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ABSTRACT

The objective of binaural multi-microphone speech enhancement al-
gorithms can be viewed as a multi-criteria design problem as there
are several requirements to be met. When applying distortionless
beamforming, it is necessary to suppress interfering sources and am-
bient background noise, and to extract an undistorted replica of the
target source. In the binaural versions, it is also important to pre-
serve the binaural cues of the target and the interference sources. In
this paper, we propose a unified Pareto optimization framework for
binaural distortionless beamformers, which is achieved by defining
a multi-objective problem (MOP) to control the amount of interfer-
ence suppression and noise reduction simultaneously. The derivation
is given for the multi-interference case by introducing separate mean
squared error (MSE) cost functions for each of the respective inter-
ference sources and the background noise. A Pareto optimal set of
solutions is provided for any set of parameters. The performance of
the proposed method in a noisy and reverberant environment is pre-
sented, demonstrating the impact of the trade-off parameters using
real-signal recordings.

Index Terms— MVDR beamforming, Pareto optimization, bin-
aural cues, noise reduction, hearing aids.

1. INTRODUCTION

Binaural hearing aid devices consisting of a hearing aid mounted
on each ear of a hearing-impaired person, are known to outperform
their monaural counterparts in terms of noise reduction performance
and their capability to preserve the binaural cues and, consequently,
the spatial impression of the acoustical scene [1]. For directional
sources, preservation of the interaural level difference (ILD) and the
interaural time difference (ITD) cues can be achieved by preserving
the so-called relative transfer function (RTF), which is defined as the
ratio of the acoustical transfer functions relating the source and the
two ears.

In the last decade, several binaural speech enhancement algo-
rithms that aim to preserve the binaural cues have been developed
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. If the target needs to be processed
without distortion, the binaural minimum variance distortionless re-
sponse (BMVDR) beamformer can be applied [13, 5]. However, a
major drawback of the BMVDR beamformer is that the binaural cues
of the noise are not preserved. To control both the suppression and
the binaural cue preservation of directional interfering sources, the
binaural linearly constrained minimum variance (BLCMV) beam-
former was proposed in [4, 10]. In the BLCMV criterion, a hard con-
straint controlling the amount of interference reduction was added to
the BMVDR cost function. It was shown that the BLCMV beam-

former is able to preserve the binaural cues of both the target and in-
terfering sources. Several extensions of the BLCMV were proposed
in [5, 7, 11, 12], for controlling the binaural cue preservation of both
the target and interfering sources. The objective of the speech en-
hancement algorithm can be viewed as a multi-criteria design prob-
lem as there are several requirements to be met: extraction of the tar-
get speaker without distortion and suppression of interfering sources
and ambient background noise, while preserving the binaural cues
of both the target and the undesired sound sources.

In this paper, we propose a unified Pareto optimization frame-
work for the aforementioned binaural distortionless beamformers,
which is achieved by defining a MOP to simultaneously control the
amount of interference suppression and noise reduction. The deriva-
tion is given for the multi-interference case by introducing a separate
MSE cost function for each of the respective interference sources and
the background noise. Under this new formulation, a set of Pareto
optimal solutions is given, instead of a single solution that optimizes
a specific objective. In addition, we provide two types of trade-off
parameters, namely, scaling and weighting parameters. The scaling
parameter determines the respective MOP to be optimized, while the
weighting parameters are used to select a preferred solution from a
set of Pareto optimal solutions in a, so called, decision-making pro-
cedure.

The proposed MOP takes into account interference reduction
(IR) and noise reduction (NR) cost functions, such that the opti-
mization does not consider binaural cue preservation as an explicit
requirement. The cue preservation is determined by the controlling
parameter. Specific parameter setting can lead to binaural cue preser-
vation as a by-product, e.g., the setting of an identical scaling param-
eters for both the left and right filters, and the preferred solution on
the optimal Pareto frontier can be selected in the aforementioned
decision-making procedure. The Pareto formulation of the binaural
multichannel Wiener filter (MWF), in the case of a single interfer-
ence source, is introduced in [14].

