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Abstract—Robust low-latency data transmission is a challeng-
ing problem. The low-latency requirement means that limited
source information is available for compression and short channel
codes need to be used. In this paper, we study low-latency
speech transmission over analog Gaussian wireless channels and
propose a deep joint source-channel coding (JSCC) system. The
proposed method includes a deep neural network (DNN) that
consists of a source-channel encoder which transmits analog
coded information over Gaussian wireless channels and a source-
channel decoder which recovers data from the received noisy,
compressed data. The total source-channel encoding and de-
coding latency is configurable with respect to the input speech
signal length. Simulation studies demonstrate that in low-latency
and noisy channel regimes, our proposed JSCC system provides
significant gains over state-of-the-art separate digital source-
channel communication systems in terms of estimated speech
quality and intelligibility. At higher latencies and better channel
conditions, the separate coding schemes are better.

Index Terms—low-latency, joint source-channel coding, speech
communication, deep neural network.

I. INTRODUCTION

Source and channel coding are essential parts of traditional
communication systems. Separate source and channel coding
is optimal in the asymptotic regime of long source sequences
and large channel decoding delays [1]. Source coding removes
statistically redundant and perceptually irrelevant information
from the input data and thereby reduces the number of
necessary bits to be transmitted. There exists a wealth of
efficient lossy speech coders such as Opus [2], EVS [3], and
G.721. In general, the greater the latency of a speech coder,
the smaller its bitrate.

A compressed speech signal is usually very sensitive to
bit errors in the sense that even a single bit error can often
make it impossible to decode a part of the speech signal [4].
To allow for reliable transmission over wireless channels, it
is necessary to employ channel codes such as forward error
correction codes [4] and LDPC [5] codes. The longer the
channel decoder can wait to make its decision, the better the
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performance. Thus, both the source coder and the channel
coder introduce latencies. It has been shown that in practice
a joint source-channel coding (JSCC) design can often reduce
the overall latency of the system over that achievable with
a separate design without sacrificing practical rate-distortion
performance [6]–[9].

Deep learning has been widely adopted in communica-
tion problems due to the similarity of the communication
framework to the encoder-decoder structure of an autoencoder
DNN. Numerous deep lossy data compression scheme have
been proposed for audio [10], speech [11], as well as images
[12]. Also, deep learning-based channel coding has shown
better performance than conventional hand-crafted channel
codes [13]. Recently, various deep JSCC schemes have been
proposed mainly for wireless image transmission, outperform-
ing separate source and channel coding [14]–[17]. A few
works studied deep JSCC for text messages [18] and speech
transmission [19] in the form of semantic speech transmission.

The deep learning-based speech and audio codecs in [10],
[11] and the deep speech JSCC method in [19] use long
sequences of audio or speech data, which prohibits their use
e.g. in realtime communication scenarios. For instance, the
input length in [19], SoundStream [10] and Lyra [11] are 2s,
3s and 170 ms, respectively. A long input length is, however,
unacceptable for low-latency speech applications like hearing
aids which often require total latencies as low as 10ms or less
[20].

In this paper, we propose a deep analog JSCC method
for low-latency wireless speech transmission. More precisely,
we aim at achieving combined total encoding and decoding
latencies of less than 10 ms. The proposed deep JSCC system,
similar to most of the DNN-based JSCC systems [14]–[17],
is analog in the sense that the source data is not quantized
and mapped to bits, but instead, the encoded real values
are directly transmitted over the Gaussian channels. Although
analog communication is more sensitive to channel noise and
errors, it often requires lower bandwidth and computational
cost, and more importantly, it can have substantially lower
latency than digital communication [21], which makes it
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Fig. 1: Traditional communication system performance with ideal wireless channel and Opus as speech coder in terms of
ESTOI, PESQ, and NMSE versus the bitrate. Curves with same color show one latency.

suitable for low-latency applications. Moreover, the size of the
proposed DNN and input data length are significantly smaller
than the conventional DNN-based schemes [19]. To the best
of our knowledge, this work is the first that investigates low-
latency deep JSCC technique for speech transmission.

Our simulation study demonstrates that the proposed low-
latency JSCC method outperforms separate sequential state-
of-the-art source and channel coding in terms of estimated
speech quality and intelligibility for the case of low bitrate or
poor channel condition. On the other hand, in the case of good
wireless channel conditions and high bandwidth compression
rates, existing separate source-channel methods surpass the
proposed JSCC system.

