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ABSTRACT

In the last decades several multi-microphone speech dereverberation
algorithms have been proposed, among which the weighted prediction
error (WPE) algorithm. In the WPE algorithm, a prediction delay is
required to reduce the correlation between the prediction signals and the
direct component in the reference microphone signal. In compact arrays
with closely-spaced microphones, the prediction delay is often chosen
microphone-independent. In acoustic sensor networks with spatially
distributed microphones, large time-differences-of-arrival (TDOAs) of the
speech source between the reference microphone and other microphones
typically occur. Hence, when using a microphone-independent prediction
delay the reference and prediction signals may still be significantly
correlated, leading to distortion in the dereverberated output signal. In
order to decorrelate the signals, in this paper we propose to apply TDOA
compensation with respect to the reference microphone, resulting in
microphone-dependent prediction delays for the WPE algorithm. We
consider both optimal TDOA compensation using crossband filtering in
the short-time Fourier transform domain as well as band-to-band and in-
teger delay approximations. Simulation results for different reverberation
times using oracle as well as estimated TDOAs clearly show the benefit
of using microphone-dependent prediction delays.

Index Terms— Dereverberation, weighted prediction error, acoustic
sensor networks, prediction delay

1. INTRODUCTION

When recording a speech source using microphones inside a room,
reverberation due to acoustic reflections may degrade the quality and
intelligibility of the recorded speech. While early reflections may be ben-
eficial, late reverberation typically reduces both speech intelligibility as
well as automatic speech recognition performance [1,2]. Hence, effective
dereverberation is required for many speech communication applications,
such as voice-controlled systems, hearing aids and hands-free tele-
phony [3–14]. A popular blind dereverberation algorithm is the weighted
prediction error (WPE) algorithm [10–14], which is based on multi-
channel linear prediction (MCLP). WPE performs dereverberation by
first estimating the late reverberant component in a reference microphone
from the delayed reverberant microphone signals and then subtracting the
estimate from the reference microphone signal. Several variants of the
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Fig. 1: WPE with microphone-dependent prediction delays

WPE algorithm have been proposed, e.g., aiming at controlling sparsity of
the dereverberated output signal in the time-frequency domain [11,13].

The delay, called prediction delay, plays an important role in WPE
and is introduced to reduce the correlation between the prediction signals
and the direct component in the reference microphone signal, hence aim-
ing to preserve the direct component and early reflections [10,11]. The
prediction delay determines the trade-off between the amount of residual
reverberation and the distortion in the desired component. It is typically
chosen according to the autocorrelation of speech and is therefore often
chosen microphone-independent. Whereas this may be a good choice for
compact arrays with closely-spaced microphones, in acoustic sensor net-
works with spatially distributed microphones large inter-microphone dis-
tances may exist, leading to large and diverse time-differences-of-arrival
(TDOAs) of the speech source between microphones. If uncompensated
for, the effective prediction delay in each microphone may be sub-optimal,
leading to distortion or excess reverberation in the desired component.

Aiming at performing TDOA compensation with respect to the
reference microphone in the short-time Fourier transform (STFT)-domain,
in this paper we propose to use microphone-dependent prediction delays
in the WPE algorithm. We perform either optimal TDOA compensation
with non-integer delays or coarse TDOA compensation with integer
delays. In the STFT-domain, optimal TDOA compensation needs to
be implemented using crossband filtering. However, since crossband
filters introduce additional computational complexity and using more
crossband filters does not necessarily imply lower reconstruction error
in subbands [15], we also propose using a band-to-band approximation.
Simulation results for an acoustic sensor network with spatially distributed
microphones using different reverberation times as well as estimated
and oracle TDOAs show the proposed microphone-dependent prediction
delays outperform the microphone-independent prediction delay in the
WPE algorithm, where the best dereverberation performance is achieved
using non-integer delays with crossband filtering closely followed by the
computationally less complex band-to-band approximation.