2. PROBLEM FORMULATION

We consider an acoustic scenario comprising a single target speaker
and Nu competing interference speakers in a noisy and reverber-
ant environment. The binaural hearing device, consists of two hear-
ing aids equipped with M = ML + MR microphones (i.e., ML

microphones on the left hearing aid and MR microphones on the
right hearing aid). All microphone signals can be stacked in the M -
dimensional vector y (ω) in the frequency domain as

y (ω) = x (ω) +

Nu∑
i=1

ui (ω) + n (ω) = x (ω) + v (ω) , (1)
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with

y (ω) =
[
yL
1 (ω) , . . . , yL

ML
(ω) , yR

1 (ω) , . . . , yR
MR

(ω)
]T

, (2)

x (ω) the target source component, ui (ω) the ith interfering source
component, n (ω) the additional background noise, and v (ω) =∑Nu

i=1 ui (ω) + n (ω) the overall noise component. x (ω), ui (ω),
n (ω), and v (ω) are defined similarly to y (ω). The variable ω
is henceforth omitted for brevity. We can further write x = Sxa
and ui = Si

ubi, where Sx and Si
u are the target and the ith inter-

fering source signals and a and bi are the acoustic transfer func-
tions (ATFs) relating the target and the ith interfering source posi-
tions and the microphones, respectively. Assuming the directional
sources and the noise are uncorrelated, the spatial correlation matrix
of the noisy microphone signals can be written as

RY = RX +

Nu∑
i=1

Ri
U +RN , (3)

where RX = E
{
xxH

}
= PXaaH , Ri

U = E
{
uiu

H
i

}
=

P i
Ubib

H
i , and RN = E

{
nnH

}
are the target source, the ith in-

terfering source, and the noise correlation matrices, respectively.
E{·} denotes the expectation operator and PX = E

{
|Sx|2

}
and

P i
U = E

{
|Si

u|2
}

denote the power spectral densities (PSDs) of the
target source and the ith interfering source, respectively. Without
loss of generality, the first microphone on the left and the right
hearing aid are selected as the reference microphones, i.e.,

zL(t, k) = eH
L y(t, k), zR(t, k) = eH

Ry(t, k), (4)

where eL and eR are M -dimensional vectors with ‘1’ in the left
and right reference microphones, and ‘0’ elsewhere. The out-
put signals at the left and the right hearing devices are given by
zL = wH

L y and zR = wH
Ry, respectively, where wL and wR

denote M -dimensional complex-valued weight vectors. Further-
more, we define the 2M -dimensional stacked weight vector as
w =

[
wL wR

]T .
The input RTFs of the target and the ith interfering source be-

tween the reference microphones on the left and the right hearing aid
are defined as the ratio of the ATFs, i.e.,

RTFX,IN =
aL

aR
, RTFU,IN =

bi,L
bi,R

. (5)

The output RTFs of the target source and the ith interfering source
are defined as the ratio of the filtered components on the left and the
right hearing aid, i.e.,

RTFX,OUT =
wH

L a

wH
Ra

, RTFU,OUT =
wH

L bi
wH

Rbi
. (6)

The binaural ILD and ITD cues can be computed from the complex-
valued frequency-dependent RTF, i.e., [15]

ILD = 20 log10(|RTF|), ITD =
∠(RTF)

ω
, (7)

with ∠ denoting the phase.

3. THE MULTI OPTIMIZATION PROBLEM

In this section, the multi objective problem is described. First, the
mathematical foundations of the MOP are derived for the distortion-
less family of binaural beamformers. Then, the filter decomposition
is derived, constituting a Pareto optimal set of distortionless filters
solving the MOP.

3.1. Pareto Binaural MVDR MOP

In this section, we will introduce a family of binaural distortionless
beamformers that are able to extract the target source without dis-
tortion such that they preserve the binaural cues of the target source.
These beamformers must satisfy the following constraint set for the
target source

{w ∈ CM : wH
L a = aL,w

H
Ra = aR}. (8)

The traditional BMVDR reproduces the target source component
without distortion, while minimizing the overall noise power, i.e.,

min
w

E

{∥∥∥∥[ wH
L v

wH
Rv

]∥∥∥∥2
}

s.t. wH
L a = aL,w

H
Ra = aR. (9)

This single-objective problem (SOP) leads to a unique optimal filter.
In the BMVDR all sound sources are perceived as arriving from the
target direction. Therefore, the RTF of the interfering source is typi-
cally distorted, which is clearly an undesired phenomenon, since the
spatial impression of the acoustic scene is altered. To suppress the
interfering source, while preserving its RTF, several SOP extensions
of the BMVDR were proposed in [5, 10, 11].

