
DEEP MULTI-FRAME MVDR FILTERING FOR BINAURAL NOISE REDUCTION

Marvin Tammen, Simon Doclo

Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all
University of Oldenburg, Germany

{marvin.tammen, simon.doclo}@uni-oldenburg.de

ABSTRACT

To improve speech intelligibility and speech quality in noisy en-
vironments, binaural noise reduction algorithms for head-mounted
assistive listening devices are of crucial importance. Several bin-
aural noise reduction algorithms such as the well-known binaural
minimum variance distortionless response (MVDR) beamformer
have been proposed, which exploit spatial correlations of both the
target speech and the noise components. Furthermore, for single-
microphone scenarios, multi-frame algorithms such as the multi-
frame MVDR (MFMVDR) filter have been proposed, which exploit
temporal instead of spatial correlations. In this contribution, we pro-
pose a binaural extension of the MFMVDR filter, which exploits both
spatial and temporal correlations. The binaural MFMVDR filters
are embedded in an end-to-end deep learning framework, where the
required parameters, i.e., the speech spatio-temporal correlation vec-
tors as well as the (inverse) noise spatio-temporal covariance matrix,
are estimated by temporal convolutional networks (TCNs) that are
trained by minimizing the mean spectral absolute error loss function.
Simulation results comprising measured binaural room impulses and
diverse noise sources at signal-to-noise ratios from -5dB to 20dB
demonstrate the advantage of utilizing the binaural MFMVDR fil-
ter structure over directly estimating the binaural multi-frame filter
coefficients with TCNs.

Index Terms— binaural noise reduction, multi-frame filtering,
supervised learning

1. INTRODUCTION

In many speech communication scenarios, head-mounted assistive
listening devices such as binaural hearing aids capture not only the
target speaker, but also ambient noise, resulting in a degradation of
speech quality and speech intelligibility. Hence, several binaural
noise reduction algorithms have been proposed, which typically as-
sume that adjacent short-time Fourier transform (STFT) coefficients
are uncorrelated over time. This assumption is suitable when consid-
ering sufficiently long frames and a small frame overlap. In that case,
the speech STFT coefficients at a left and right reference microphone
can be estimated by applying (complex-valued) single-frame binaural
filters to the available microphone signals. Several approaches have
been proposed to estimate these single-frame binaural filters, which
can be categorized into statistical model-based approaches (e.g., [1]–
[4]) and supervised learning-based approaches (e.g., [5]–[11]). While
the statistical model-based approaches can be mainly differentiated
w.r.t. their underlying optimization problem and how the required
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parameters are estimated, the supervised learning-based approaches
mainly differ in the used deep neural network (DNN) architecture and
loss function.

With the goal of exploiting temporal correlations between neigh-
boring STFT coefficients, multi-frame methods have been proposed
for both single- and multi-microphone noise reduction, which ap-
ply (complex-valued) multi-frame filters to the most recent noisy
STFT coefficients of each microphone. Similarly to the single-frame
methods mentioned above, several approaches have been proposed
to estimate these multi-frame filters, which can again be categorized
into statistical model-based approaches (e.g., [12], [13]) and su-
pervised learning-based approaches (e.g., [14]–[18]). In contrast to
the single-frame approaches, however, there is a lack of studies that
considered multi-frame approaches for binaural noise reduction.

Aiming at utilizing both spatial correlations as in the bin-
aural minimum variance distortionless response (MVDR) beam-
former [1], [3] and temporal correlations as in the multi-frame MVDR
(MFMVDR) filter [12], [16], we propose to extend the MFMVDR
filter to binaural listening scenarios. To implement the binaural
MFMVDR filter, estimates of the speech spatio-temporal correla-
tion vectors (STCVs) as well as the (inverse) noise spatio-temporal
covariance matrix (STCM) are required. Similarly as in [16], the
binaural MFMVDR filter is embedded in an end-to-end supervised
learning framework as shown in Fig. 1, where all required parameters
are estimated using temporal convolutional networks (TCNs) that
are trained using the mean spectral absolute error (MSAE) loss func-
tion [19]. Simulation results using measured binaural room impulse
responses from [20] as well as clean speech and noise from the third
Deep Noise Suppression Challenge (DNS3) [21] at signal-to-noise-
ratios (SNRs) from −5 dB to 20 dB show that the proposed deep
binaural MFMVDR filter outperforms directly estimating the single-
or multi-frame binaural filter coefficients using TCNs, i.e., without
exploiting the structure of the deep binaural MFMVDR filter.

