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Abstract—In recent years, several supervised learning-based
approaches have been proposed to estimate the direction of arrival
(DOA) of a single talker in noisy and reverberant environments.
In this paper, we consider a speech-aware DOA estimation system
for binaural hearing aids, which does not require a separate
voice activity detector (VAD). We propose the combination of
two narrowband features as the input features of a convolutional
neural network (CNN), namely the cross-power spectrum as spatial
features and narrowband auditory-inspired periodicity features.
Prior to the joint processing of both features, we propose to reduce
the dimensionality of the narrowband periodicity features using
a feature reduction stage based on 1x 1 convolutions. Simulation
results for two reverberant environments with different background
noises demonstrate the benefit of the feature reduction stage in terms
of DOA estimation accuracy while significantly reducing the number
of trainable parameters. In addition, simulation results show that
the proposed system outperforms a baseline system consisting of
a CNN using only spatial features and a pitch-based VAD.

Index Terms—convolutional neural network, binaural DOA
estimation, feature reduction, periodicity degree.

I. INTRODUCTION

Reliably estimating the direction of arrival (DOA) of a talker is
a crucial task in applications such as binaural hearing aids [1], [2].
In addition to model-based DOA estimation approaches [3]-[6],
in recent years several supervised learning-based DOA estimation
approaches based on deep neural networks (DNNs) have been
proposed [7]-[13]. In these approaches, the DOA estimation
task is often formulated as a classification problem, aiming at
determining a mapping from input features to a spatial probability
map for a discretized DOA range. Without auxiliary information,
e.g., a voice activity detector (VAD), such approaches also
provide a DOA estimate during speech pauses or when the signal
is dominated by noise, which typically results in erroneous DOA
estimates. Hence, a VAD is often cascaded with a DOA estima-
tion system [13], [14]. However, a separate VAD usually requires
manual and time-consuming parameter tuning, and may introduce
errors that propagate through the DOA estimation system.

In [15], we proposed a speech-aware binaural DOA estimation
system based on convolutional neural networks (CNNs), which
does not require a separate VAD. Simulation results showed
the benefit of using broadband periodicity degree (PD) features
in combination with generalized cross-correlation with phase
transform (GCC-PHAT) features as input features for the CNN.
However, the frequency integration of the cross-power spectrum
(CPS) phase employed in the calculation of the GCC-PHAT
feature [3], [15] does not allow the CNN to effectively exploit
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the sparsity property of speech signals in the time-frequency
domain [16]. In addition, broadband PD only offers a coarse
representation of the harmonic structure of a signal.

In this paper, we extend the speech-aware binaural DOA
estimation system of [15] in two ways. First, aiming at exploiting
the sparsity property of speech signals, we propose to use a
narrowband representation of PD features in combination with
narrowband CPS features (as spatial features) as input features
for the CNN. Second, the key contribution of this paper is intro-
ducing a PD feature reduction stage before the joint processing
of both narrowband features, resulting in a two-stage CNN
architecture. We postulate here that the feature reduction stage
better guides the DOA estimation by reducing the sparse structure
of narrowband PD features to a set of more compact spectro-
temporal features, referred to as PD saliency features. Evaluation
results for a single talker in two reverberant environments for
different signal-to-noise ratios (SNRs) show the benefit of using
the proposed PD feature reduction stage compared to a system
without feature reduction. Evaluation results also show that the
proposed systems combining narrowband CPS and PD features
outperform a baseline system, consisting of a cascade of a CNN
using only narrowband CPS features and a pitch-based VAD.

II. DOA ESTIMATION AS A CLASSIFICATION PROBLEM

In this work, we consider the problem of single-talker DOA
estimation in the azimuthal plane using a binaural hearing aid
setup with M microphones. In the short-time Fourier transform
(STFT) domain, the m-th microphone signal at time frame n
and frequency bin k£ (with K the STFT length) can be written as

Yo (n,k) = X (n,k) + Vi (n,k), (D

where X and V denote the sound source (at direction ) and
the uncorrelated background noise, respectively. By dividing the
azimuth range into a set of C' discrete DOAs {61,---,0c}, DOA
estimation can be considered as a classification problem, where
the DOA of a sound source should be assigned to one of the
DOA classes. In this work, we consider C' =72 classes for the
full 360° azimuth range, corresponding to a DOA map with 5°
resolution. In the next subsections two different classification-
based approaches for DOA estimation will be discussed.

