
the interfering source ṽ2,ν are fixed after the first 2 s, whereas
the covariance matrix and RTF vector of the target speaker are
adaptively tracked.

C. Objective Speech Enhancement Measures

As objective performance measures we used the frequency-
weighted segmental signal-to-noise ratio (FWSSNR) [25],
and the signal-to-reverberation ratio (SRR) [26] averaged
across the left and right output signal. As reference signal
for FWSSNR and SRR we used the direct target speech
component including early reflections (first 50ms of the room
impulse responses (RIRs)) at the reference microphones.

In addition, we evaluate the RTF vector estimation accuracy
based on the Hermitian angle

φ = acos


∣∣∣ˆ̃vH

j,tṽj,t

∣∣∣∥∥∥ˆ̃vj,t

∥∥∥∥ṽj,t∥

 (18)

between the estimated RTF vector ˆ̃vj,t of the target speaker
and the oracle RTF vector ṽj,t averaged across frequency
bands. The Hermitian angle φ is a scale-invariant error mea-
sure for complex vectors, with lower values indicating smaller
errors. The oracle RTF vectors are computed as the principal
eigenvector of the covariance matrices of a white noise signal
convolved with the early part (50ms) of the respective multi-
channel RIRs of the target speaker. Note that for each target
speaker position there is a unique oracle RTF vector.

D. Results

Fig. 2 compares the FWSSNR and SRR improvements
(difference between scores for input and output signals) for
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different time constants tγ of the adaptive and non-adaptive
version of the wBLCMP beamformer using two different shape
parameters p = {0, 0.5}. It can be clearly observed that for
the considered switching-target scenario the adaptive version
of the wBLCMP beamformer outperforms the non-adaptive
version in both performance measures for almost all time
constants. The best SRR improvement is obtained using a
time constant of roughly tγ = 450ms, whereas the FWSSNR
improvement is higher for shorter time constants. Using the
shape parameter p = 0.5 yields better SRR improvements
especially for larger time constants, whereas using the shape
parameter p = 0, corresponding to the conventional cost
function in (8), yields slightly better FWSSNR improvements.

For the adaptive and the non-adaptive version Fig. 3 shows
the average Hermitian angle between the oracle RTF vector
of the active target speaker and the estimated target RTF
vector. Note that the non-adaptive version only provides one
RTF vector estimate for the whole signal in contrast to the
adaptive version which estimates the RTF vector of the target
speaker in each time frame. It can be observed that the adaptive
wBLCMP beamformer outperforms the non-adaptive version
in almost all time frames in terms of RTF vector estimation
accuracy.

V. CONCLUSION

In this paper, we derived an adaptive version of the
wBLCMP beamformer capable of tracking a moving target
speaker in a noisy environment with interfering sources. In
addition we generalized the conventional method using sparse
priors. The evaluation in terms of objective performance
measures clearly shows that the adaptive version outperforms
the non-adaptive version in the considered acoustic scenario.
This can be explained partly by the ability to track the time-
varying RTF vector and covariance matrix of a moving target
speaker.
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