2. SIGNAL MODEL

We consider an acoustic scenario with a single speech source and a
single noise source, both located in a reverberant room, recorded by
binaural hearing aids with M microphones. In the STFT domain, the
noisy microphone signals ym,f,t are given by

ym,f,t=xm,f,t+nm,f,t, (1)

where xm,f,t and nm,f,t denote the speech and noise components,
respectively, at the m-th microphone, the f -th frequency bin, and the
t-th time frame. Since all frequency bins are processed independently,
the index f will be omitted in the remainder of this paper.

In single-microphone multi-frame noise reduction algorithms [12],

978-1-6654-6867-1/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l W
or

ks
ho

p 
on

 A
co

us
tic

 S
ig

na
l E

nh
an

ce
m

en
t (

IW
A

EN
C

) |
 9

78
-1

-6
65

4-
68

67
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IW
A

EN
C

53
10

5.
20

22
.9

91
47

42



compute features
(16)

binaural MFMVDR
(10)

filter 
(5)

loss
(17)

+

trainablenon-trainable

Fig. 1. Block diagram of the proposed deep binaural MFMVDR filter.

[16], the noisy multi-frame vector ȳm,t∈CN is defined as

ȳm,t=
[
ym,t ... ym,t−N+1

]T, (2)

with ◦T denoting the transpose operator, such that (1) can be written
as ȳm,t = x̄m,t+ n̄m,t. In this case, using a complex-valued multi-
frame filter w̄m,t∈CN , the speech component xm,t is estimated as

x̂m,t=w̄H
m,tȳm,t, (3)

where ◦H denotes the conjugate transpose operator.
In multi-microphone multi-frame noise reduction algorithms [13],

[17], [18], the noisy multi-microphone multi-frame vector ym,t ∈
C

NM is defined as

yt=
[
ȳT
1,t ... ȳT

M,t

]T, (4)

such that (1) can be written as yt=xt+nt. Without loss of general-
ity, in this paper we consider the caseM=2, with one hearing aid per
side and one microphone per hearing aid, i.e., m∈ {L,R}, where L
and R denote the left and right side, respectively. In this case, using
(complex-valued) binaural multi-frame filters wm,t ∈C2N with 2N
taps each, the binaural speech components are estimated as

x̂m,t=wH
m,tyt. (5)

Assuming that the speech and noise components are spatio-temporally
uncorrelated, the noisy spatio-temporal covariance matrix (STCM)
Φy,t = E{yty

H
t } ∈ C

2N×2N , with E{◦} the expectation operator,
can be written as

Φy,t=Φx,t+Φn,t, (6)
where Φx,t and Φn,t are defined similarly as Φy,t.

In order to exploit speech correlations across successive time
frames, it has been proposed in [12] to decompose the (single-
microphone) multi-frame speech vector into a temporally correlated
and a temporally uncorrelated component. Similarly, the binaural
multi-frame speech vector xt can be decomposed into a spatio-
temporally correlated and a spatio-temporally uncorrelated compo-
nent w.r.t. the current left or the right speech STFT coefficient xm,t:

xt=γx,m,txm,t︸ ︷︷ ︸
correlated

+ x′
m,t︸︷︷︸

uncorrelated

(7)

The highly time-varying left or right speech spatio-temporal correla-
tion vector (STCV) γx,m,t ∈C2N describes the correlation between
theN most recent left and right speech STFT coefficients and the cur-
rent left or the right speech STFT coefficient xm,t, and it is defined as

γx,m,t=
E{xtx

∗
m,t}

E{|xm,t|2}
, (8)

where ◦∗ denotes the conjugate operator and with eTLγx,L,t =

eTRγx,R,t = 1. Here, eL and eR denote selection vectors with
their first or N +1-th element equal to 1, respectively, and the other
elements equal to 0.