In the current study, we take a different perspective of the prob-
lem, in which multiple cost functions are simultaneously minimized,
i.e., the interference suppression for each of the interfering sources
and the noise reduction are separately controlled. The MOP can be
formulated as

minPareto
w

CPareto(w) (10)

with

CPareto(w) = [J1(w), · · · , JI(w)]

s.t. wH
L a = aL,w

H
Ra = aR, (11)

where the IR term Ji(w), for the ith interfering source is defined as

Ji(w) = E

{∥∥∥∥[ ηiui,L −wH
Lui

ηiui,R −wH
Rui

]∥∥∥∥2
}
, (12)

for i = 1, . . . , Nu, Nu = I − 1 and ηi is defined as the interference
scaling parameter for each interference source. In general, we limit
0 ≤ ηi ≤ 1, such that the parameter controls the amount of IR for
each respective interfering source. Note that, in order to preserve the
binaural cues of the interference sources, in this study the same value
was set for both the left and the right filters. Nevertheless, different
values can be set [16]. The last element in C(w) is defined as the
NR term JI(w) = Jn(w) where

Jn(w) = E

{∥∥∥∥[ wH
Ln

wH
Rn

]∥∥∥∥2
}
. (13)

The Pareto cost function C(w), defined in (11), is an I = Nu + 1
vector-valued global objective function such that it represents a set
of criteria. Each element in C(w) is associated with a different local
single cost function.

Note that, in an ideal situation, where there is a unique filter
that minimizes all criteria, a single solution is obtained, as in the
SOP case. The notion of Pareto optimality becomes of paramount
importance in cases where a unique solution is not feasible. In these
cases, a set of Pareto-optimal solutions that comprises all solutions
that individually minimize each cost function as well as the solutions



that trade-off these cost functions is obtained. The Pareto optimality
can be formulated as follows.

Definition 1: A filter solution w∗ ∈ W is Pareto optimal solu-
tion iff there does not exist another filter solution w ∈ W , such that
Ji(w) ≤ Ji(w

∗) for all i = 1, 2, . . . , I and Jj(w) < Jj(w
∗) for

at least one index j (cost function).
Definition 2: All the Pareto optimal filter solutions solve the

MOP and lie on the boundary of the feasible criterion space [17].
The set of Pareto solutions constitutes the Pareto frontier.

A filter is a Pareto optimal solution if no other filter exists that
improves at least one cost function without leading to a degradation
in another cost function. We note that there may be an infinite num-
ber of optimal solutions in the Pareto optimal set.

3.2. Pareto filter decomposition

The Pareto set of solutions can be obtained by various means. We use
the so-called scalarization method, as described in [18], to compute
the Pareto optimal set. For this technique, the set of optimal Pareto
solutions is calculated by optimizing a single-objective, generalized
cost function, defined as a weighted sum of the local cost functions,
i.e.,

J(w) = λ1J1(w) + . . .+ λIJI(w)

s.t.
I∑

i=1

λi = 1, wH
L a = aL,w

H
Ra = aR, (14)

where 0 < λi, i = 1, 2, . . . , I are defined as the weighting param-
eters that provide a trade-off between the local cost function terms.
The minimization of the single-objective generalized cost function
J(w) is sufficient for finding a Pareto optimal solution if J(w) in-
creases monotonically with respect to each cost function [19], such
that any filter that solves the generalized cost function lies on the
Pareto frontier.

Now, having a set of Pareto optimal solutions, a subsequent
decision-making procedure is needed to obtain a selected filter from
the Pareto optimal set [20]. This can be achieved based on consid-
erations that are independent of the MOP by setting the weighting
parameters. It is attractive to collect all the optimal solutions in the
Pareto set since it makes the decision making process less complex.
Otherwise, we would get only solutions for a single point that cannot
be easily compared with other optimal solutions.