2. SIGNAL MODEL

We consider a single speech source captured by a set ofM microphones
in a reverberant room. Similarly as in [10, 11, 13], we don’t considerIC
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additive noise in this paper. In the STFT-domain, let s(k,n) denote
the clean speech signal with k ∈ {1, ...,K} the subband index and
n ∈ {1, ...,N} the time frame index. The reverberant signal at them-th
microphone xm(k,n) can be written as

xm(k,n) =

Lh−1∑
l=0

hm(k, l)s(k,n− l) + em(k,n), (1)

where hm(k,n) denotes the subband convolutive transfer function with
length Lh between the speech source and the m-th microphone, and
em(k,n) denotes the subband modelling error. Without loss of generality,
we define the first microphone as the reference microphone. Assuming
the error term em(k,n) in (1) can be disregarded, the dereverberation
problem as is depicted in Fig. 1 can be formulated as

d(k,n) = x1(k,n)− r(k,n). (2)

The desired component d(k,n) =
∑Ld−1

l=0 h1(k, l)s(k,n− l) consists
of the direct path and early reflections in the reference microphone signal
x1(k,n), whereLd denotes the temporal cut-off between early and late re-
flections. The undesired component r(k,n) =

∑Lh−1
l=Ld

h1(k, l)s(k,n−
l), which we aim to estimate, is the late reverberant component in the
reference microphone signal x1(k,n). Using the MCLP model [10], the
undesired late reverberant component r(k,n) can be written as the sum
of delayed filtered versions of all reverberant microphone signals, i.e.

r(k,n) =

M∑
m=1

L̃g−1∑
l=0

g̃m(k, l)xm(k,n− τ − l), (3)

where g̃m(k,n) denotes the m-th prediction filter of length L̃g and
τ = Ld denotes the (microphone-independent) prediction delay.
The prediction delay aims at reducing the correlation between the pre-
diction signal xm(k,n − τ) and the desired component d(k,n). It is
typically chosen according to the autocorrelation of speech and therefore
often microphone-independent. In this paper we propose to generalise
the MCLP model in (3) to allow for a microphone-dependent prediction
delay τm (see Fig. 1), i.e.

r(k,n) =

M∑
m=1

Lg−1∑
l=0

gm(k, l)xm(k,n− τm − l), (4)

where gm(k, l) denotes the m-th prediction filter of length Lg. Using
(4), the signal model in (2) can be rewritten in vector notation as

d(k) = x1(k)−Xτ (k)g(k), (5)

with
d(k) =

[
d(k,1) · · · d(k,N)

]T ∈ CN , (6)

x1(k) =
[
x1(k,1) · · · x1(k,N)

]T ∈ CN , (7)

whereN denotes the number of time frames. The multi-channel delayed
convolution matrix Xτ (k) in (5) is defined as

Xτ (k) =
[
Xτ1(k) · · · XτM (k)

]
∈ CN×MLg , (8)

where Xτm(k) ∈ CN×Lg is the convolution matrix of xm(k) delayed
by τm frames with τ1 = τ denoting the prediction delay in the reference
microphone and g(k) ∈ CMLg is the stacked vector of all prediction
filter coefficients gm(k,n). The problem of speech dereverberation, i.e.
estimation of the desired component d(k), is now reduced to estimating
the filter g(k) predicting the undesired late reverberation.

3. WPE ALGORITHM

To estimate the prediction filter g(k), it has been proposed in [10] to
model the desired component d(k,n) using a time-varying Gaussian
(TVG) model. This is equivalent to modelling the desired component
in each time-frequency bin by means of a zero-mean circular Gaussian
distribution with time-varying variance λ(k,n), i.e.