3. DEEP BINAURAL MULTI-FRAME MVDR FILTER

Aiming at minimizing the output noise power spectral density while
leaving the correlated speech component undistorted, in [12] the
MFMVDR filter for single-microphone noise reduction has been
proposed. In this paper, we propose to extend the single-microphone
MFMVDR filter to binaural scenarios by considering the spatio-
temporal correlations of the speech and noise components for the left
and right side, i.e.,

argmin
wm,t

wH
m,tΦn,twm,t s.t. wH

m,tγx,m,t=1. (9)

Solving this optimization problem, the binaural MFMVDR filters are
given by

wMFMVDR
m,t =

Φ−1
n,tγx,m,t

γH
x,m,tΦ

−1
n,tγx,m,t

(10)

As has been shown for the single-microphone MFMVDR filter [22],
the performance of the (binaural) MFMVDR filter depends on how
well the required parameters, i.e., the inverse noise STCM as well as
the speech STCVs, are estimated from the noisy STFT coefficients.
In contrast to using statistical model-based estimators similar to [23],
we embed the binaural MFMVDR filter in an end-to-end supervised
learning framework similar to [16], with the parameters estimated
by TCNs (see Fig. 1). The TCNs are trained by minimizing the
MSAE loss function [19] computed at the output of the deep binaural
MFMVDR filter instead of providing explicit parameter labels. A-
priori knowledge about the properties of the estimated parameters is
exploited as described in the following two sections.

3.1. Speech Spatio-Temporal Correlation Vector

The left and right speech STCVs each are two 2N -dimensional
complex-valued vectors (cf. (8)), hence consisting of 8N real-valued
coefficients hRγ,t ∈ R8N (4N for the real part and 4N for the imag-
inary part). To estimate these real-valued coefficients, we propose
to use a TCN fθγ with parameters θγ , which is fed input features it
derived from the noisy STFT coefficients, i.e.,

ĥRγ,t= fθγ{it}, (11)



with the features it defined in (16). To construct a 4N -dimensional
complex-valued vector ĥCγ,t from the 8N -dimensional real-valued
vector ĥRγ,t, the first 4N elements of ĥRγ,t are used for the real com-
ponents and the second 4N elements are used for the imaginary
components, i.e.,

ĥCγ,t=[ĥRγ,t]0:4N−1+j [ĥRγ,t]4N :8N−1, (12)

where j2 = −1. To ensure that the first or N +1-th element of the
speech STCVs is equal to 1 (cf. (8)), the speech STCVs are finally
obtained as

γ̂x,L,t=
[ĥCγ,t]0:2N−1

eTL[ĥ
C
γ,t]0:2N−1

, γ̂x,R,t=
[ĥCγ,t]2N :4N−1

eTR[ĥ
C
γ,t]2N :4N−1

. (13)

3.2. Spatio-Temporal Covariance Matrices

Since the 2N ×2N -dimensional STCM Φn,t can be assumed to be
Hermitian positive-definite, also its inverse Φ−1

n,t as required in (10)
can be assumed to be Hermitian positive-definite. Hence, Φ−1

n,t has a
unique Cholesky decomposition [24]:

Φ−1
n,t=LtL

H
t , (14)

withLt∈C2N×2N a lower triangular matrix with positive real-valued
diagonal. Due to its structure, L is determined by (2N)2 real-valued
coefficients. Similarly to the procedure for estimating the speech
STCVs, we use a TCN fθΦ with parametersθΦ, which is fed input fea-
tures it, to estimate these real-valued coefficients ĥRΦ,t∈R(2N)2 , i.e.,

ĥRΦ,t= fθΦ{it}. (15)

Using ĥRΦ,t, the lower triangular matrix with positive real-valued
diagonal L̂t is assembled. Finally, an estimate of Φ−1

n,t is obtained
using (14) by replacing Lt with its estimate L̂t.

4. SIMULATIONS

In this section, the binaural noise reduction performance of the pro-
posed deep binaural MFMVDR filter is compared with a number of
baseline algorithms, which are described in Section 4.1. Sections
4.2 and 4.3 deal with the used datasets and the simulation settings,
respectively. In Section 4.4, the simulation results are presented in
terms of the perceptual evaluation of speech quality (PESQ) [25] and
frequency-weighted segmental SNR (FWSSNR) [26] improvement.