A. Conventional DOA estimation

Conventionally, DOA estimation is formulated as a C'-class
classification task, where each output class corresponds to a DOA
[8], [10]-[13]. During training, each training example belongs to
only one output class that has been labeled using oracle DOA in-
formation. During testing, the neural network predicts a posterior
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probability map in the output. The DOA is usually estimated as
the DOA class with the highest posterior probability. In this work,
to obtain continuous DOA estimates from discrete DOA classes,
we estimate the sound source DOA by employing parabolic
interpolation [17] on three DOA classes centered around the
DOA class with the highest posterior probability. To deal with
erroneous DOA estimates (e.g., during speech pauses), a VAD
can be cascaded to this system [13], [14], where a DOA is only
estimated from the probability map, if the VAD detects the signal
as speech. In this work, we adopt the VAD-informed DOA esti-
mation approach to design the baseline system in Section IV-A.

B. Speech-aware DOA estimation

In contrast to the VAD-informed classification-based approach,
in [15] we proposed a classification-based approach referred to
as speech-aware DOA estimation. The purpose of speech-aware
DOA estimation is to estimate the DOA of a sound source only
for speech sources, without needing a separate VAD. This prob-
lem is formulated as a C'+1-class classification task, where the
first C classes represent the DOA classes and the last class repre-
sents the non-speech activity, regarded as the detection class. Dur-
ing training, via a one-hot encoding scheme, if a training example
belongs to a speech source from a given direction, the DOA class
corresponding to that direction is labeled by one, whereas all
other classes (including the detection class) are labeled by zero.
On the other hand, if a training example belongs to a non-speech
source, regardless of its direction, all DOA classes are labeled by
zero, whereas the detection class is labeled by one. During testing,
we consider the class with the highest posterior probability. If
this class is a DOA class, we estimate the sound source DOA
by employing parabolic interpolation [17] on three DOA classes
centered around this class. Otherwise, no reliable DOA could
be estimated. In this work, we adopt the speech-aware DOA
estimation approach in our proposed systems in Section IV-B.

III. NARROWBAND INPUT FEATURES

Aiming at exploiting speech sparsity in the STFT domain,
in this section we describe the narrowband features that are
used as input features for the DOA estimation, namely the
cross-power spectrum (Section III-A) and the periodicity degree
(Section III-B).

A. Cross-power spectrum (CPS)

In [15] the broadband GCC-PHAT, defined as the inverse
Fourier transform of the CPS phase, was used as the spatial
input feature. In this work, we propose to directly use the
narrowband CPS. The instantaneous CPS between the r-th and
g-th microphone is defined as

Gi(”ak):Yr(nvk)Yq*(nvk)v ()

where (-)* denotes complex conjugate and i denotes a micro-
phone pair combination. From (2) it can be seen that the CPS
encodes both the phase difference and the levels of a microphone
pair. As CPS input feature, we consider the real and imaginary
parts of G;(n,k) for all M (M —1)/2 unique microphone pairs
for frequencies up to the Nyquist frequency, i.e., k=0,1,-+-,K/2,
for L consecutive time frames. This means that the shape of the
CPS input feature is equal to L x (K/2+1)x2M (M —1)/2. We
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Fig. 1: Illustrative visualization of narrowband PD features
for a set of fundamental frequency candidates. The sparse
spectro-temporal structure of these features motivates using a
feature reduction stage prior to the joint processing of the CPS
and PD features by the CNN.

note here that the first, second, and third dimension represent the
height, width, and depth of the input feature, respectively, where
the depth corresponds to the number of input channels. For the
CPS input feature, 2M (M —1)/2 input channels are constructed
by stacking the real and imaginary parts for all microphone pairs.