II. LOW-LATENCY DEEP JSCC

A. State-of-the-art performance in low-latency scenarios

In order to set the stage for our study, we review the
performance of a current standardized state-of-the-art (SOTA)
system for low-latency speech communication consisting of a
source coder, the Opus speech coder 1, and a channel coder.
In this subsection, the wireless channel code is assumed ideal,
and reconstruction error only comes from the source coder.
In Figure 1, the performance of the Opus [2] speech coder is
illustrated for different latencies in terms of estimated speech
intelligibility, perceptual quality and reconstruction quality
by using ESTOI [22], PESQ [23] normalized MSE (NMSE)
metrics, respectively, versus the bitrate. In this paper, we define
latency as the duration of the input speech frame and look
ahead (if any) in the algorithms. ESTOI and PESQ output
values are in the range [−1, 1] and [1, 4.6], respectively, and
greater scores mean better performance. NMSE is shown in
the dB scale, and smaller numbers indicate better performance.

Based on Fig. 1, as expected, performance for all metrics
is improved by increasing latency. At high latencies and high
bitrates, the performances are high in terms of ESTOI and
PESQ; however, at low bitrates and especially low latencies,
the performance is significantly degraded for all metrics. This
observation indicates that SOTA speech coders may suffer in
low-latency and low-bitrate scenarios. It should be noted that
this is the performance in an ideal wireless channel. The actual
performance with real wireless channels would be worse. In
this paper, we aim at speech communication for low-latency
and poor wireless channel conditions to mitigate the problem
of current low-bitrate and low-latency speech communication
schemes problem.

B. System model
The overall block diagram of the proposed JSCC for speech

sources and Gaussian channels is depicted in Fig.2 and
consists of a combination of an encoder, wireless channels,
and a decoder. The input x and the output x̂ of the model
are time-domain speech signals. In contrast to conventional
communication systems where the source and channel cod-
ing are separated, the encoder part of the JSCC scheme
jointly performs both coding operations. Let x ∈ Rn and
y = f(x;ϕ) ∈ Rk be the input and output of the encoder
where f(x;ϕ) is a neural network with a series of layers
parameterized by ϕ, respectively, and where n is the number
of input speech samples, and k is the size of the compressed
and channel coded output of the encoder.

Following Fig.2, the input to the wireless channels is y
and ŷ ∈ Rk is the output of the wireless channels and input
to the decoder. We consider additive white Gaussian noise
(AWGN) channels with ŷ = y + n, where n ∈ Rk and n ∼
N (0, σ2I), in which σ2 is the channel noise variance and
I is the identity matrix. Let g(ŷ, θ) be the decoder which is
parameterized by θ and x̂ = g(ŷ; θ) ∈ Rn be the output of the
decoder. The AWGN wireless channels’ quality is represented
by the channel SNR, which is the ratio between the channel
input power and the noise variance of the channel. We point
out that scalar real-valued unquantized values are transmitted
over the channel, which means that the overall system is an
analog communication system.

The DNN encoder f(x;ϕ) consists of four convolution
layers followed by a fully connected layer with parametric
rectified linear unit (PReLU) activation functions [24] and a
normalization layer at last which normalizes the output power
and ensures the desired channel SNR, assuming knowledge
of the channel noise variance. This layer normalization
scheme is adopted to normalize the wireless channels input
independently of the batch size. The decoder is designed
similarly to the encoder with transpose convolution layers
and without a normalization layer. We define the channel
bandwidth compression rate by the ratio between the number
of transmitted numbers divided by the input data length:

α =
k

n
. (1)

The greater α, the higher channel bandwidth compression rate
and the smaller α, the lower channel bandwidth compression
rate, which indicates more and fewer available channels,
respectively.

The loss function used to train the DNNs has two parts.
The first part is the mean square error (MSE), which is the
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Fig. 2: Overview of the proposed DNN for JSCC for speech
transmission. The terms CNN, TCNN, and FC stand for
convolutional, transpose convolutional, and fully connected
neural networks. The numbers below and above the CNNs
and TCNNs indicate the number of channels and the stride of
each layer of the DNN, respectively.

reconstruction loss (distortion) between the input x and the
output x̂. The second part is the output speech’s intelligibility
where the ESTOI [22] index without voice activity detection
(VAD) is used. The loss function is defined as follows:

L =

∑n
i=1(xi − x̂i)

2

n
+ β ˆESTOI(x, x̂) (2)

where ˆESTOI(x, x̂) measures the ESTOI score between the
reference speech signal x and the received speech signal x̂
without VAD module. Also, minimizing L can be interpreted
as minimizing the MSE subject to equality constraint on the
ESTOI term, in which β serves as a Lagrangian multiplier.