4.1. Baseline Algorithms

The following baseline algorithms have been considered to allow
investigating the effect of not using vs. using the proposed deep
binaural MFMVDR structure for binaural multi-frame filtering. To
achieve this goal, for the baseline algorithms the binaural multi-frame
filters in (5) are not obtained using the binaural MFMVDR structure.
Instead, the real and imaginary components of the baseline binaural
multi-frame filters are directly estimated by a TCN, i.e., without the
intermediate steps of speech STCVs and inverse noise STCM estima-
tion and computation of (10). In addition, we investigate the effect of
binaural single-frame vs. binaural multi-frame filtering. More specif-
ically, we use the following end-to-end supervised learning-based
baseline algorithms:

direct binaural single-frame filtering With N =1 and wB1
m,t∈C2,

only spatial filtering is performed. The filter coefficients
are estimated using a TCN fB1 with parameters θB1, i.e.,
wB1

m,t = fB1{it}. The real and imaginary parts of the filter
coefficients wB1

m,t are bounded to [−1,1] using a hyperbolic
tangent activation function.

direct binaural multi-frame filtering With N = 3 and wB2
m,t ∈

C
2N , both spatial and temporal filtering are performed. The

filter coefficients are estimated using a TCN fB2 with param-
eters θB2, i.e., wB2

m,t = fB2{it}. The real and imaginary parts
of the filter coefficients wB2

m,t are bounded to [−1, 1] using
a hyperbolic tangent activation function. These bounds are
motivated by [14].

4.2. Dataset

To train and validate the considered algorithms, we used simulated
binaural room impulse responses (BRIRs) from the training subset
of the first Clarity Enhancement Challenge (CEC1) dataset [27] as
well as clean speech (English read book sentences) and noise from
the training subset of the third Deep Noise Suppression Challenge
(DNS3) dataset [21]. These BRIRs were simulated by considering a
randomly positioned directed speech source and an omnidirectional
noise point source captured by binaural behind-the-ear hearing aids
in randomly sized rooms with ”low to moderate” reverberation, i.e.,
around 0.2 s to 0.4 s. The speech source was always located at an
angle within ±30◦ w.r.t. the listener, while the noise source could
be positioned everywhere in the room except for less than 1m from
the walls or the listener. Surface absorption coefficients were varied
to simulate various room characteristics such as doors, windows,
curtains, rugs, or furniture. In total, 6000 room configurations were
considered. Clean speech and noise were convolved with their corre-
sponding BRIRs before being mixed at better ear SNRs from 0 dB to
15 dB. In total, the training and validation datasets have a length of
80 h and 20 h, respectively.

To evaluate the considered algorithms, we used measured BRIRs
from the dataset proposed in [20] as well as clean speech and noise
from the official test subset of the deep noise suppression (DNS)
dataset [28]. The dataset in [20] comprises BRIRs measured with
binaural behind-the-ear hearing aids “for multiple, realistic head and
sound-source positions in four natural environments reflecting daily-
life communication situations with different reverberation times”.
The configuration of these hearing aids matches the configuration
considered in the training and validation datasets. Clean speech and
noise were convolved with the BRIRs before being mixed at better ear
SNRs from −5 dB to 20 dB. In total, 100 utterances, each of length
10 s, were considered in the evaluation. Especially due to the use
of simulated vs. measured BRIRs, there is considerable mismatch
between the training and validation datasets on the one hand and the
evaluation dataset on the other hand. All datasets were used at a
sampling frequency of 16 kHz.

4.3. Settings

For the STFT,
√

Hann windows with a relatively small frame length
of 8ms and 75% overlap were used in order to increase speech in-
terframe correlations. As input features, we used a concatenation of
the logarithmic magnitude, the cosine of the phase, and the sine of the
phase, of the noisy left and right STFT coefficients, i.e.,

im,t=
[
log10|ym,t| cos(̸ ym,t) sin( ̸ ym,t)

]T
it=

[
iTL,t iTR,t

]
]T, (16)



where ̸ ◦ denotes the phase of ◦. Note that both the cosine and
sine of the noisy phase are chosen to prevent an ambiguous phase
representation.