B. Periodicity degree (PD)

In [15] broadband PD features, which only offer a coarse
representation of the harmonic structure of a signal, were used
as input features. In this work, we propose to use a narrowband
formulation of the PD features, estimated for a set of IV
fundamental period candidates. The PD features are computed
by first decomposing a reference microphone signal into a set
of bandpass-filtered time signals using a gammatone filter bank
(GTFB) [18]. The real part of each bandpass-filtered signal is
then passed through a half-wave rectification, followed by a fifth-
order low-pass filter with 770 Hz cutoff frequency and a second-
order high-pass filter with 40 Hz cutoff frequency, resulting
in bandpass-filtered signal envelopes Yen,(t,f) in time ¢ and
subband f. In the next step, a set of /N parallel infinite impulse
response (ITIR) comb filters designed for a set of fundamental
period candidates p;,j=1,---,N, filter the signal envelopes as

s(t,f.0) = (1= )Yeno (t,f) +as(t—p;.f.j), 3

where a denotes the filter gain. The periodicity degree is defined
as the mean amplitude of the comb-filtered signal, computed as

PD(tvaj):(1_ﬂj)|s(tvaj)|+BJPD(t_1vf7j)7 (4)

where |-| denotes the absolute value and the parameter 3; for
each fundamental period candidate is defined as 3;=e~1/Pi.

Since we aim at joint spectro-temporal processing of the PD
and CPS features, it is required to represent both features at the
same time-frequency resolution. To obtain the same time resolu-
tion as the CPS features, the PD features are averaged in each
STFT frame. Unlike the linearly-spaced STFT frequency bands,
the gammatone bands have a non-uniform frequency resolution
that decreases with frequency. To obtain the same frequency
resolution for the PD features as for the CPS features, for low
STFT frequencies we average the PD features in gammatone
bands associated with one STFT frequency band. In contrast,
for high STFT frequencies we replicate the PD features of each
gammatone band and assign them to those STFT frequency
bands associated with one gammatone band. Similarly as for the
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Fig. 2: Baseline VAD-informed DOA estimation system using
only CPS features.
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CPS features, we consider L consecutive frames, such that the
shape of the PD input feature is equal to L x (K/2+1)x N.
For a 1s clean signal of a female talker, Fig. 1 depicts
exemplary two-dimensional (2D) narrowband PD features,
corresponding to a subset of fundamental frequency candidates
(each representing an input channel). For a perfectly periodic
signal with a certain fundamental frequency, a high PD value
will be captured in each time-frequency bin across the N input
channels associated with the harmonics and sub-harmonics of
this fundamental frequency. Even though speech signals are not
perfectly harmonic, their fundamental frequency variations and
multiple harmonics exhibit a spectro-temporal structure that can
be identified in the input channels of the PD features. The main
idea of using PD features in combination with CPS features is to
use the salient periodicity features as a footprint of speech signals
in a noisy mixture [19], [20]. This enables the CNN to detect
voiced speech portions of a signal, at the same time mapping
the CPS features of these portions to the DOA of the talker.

IV. CNN-BASED DOA ESTIMATION SYSTEMS

In this section, we describe the CNN-based DOA estimation
systems. Section IV-A discusses the baseline system, which
adopts a VAD-informed DOA estimation approach and uses
only the CPS features. Section IV-B presents the proposed
systems, which adopt a speech-aware DOA estimation approach
and use a combination of the CPS features and the narrowband
PD features as input features.

A. Baseline VAD-informed system

Fig. 2 depicts the baseline system consisting of a CNN using
only spatial CPS features as input cascaded with a pitch-based
binary VAD [21]. In the baseline CNN architecture, each
convolutional block (Convl to Conv3) consists of a cascade
of 2D convolutional, batch normalization, rectified linear unit
(ReLU) activation, and 2D max-pooling layers. The outputs of
the last pooling layers in Conv3 are concatenated and then used
as an input for a cascade of two fully-connected blocks (FCI to
FC2), each representing a fully-connected dense layer followed
by batch normalization, ReLU activation, and dropout layers.
A softmax activation function predicts the posterior probability
map for the C' DOA classes.

B. Proposed speech-aware systems

Fig. 3 depicts the proposed speech-aware DOA estimation
systems, which use narrowband PD features in combination with
spatial CPS features as input features of the CNN. We expect
that by training these systems with speech and non-speech
signals, the CNN can capture the spectro-temporal structure
of the signal encoded in the PD features, thereby distinguishing
between speech and non-speech portions while simultaneously
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Fig. 3: Proposed speech-aware DOA estimation systems: (a) CPS
and PD features are jointly processed by the CNN, (b) PD fea-
tures are reduced to PD saliency features using 1 x 1 convolutions
before being jointly processed with CPS features by the CNN.

mapping the CPS features to a sound source DOA when speech
portions in the signal are detected.