III. SIMULATION RESULTS

A. Performance measures

In this section, we compare the performance of our proposed
JSCC system to state-of-the-art sequential separate source-
channel coding schemes in terms of the normalized mean
square error (NMSE) defined as

NMSE(x, x̂) =

∑n
i=1(xi − x̂i)

2∑n
i=1 x

2
i

. (3)

Furthermore, the performance is evaluated using ESTOI [22]
and PESQ [23], which are speech intelligibility and perceptual
quality metrics, respectively. Since the proposed DNN-based
JSCC scheme is analog, while conventional communication
systems that we compare to are digital, we need to define three
criteria to compare these systems meaningfully. First (i) is the
maximum available bitrate Rmax for digital communication as
a function of the wireless channels SNR by using Shannon’s
separation theorem for a discrete memoryless channel:

Rmax = αCfs =
α

2
log2(1 + SNR)fs, (4)

where C is the channel capacity of the AWGN channel, Rmax

is the maximum bitrate per second, and fs is the sampling
frequency of the speech signal. Second (ii) sets the number
of transmitted symbols over the wireless channels equal in a

given period for all methods. Third (iii) ensures that the latency
constraint is not violated.

We train and evaluate our proposed JSCC framework using
the Librispeech dataset [25] on 2200 and 200 .flac files,
respectively, with a 16 kHz sampling frequency. The total
speech duration for training and testing are 13100s and 1300s,
respectively. To train our model, we use the Adam optimizer
[26], set the learning rate to 10−4, and use early stopping with
7 patience epochs. We set β = 100 to keep the gradient of the
two parts of the loss function in the same range. For training
the DNN with only the MSE cost function, we set β = 0. For
the sake of low latency, we set the input length to n = 128 and
n = 64 samples, which correspond to 8 and 4 ms, respectively.
The batch size is 128, and the number of DNN parameters
depends on the channel bandwidth compression rate and input
size. The greater the channel bandwidth compression rate and
input size, the higher the number of parameters. The maximum
number of parameters equals 634507 and corresponds to the
model with 8ms input size and α = 1.

B. Baseline systems

We compare the proposed system with two traditional sys-
tems. In the first system, a closed-loop and packetized DPCM
coder [27] is adopted as the speech coder (source coding)
since it is a flexible speech coder and is able to work at low
bitrates and low latencies. The DPCM codec uses a predictor
filter to estimate the original speech signal from its quantized
prediction error. Because of the short input speech length,
we choose a predictor of order 5. Besides the compressed
residual data, the DPCM codec needs to transmit the predictor
filter coefficients over the wireless channel. We assume these
coefficients are transmitted error-less but consider their bitrate
usage in the total bitrate calculation in the (i) criterion. The
output of the DPCM coder is the quantized residual data. An
arithmetic code is then used to turn the quantized data into
bits, and further compress them, where the average length of
the arithmetic coder output defines the bitrate of the source
coder. Arithmetic codes are sensitive to errors and spread an
error to a large part of the data during decoding. We use
packetized DPCM to avoid this problem; in this case, the error
only propagates within a packet and not across packets. For
channel coding, a Reed Solomon (RS) coder is implemented.
More precisely, the RS(15, l) with a symbol size of 4 bits is
considered, where l dictates the code rate. We note that the
value of l determines how the total available bitrate is allocated
between the source and channel coders. In each simulation
point, l is chosen from a grid search and based on the
final NMSE performance. Finally, in each simulation scenario,
quadratic amplitude modulation (QAM) and binary phase-shift
keying (BPSK) modulations scheme are adopted for SNRs =
10 and 0 dB, respectively, to satisfy the equal channel usage
criteria for the digital and analog communication systems.