The multi-frame algorithms use N = 5 frames, resulting in
the capability of exploiting temporal correlations within 16ms. To
decrease distortion of the speech and residual noise components, a
minimum gain of −20 dB was included in all algorithms.

To estimate the required parameters of the deep binaural MFMVDR
filter or the filter coefficients of the baseline algorithms, we used
causal TCNs, with their hyperparameters fixed to 2 stacks of 6 layers,
yielding a temporal receptive field size of 512ms. Since the deep bin-
aural MFMVDR filter uses two TCNs and the number of real-valued
coefficients differs per considered algorithm, the hidden dimension
size of the TCNs was varied per algorithm to result in similar numbers
of trainable weights for all algorithms, i.e., 6.2× 106. While also
the other hyperparameters could have been varied to this end, only
varying the hidden dimension size results in TCNs with the same tem-
poral receptive field size, which is required for a fair comparison. To
prevent division by 0, a small constant was added to the denominator
in (13).

As loss function, the MSAE proposed in [19] was used, where the
loss was averaged across the batch, the left and right output signals,
and the frequency bins and time frames, i.e.,

Lb,m,f,t=β|xb,m,f,t−x̂b,m,f,t|+(1−β)||xb,m,f,t|−|x̂b,m,f,t||

L=
1

2BFT

B−1∑
b=0

∑
m∈{L,R}

F−1∑
f=0

T−1∑
t=0

Lb,m,f,t, (17)

where B denotes the batch size, F and T denote the numbers of
frequency bins and time frames in an utterance, and β=0.4 [19].

The TCNs were implemented based on the official Conv-TasNet
implementation1, and they were trained for a maximum of 150 epochs
with early stopping using the AdamW optimizer [29]. The learning
rate was initialized as 3 × 10−4, and it was halved after 3 epochs
without an improvement on the validation dataset. Gradient ℓ2-norms
were clipped to 5, and the batch size was 8.

The simulations were implemented using PyTorch 1.10 [30] and
performed on NVIDIA GeForce®RTX A5000 graphics cards. A
PyTorch implementation of the compared algorithms as well as the
model weights used in the evaluation will be made publicly available
upon publication.

4.4. Results

For all considered algorithms, Fig. 2 depicts the improvement in
terms of PESQ and FWSSNR w.r.t. the noisy microphone signals on
the evaluation dataset. Note that, similarly as for the MSAE loss func-
tion in (17), PESQ and FWSSNR improvements are simply averaged
across the left and right output signals [10].

First, a considerable improvement in terms of PESQ and FWSSNR
can be observed for all algorithms, with the deep binaural MFMVDR
filter outperforming the baseline algorithms. Second, comparing the
baseline algorithms, it can be observed that increasing the degrees of
freedom of the filter, i.e., by allowing for a binaural multi-frame vs.
a binaural single-frame filter, improves binaural noise reduction per-
formance. Third, by enforcing the binaural MFMVDR structure on
the binaural multi-frame filter, binaural noise reduction performance
is further increased.

1https://github.com/naplab/Conv-TasNet

Fig. 2. Mean and standard deviation of the PESQ and FWSSNR im-
provements obtained on the evaluation dataset. The mean noisy PESQ
score is 1.74MOS and the mean noisy FWSSNR score is 14.08 dB.

Audio examples for the compared algorithms are available on-
line2.

5. CONCLUSION

In this paper we proposed a binaural extension of the MFMVDR filter,
which is capable of utilizing both spatial and temporal correlations of
the speech and noise components. To estimate the speech STCVs as
well as the inverse noise STCM required by the binaural MFMVDR
filter, we use TCNs, which are trained by embedding the binaural
MFMVDR filter in an end-to-end supervised learning framework
and minimizing the MSAE loss function. Simulations comprising
measured binaural room impulse responses as well as diverse noise
sources at SNRs in −5 dB to 20 dB demonstrate the advantage of
binaural multi-frame filtering over binaural single-frame filtering as
well as employing the binaural MFMVDR structure over directly
estimating the single- or multi-frame binaural filters using TCNs.
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équations normales provenant de l’application de la méthode
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