The system in Fig. 3a directly employs 2D convolutional
filters to the time-frequency regions of each input channel, i.e.,
PD and CPS features belonging to the same time-frequency
bins are jointly processed, ensuring a proper association of
both features. However, the spectro-temporal sparsity of the PD
features (as visualized in Fig. 1) may complicate this task when a
relatively large number of PD channels are correlated to the CPS
features by the CNN. This motivates the usage of a PD feature
reduction stage prior to the joint feature processing by the CNN.

Fig. 3b depicts the proposed two-stage CNN architecture
including a PD feature reduction stage. The PD feature reduction
stage aims at reducing the PD input depth, i.e., the number of
channels, while keeping its width and height, i.e., the time-
frequency resolution fixed. We propose to use 1x 1 convolutions
[22] to reduce the N-channel PD features to a 1-channel PD fea-
ture, which can be interpreted as a PD saliency feature for each
time-frequency bin. In the next stage, the PD saliency features are
jointly processed with the CPS features using 2D convolutional
filters. It should be noted that both stages are jointly trained.

The CNN architecture of the proposed systems in Fig. 3 is
very similar to the CNN architecture of the baseline system in
Fig. 2. However, since the input features of the first convolutional
block (Convl) in the considered systems are different (CPS
only, CPS and PD, CPS and PD saliency), the number of input
channels is obviously different. In addition, the VAD-informed
baseline system has C' nodes in the output layer, whereas the
speech-aware systems have C'+ 1 nodes in the output layer.
Finally, after hyperparameter optimization the best performance
was obtained when using 64 convolutional filters in the baseline
system and the two-stage CNN (both corresponding to about 5.5
million trainable parameters), and using 128 convolutional filters
in the proposed system without feature reduction (corresponding
to about 11.2 million trainable parameters).

V. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of the baseline system and the proposed speech-aware sys-
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tems described in Section IV-A and Section IV-B, respectively.

A. Datasets and data generation for training and evaluation

We used a database of multichannel binaural room impulse
responses (BRIRs) [23] to generate data for training and
evaluation. The considered binaural hearing aid setup consists
of M =4 microphones, where the front and rear microphones
in both left and right hearing aids were used. We used sound
source signals from speech [24] and non-speech [25] datasets
to generate the training and validation data required during the
training of all CNNs. For evaluation, only speech signals from
the validation TIMIT [24] data were used as source signals.
Source signals were randomly chosen from unique speakers
(both male and female) and from three categories [15] of
non-speech signals. We generated the noisy binaural microphone
signals by convolving the source signals with BRIRs and mixing
the resulting clean binaural signals with a background noise
at different SNRs. All systems were trained in noisy anechoic
conditions and evaluated in noisy reverberant environments.

During training, we used a simulated binaural diffuse noise
to generate noisy binaural microphone signals at SNRs ranging
from —5 dB to 420 dB in 5 dB steps. This diffuse noise
was generated by convolving uncorrelated speech-shaped noise
taken from the ICRA noise database [26] with anechoic BRIRs

and summing all resulting binaural signals from 72 directions.

In total, we obtain 3.85 million training examples. To calculate
the validation loss at the end of each epoch, 200000 examples
were randomly selected from the validation data and kept fixed
throughout training.

We generated the evaluation data for static-source scenarios
in two real environments [23] (cafeteria and courtyard) with
a reverberation time of approximately 1300 ms and 900 ms,
respectively. The recorded cafeteria babble noise and courtyard
ambient noise [23] were used to generate noisy binaural
microphone signals. All systems were evaluated at SNRs
ranging from —5 dB to +10 dB in 5 dB steps. A total of 150
speech segments randomly chosen from 30 unique male and
female speakers (each with a length of 1 s) were used as source
signals. In each environment, we considered BRIRs of two
head orientations for four source positions [23]. It should be
noted that the source and background noise signals, acoustic
conditions, and source positions used during evaluation were
different from those used during training and validation.