We also compare the proposed method to the Opus speech
codec [2]. The least algorithmic latency for a scheme with
the Opus speech coder is 7.5ms. In this scheme, the Opus
frame size is 2.5 ms, and with a look ahead of 5 ms, the
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DNN (β = 100) - delay = 8 ms
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Fig. 3: Top-left, top-right, and bottom-right figures respectively represent the performance of the proposed deep learning-based
JSCC and traditional communication systems in terms of ESTOI, PESQ, and NMSE versus channel bandwidth compression
rate α for SNR = 10 dB. TRD labels traditional methods on the figures.

total latency for the Opus coder is 7.5 ms. An RS channel
code (15, l) is considered in this simulation. Any possible
delay from the channel encoder and decoder, as well as
modulation and demodulation, is ignored. The bitrate available
for the Opus is determined by the trade-off between the source
and channel code. Instead of implementing channel coding
and modulation, the provided packet loss option in the Opus
decoder is employed. The total packet loss is calculated based
on the modulation scheme, the chosen channel code, and the
length of the Opus packet.

C. Speech quality and intelligibility

Figs.3,4 compare the performance of the proposed JSCC
scheme, and two traditional systems in terms of NMSE,
ESTOI, and PESQ versus channel bandwidth compression rate
α for channel SNR = 10 dB and SNR = 0 dB, respectively. For
each SNR, four curves for the proposed method are depicted.
These curves are for the two latencies (4 and 8 ms) and two
βs (100 and 0). We use β = 0 to have the MSE cost function,
and to have both MSE and ESTOI in the cost function we
set β = 100 to have an equal range value for each term in
the cost function. A lower value for the NMSE metric and a
higher value for the ESTOI and PESQ metrics indicate better
performance. As expected, almost all systems’ performance
is degraded for lower α. The traditional systems’ curves are
shown for a shorter range of α because they are not able to
operate at very low channel bandwidth compression rates.

In Figs 3, 4 there is a significant gap in the ESTOI per-
formance of any two DNN-based schemes which are trained
with the same configurations except β = 0 and β = 100 (for
instance, red and orange curves in Figs. 3, 4 for latency = 8 ms
and SNRs = 10 and 0 dB, respectively). Moreover, they have
similar performance in terms of NMSE and PESQ for both
SNR = 10 and 0 dB and both latencies 4 and 8 ms. These
observations show that adding the ESTOI term to the MSE
cost function can achieve better ESTOI performance with a bit

of performance loss in terms of perceptual and reconstruction
quality.

In Figs 3, 4, two traditional methods with different speech
coders are compared with the proposed DNN-based method.
In the figure’s legend, traditional methods are shown by TRD
with a summary of their configuration. In Fig.3 for SNR =
10 dB, the two curves (the last two in the legends) indicate
schemes with DPCM coders with the same latency as the
proposed DNN schemes. Methods with the Opus coders are
depicted for two different latencies (purple and light blue
curves) because the Opus coder is not flexible regarding
latency. The minimum and maximum possible latency for
a scheme with the Opus speech coder are 7.5 and 65 ms,
respectively. Fig. 3 shows the proposed method outperforms
both traditional methods regarding ESTOI, PESQ, and NMSE,
especially at low α for the same and even smaller latencies.
Note that at higher latencies and SNRs, SOTA separate sys-
tems perform better than the proposed method similar to the
curve with 10 ms latency in Fig 3 (light blue curve).

In Fig.4 for SNR = 0 dB, one curve with the Opus coder
and another curve with the DPCM coder with shorter lengths
are depicted (light blue and purple curves, respectively) due
to the smaller number of available bitrates for lower SNRs
(4). For the scheme with the DPCM coder, the curve with
latency = 8 ms is depicted. For the scheme with the Opus coder
maximum possible latency of 65ms is considered to show even
with maximum possible latency, it has inferior performance
than the proposed DNN scheme with 4ms latency in terms of
all metrics. Although both traditional methods suffer from the
lack of bitrate at low latencies (4), the proposed DNN-based
methods perform well even for small α in terms of all metrics.

IV. CONCLUSION
In this paper, we proposed a low-latency deep joint source-

channel coding scheme for speech transmission over AWGN
wireless channels. A DNN with a short input length is con-
sidered to satisfy low-latency communication. A loss function
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Fig. 4: This figure is similar to Fig 3 with the same configurations but for SNR = 0 dB.

with a tradeoff between decoded speech intelligibility and
distortion is adopted to train the network. The simulation
results demonstrated that the proposed JSCC has significant
performance improvements over two state-of-the-art systems
in terms of NMSE and ESTOI in the case of low-rate or poor
channel conditions.
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