NC(d(k,n); 0, λ(k,n)) =
1

πλ(k,n)
e
− |d(k,n)|2

λ(k,n) , (9)

where the variance λ(k,n) is an unknown parameter which needs to
be estimated. Since the TVG model does not assume any dependency
across frequencies or time frames, the likelihood function is given by

L(g(k),λ(k)) =
N∏

n=1

NC(d(k,n); 0, λ(k,n)), (10)

with
λ(k) =

[
λ(k,1) · · · λ(k,N)

]T ∈ RN . (11)

The prediction filter g(k) and the variances λ(k) can then be estimated
by maximising the log-likelihood function, which is equivalent to solving
the following optimisation problem [10,11]

min
λ(k),g(k)

N∑
n=1

(
|d(k,n)|2

λ(k,n)
+ logπλ(k,n)

)
. (12)

Since no closed-form solution exists for the joint optimisation problem
in (12), it has been proposed in [10] to use an alternating optimisation
procedure, where two simpler sub-problems are solved in an iterative
manner. More in particular, in each iteration the cost function in (12)
is first minimized with respect to the prediction vector g(k), assuming
that the variances λ(k) are fixed to the values from the previous iteration.
Using these values for the prediction vector g(k), the cost function in
(12) is then minimized with respect to the variances λ(k). At a given
iteration i, with index k omitted, the estimated prediction filter and the
estimated variances are given by

ĝ(i+1) =
(
XH

τ D−1

λ̂
(i)Xτ

)−1

XH
τ D−1

λ̂
(i)x1, (13)

λ̂
(i+1)

= |d̂(i+1)|2 = |x1 −Xτg
(i+1)|2, (14)

where D
λ̂
(i) = diag(λ̂

(i)
) and d̂(i+1) is the estimated desired com-

ponent calculated using (5) with the |.| and (.)2 operators applied
element-wise.

In [11], an extension to the TVG model was proposed by including
a hyperprior with a sparsity-promoting parameter p, aimed at better
describing the sparse nature of speech in the STFT-domain. It was shown
in [11] that the solution for the variances in (14) simply changed to

λ̂
(i+1)

= |d̂(i+1)|2−p. (15)

4. MICROPHONE-DEPENDENT PREDICTION DELAYS

In acoustic sensor networks with spatially distributed microphones, large
and diverse TDOAs of the speech source between the microphones may
exist. If uncompensated for, the effective prediction delays in the micro-
phones may be suboptimal, leading to distortion or excess reverberation
in the WPE output signal (see evaluation in Section 5). In this section
we propose to perform TDOA compensation using the microphone-
dependent prediction delays in (4). We perform either optimal TDOA



compensation with non-integer microphone-dependent prediction delays
or coarse TDOA compensation with integer microphone-dependent
prediction delays. In Section 4.1 we first define the problem in the
time-domain. It can be shown that the optimal TDOA compensation
filter in the time-domain can be written as a combination of integer frame-
delays and crossband filters in the STFT-domain (see Section 4.2). To
reduce computational complexity, we also propose using a band-to-band
approximation (Section 4.3) or using integer frame-delays (Section 4.4).

4.1. TDOA compensation in time-domain

Let TDOAm be the TDOA between microphone m and the reference
microphone. This TDOA can be decomposed as

TDOAm = δframe
m ×Lshift + δsamp

m + δfrac
m , (16)

with the integer frame-delay δframe
m , the integer delay δsamp

m and the
fractional delay δfrac

m defined as

δframe
m = ⌊TDOAm

Lshift
⌉, (17)

δsamp
m = ⌊TDOAm − δframe

m ×Lshift⌋, (18)

δfrac
m = TDOAm − δframe

m ×Lshift − δsamp
m , (19)

where Lshift denotes the STFT frame shift, ⌊.⌉ denotes the operator for
nearest integer rounding and ⌊.⌋ denotes the operator for lower integer
rounding. The optimal time-domain TDOA compensation filter u′m[t]
can be written as [16]

u′m[t] = δ[t− δframe
m ×Lshift] ∗ δ[t− δsamp

m ] ∗ sinc[t− δfrac
m ], (20)

where δ[t] denotes a unit impulse with discrete-time index t and ∗
denotes convolution. It should be noted that δ[t− δframe

m ×Lshift] can be
implemented using integer frame-delays in the STFT-domain, whereas
um[t] = δ[t − δsamp

m ] ∗ sinc[t − δfrac
m ] needs to be implemented using

crossband filters in the STFT-domain.