B. Implementation details

In our simulations, we used a sampling frequency f; =16 kHz
and an STFT framework with a Hann window of length K =160
(corresponding to 10 ms) and 50% overlap, resulting in 81 STFT
frequency bins. Each training example includes a block of L =20
consecutive time frames. For the PD feature computation, we
used a 4-th order GTFB implementation [18] with 61 frequency
subbands, a group delay of 256, and minimum and maximum
center frequency of 60 Hz and 7200 Hz. For PD features, we
chose N =180 fundamental period candidates corresponding to
minimum and maximum fundamental frequencies of 70 Hz and
320 Hz, respectively. The comb filter gain in (3) was chosen to be
a=0.7. We considered the front microphone of the left hearing

aid as the reference microphone for the PD feature extraction.
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Fig. 4: Accuracy and MAE of the proposed systems with narrow-
band feature combination evaluated against the baseline system
using only CPS features in static-source scenarios for different
SNR conditions in the cafeteria and courtyard environments.

All systems were implemented using PyTorch [27]. For all
CNNs, we used a 2D convolutional filter size of 3 x3 with a
stride size of 1 x 1. The max-pooling size was 2 x 1, i.e., no
pooling is applied across frequencies. In addition to the batch
normalization used in the convolutional and fully-connected
blocks of the CNNs, the layer normalization [28] was applied
on the CPS and PD features separately at the input. The CNNs
were trained using the Adam optimizer [29], a cross-entropy loss
function, an initial learning rate of 1075, a mini-batch size of
128 and a dropout rate of 0.5. An early stopping regularization
method on the validation loss and a variable learning rate
scheduler with a factor of 0.5 were also employed. A softmax
activation function is used at the output layer of all systems.

C. Performance measures

To evaluate the DOA estimation performance, we used mean
absolute error (MAE) and accuracy (Acc). A DOA estimate
in frame [ is considered accurate if the absolute error between
the estimated DOA él and the oracle DOA 6; is smaller than
5°. The MAE (in degrees) and accuracy are defined as

L
1 .
MAE=Y ’9 —g,, 5
£l:1 1 —0; (5)
EaCC
Ace= 1 6
cc 7 x 100, (6)

where £ and L,.. denote the total number of estimates and
the total number of accurate estimates, respectively.

D. Results and discussion

Fig. 4 shows the performance of all considered systems in
terms of accuracy and MAE. By comparing the proposed two-
stage CNN with PD feature reduction to the proposed system
without PD feature reduction, it can be observed that the two-
stage CNN generally results in a better or similar performance.
The benefit of using PD feature reduction is especially clear in
challenging acoustic conditions, i.e., in the highly-reverberant
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cafeteria environment and in adverse SNR conditions in both en-
vironments. Although in terms of accuracy this benefit decreases
with increasing SNR in the courtyard environment in favor of
the proposed system without feature reduction, the proposed
two-stage CNN maintains a lower MAE in all conditions.

The results in Fig. 4 clearly show that both proposed systems
consistently outperform the baseline system in both environments
and for all SNR conditions. This benefit decreases towards high
SNR conditions, which is expected as there are fewer signal
portions dominated by noise, which PD features can detect.

Considering the number of trainable parameters (cf.
Section IV-B), compared to the baseline system the proposed
two-stage CNN requires a comparable number of parameters
while achieving a better performance. Moreover, the proposed
two-stage CNN outperforms the proposed system without
feature reduction while requiring significantly fewer parameters.
This further highlights the benefit of employing the proposed
feature reduction stage before the joint processing of the
proposed narrowband feature combination.

VI. CONCLUSION

In this paper, we proposed two speech-aware DOA estimation
systems that use a combination of narrowband periodicity
features and spatial CPS features as inputs of a CNN. In
particular, we introduced a two-stage CNN with a periodicity
feature reduction stage employing 1 x 1 convolutions. Evaluation
results showed that the proposed systems yield a better DOA
estimation performance than a baseline system using CPS
features and a pitch-based VAD. While offering a lower
computational complexity, the proposed two-stage CNN with
feature reduction outperforms a system that jointly processes
the feature combination without feature reduction. This study
suggests that a feature reduction stage can effectively map the
sparse periodicity features into more compact salient periodicity
features, which combined with spatial features, provide robust
features to guide speech-aware DOA estimation.
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