4.2. Non-integer prediction delays using crossband filtering

It was shown in [15] that any time-domain filter, e.g. um[t], can be
implemented in the STFT-domain using crossband filters

um(k, k′, n) = {um[t] ∗ ϕk,k′ [t]}|t=nLshift , (21)

where um(k, k′, n) denotes the crossband filter with crossband index k′

in subband k,

ϕk,k′ [t] = ej2πk
′t

K∑
m=−K

ψ̃[m]ψ[t+m]e−j 2π
K

m(k−k′), (22)

with ψ̃[t] and ψ[t] denoting the STFT analysis and synthesis windows
with length K. Using the crossband filter um(k, k′, n) and the integer
frame-delay δframe

m , optimal TDOA compensation may be performed
in the STFT-domain, equivalent to the optimal time-domain TDOA
compensation filter u′m[t] in (20).

We now apply optimal TDOA compensation to the prediction-
delayed microphone signal xm(k,n − τ), where τ is the integer
prediction delay of the reference microphone. This leads to a non-integer
microphone-dependent prediction delay τm = τ + TDOAm/Lshift in
the WPE algorithm (see Fig. 1), i.e.

xm(k,n− τm) =

K∑
k′=1

Lc∑
l=−La

xm(k′, n− l− τ int
m)um(k, k′, l),

(23)

where La and Lc denote the number of acausal and causal taps in
um(k, k′, n), and τ int

m = τ + δframe
m denotes the integer component of the

prediction delay τm.

4.3. Band-to-band approximation

Since the crossband filter um(k, k′, n) in (23) is computationally com-
plex and it has been shown in [15] that crossband filters do not necessarily
lower reconstruction error in xm(k,n− τm), we propose to use a band-
to-band approximation of the optimal TDOA compensation in (23), i.e.

xm(k,n− τm) =

Lc∑
l=−La

xm(k,n− l− τ int
m)um(k, l), (24)

where um(k,n) = um(k, k,n) denotes the band-to-band filter in (21).

4.4. Integer prediction delays

In order to further reduce computational complexity, we only consider the
integer frame-delay component in (24) and ignore the band-to-band filter
um(k,n). This corresponds to applying coarse TDOA compensation to
the prediction-delayed microphone signal xm(k,n− τ), leading to an
integer microphone-dependent prediction delay τm = τ int

m , i.e.

xm(k,n− τm) = xm(k,n− τ int
m). (25)

5. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the microphone-
independent prediction delay and the proposed microphone-dependent
prediction delays in the WPE algorithm for an acoustic sensor network
with spatially distributed microphones, both using oracle as well as
estimated TDOAs. In Section 5.1 we discuss the considered acoustic
setup and the performance measures. In Section 5.2 we present the
simulation results for the different TDOA compensation implementations
proposed in Section 4.

5.1. Acoustic setup and performance measures

We consider an acoustic sensor network withM = 9 spatially distributed
microphones and a single speech source in a room of dimensions
8m×8m×5m. Fig. 2 depicts the position of the microphones and
the considered positions of the speech source inside the room. The
microphones are placed on a 3×3 grid with equal spacing of dimensions
7.5m×7.5m at a height of 1.5m. The reference microphone is chosen as
the bottom-left microphone and fixed for all considered source positions.
In total 48 positions of the speech source are considered on a 7× 7 grid
with equal spacing of dimensions 7m×7m at a height of 1.5m, with
one position of the speech source removed as it overlaps with a chosen
microphone position. The minimum distance between any considered
position of the speech source and the closest microphone is 0.5m.

The reverberant microphone signals were generated by convolving
a subset of anechoic speech from the TIMIT database [17] with room
impulse responses (RIRs) that were simulated using the randomized
image method [18] with reverberation time T60 ∈ {500,750,1000} ms.
The signals were processed at a sampling rate of 16 kHz using an STFT
framework with frame sizeK = 1024 samples, frame shift Lshift = 256
samples and square-root Hann analysis and synthesis windows in (22).
The WPE algorithm was implemented with prediction filter length
Lg ∈ {8,12,16} (proportional to T60), prediction delay τ = 2 and
sparsity-promoting parameter p = 0.5 in (15). Hence for the considered



Fig. 2: Positions of M = 9 spatially distributed microphones with
fixed reference microphone (*) and 48 considered positions of single
speech source

acoustic scenario, the possible microphone-dependent prediction delays
τm lie in the range τm ∈ [0,4].

To estimate the TDOAs of the speech source between the micro-
phones, we used the popular generalised cross-correlation with phase
transform (GCC-PHAT) algorithm [19] with a frame size of 2048 samples
(i.e. twice as large as WPE) and a frame shift of 1024 samples, since the
frame size needs to be at least twice as large as the largest possible TDOA.

Dereverberation performance is evaluated using the frequency-
weighted segmental signal-to-noise-ratio (FWSSNR), the perceptual
evaluation of speech quality (PESQ) and the cepstral distance (CD)
measure [20]. The reference signal used in these measures is the direct
component in the reference microphone. The above measures are
averaged across the 48 considered positions of the speech source.

5.2. Simulation results

For the WPE algorithm, we consider the following prediction delays:
• MI: using a microphone-independent prediction delay τ
• MD-NINT: using a microphone-dependent prediction delay τm,

performing optimal TDOA compensation using crossband filtering
in (23)

• MD-NINT-B2B: using a microphone-dependent prediction delay τm
with band-to-band approximation in (24)

• MD-INT: using a microphone-dependent integer prediction delay τm
in (25)

For all considered WPE algorithms, Fig. 3 depicts the average perfor-
mance for different reverberation times, both for oracle as well as for
estimated TDOAs. First, for oracle TDOAs it can be observed for all re-
verberation times that in terms of ∆FWSSNR and ∆CD the performance
using microphone-dependent prediction delays is significantly better than
using a microphone-independent prediction delay. In terms of ∆PESQ,
the performance is similar, although clear differences in speech quality
are audible between using microphone-dependent prediction delays
and using a microphone-independent prediction delay1. Comparing
the different implementations of the microphone-dependent prediction
delays, it can be observed that non-integer delays with crossband filtering
(MD-NINT) clearly outperforms integer delays (MD-INT), while using
the band-to-band approximation of non-integer delays (MD-NINT-B2B)
is only marginally worse than using crossband filtering. Second, using es-
timated TDOAs for TDOA compensation a very similar performance can
be achieved as using oracle TDOAs for all considered WPE algorithms.
This is not very surprising as the estimated TDOAs were quite close to
the oracle TDOAs, with an average correlation coefficient of 0.85.

1Audio examples available on
uol.de/f/6/dept/mediphysik/ag/sigproc/audio/dereverb/mdpd.html
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Fig. 3: Average performance in terms of frequency-weighted segmental
SNR improvement, CD improvement and PESQ improvement for all
considered WPE algorithms for different reverberation times T60, for
(a) oracle TDOAs and (b) estimated TDOAs

6. CONCLUSION

In this paper we have presented a WPE algorithm with microphone-
dependent prediction delays. We have proposed to use these microphone-
dependent prediction delays to perform TDOA compensation, which is
especially relevant in acoustic sensor networks with spatially distributed
microphones. We have considered several versions to perform TDOA
compensation in the STFT-domain, i.e. optimal TDOA compensation
with non-integer delays using crossband filtering, approximate TDOA
compensation using band-to-band filters or coarse TDOA compensation
with integer-frame delays. The experimental evaluation showed that using
microphone-dependent prediction delays to perform TDOA compensa-
tion improves the performance compared to a microphone-independent
prediction delay, where the best dereverberation performance is achieved
using non-integer delays with crossband filtering closely followed by the
computationally less complex band-to-band approximation. Investigating
the performance of the proposed schemes for acoustic scenarios with
additive noise, a moving source or multiple sources are directions for
future research.
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