The filters minimizing the cost function in (14) can be computed
as:1

wL = R−1
λ rL +R−1

λ C
[
CHR−1

λ C
]−1 (

gL −CHR−1
λ rL

)
wR = R−1

λ rR +R−1
λ C

[
CHR−1

λ C
]−1 (

gR −CHR−1
λ rR

)
(15)

with

Rλ =

Nu∑
u=1

λuR
u
U + λnRN , Rη =

Nu∑
u=1

λuηuR
u
U (16)

with λn = λI and rL = RηeL and rR = RηeR. The left and right
constraint sets are given by

CHwL = gL, CHwR = gR, (17)

1The derivation can be extended to any number of constrained sources,
e.g., for multi-target sources, and constrained multi-interference sources, by
extending the constraint sets accordingly.

where C denotes the constraint matrix, and gL and gR denote the left
and right desired vectors, respectively. For the single distortionless
target source beamfomer, the constraint matrix C and the left and
the right desired vectors gL and gR are given by

C = a, gL = a∗
L, gR = a∗

R. (18)

The set of filters are referred to as the Pareto-BMVDR.
There are two types of trade-off parameters, the η-based scaling

parameters and the λ-based weighting parameters. The scaling pa-
rameters, which control the respective ith interference suppression,
define a family of MOPs such that these parameters determine the re-
spective required IR while the weighting parameters are responsible
for selecting the preferred filter from a set of Pareto solutions.

4. SIMULATIONS WITH NOISY SPEECH SIGNALS

In this section, experimental performance evaluation is provided
considering one target source and two interference sources in a
noisy and reverberant environment. The evaluation demonstrates
the impact of the trade-off parameters on various performance mea-
sures, i.e., in terms of the binaural signal-to-interference-and-noise
ratio (SINR), signal-to-noise ratio (SNR), and signal-to-interference
ratio (SIR) improvements and the binaural cue preservation capabil-
ities.

All experiments were carried out using Oldenburg database [21].
Each of the hearing aids is equipped with two microphones. Binau-
ral Behind-the-Ear Impulse Responses (BTE-IRs) measured on an
artificial head in a cafeteria were used to generate the signal compo-
nents. The target and the first and second interfering sources were
located at 135◦ and a distance of 129 cm, −90◦ and a distance of
52 cm, and −45◦ and a distance of 117.5 cm, respectively. Back-
ground ambient noise recorded in the Oldenburg cafeteria was added
to the speech components. The sampling frequency was 16 kHz.
The signals were processed in the STFT domain with 1024 points
and 50% overlap. The input SIR and SNR were set to 10 dB and
6 dB, respectively. For the estimation procedure, training segments
were used. The correlation matrices of the target and interference
sources were estimated during non-concurrent activity of the tar-
get and interference speakers. The correlation matrix of the noise
was estimated during a segment in which none of the speech sources
was active. The target and the ith interfering source RTF vectors
were estimated by picking the major generalized-eigenvectors of the
generalized eigenvalue decomposition (GEVD) of the target and the
respective ith interfering source correlation metrics and the noise
correlation matrix.

We define the input and output narrow-band SINR as the ratio of
the average input and respectively, output PSDs of the target source
and the overall noise components in the left and the right hearing
aids, i.e., [5]

SINRin =
eH
LRXeL + eH

RRXeR

eH
LRV eL + eH

RRV eR
, (19)

SINRout =
wH

LRXwL +wH
RRXwR

wH
LRV wL +wH

RRV wR
. (20)

The binaural input and output SINR are defined as the average of
the narrow-band binaural input and, respectively, the output SINR
in dB over all frequencies.The SINR improvement is calculated as
the difference between the binaural output SINR and binaural in-
put SINR. The binaural SIR and SNR improvements are similarly
defined by substituting the overall noise signal with the interfer-
ence/background noise signal, respectively. In terms of binaural



cues, we define the narrow-band ILD and ITD errors as the abso-
lute values of the difference between the input ILD and ITD and the
output ILD and ITD (cf. (7)). The ILD and ITD errors are defined as
the narrow-band ILD and ITD errors averaged over all frequencies.

The same interference scaling parameter ηu = η1 = η2 was
used for both interfering sources. The performance measures are ex-
amined as functions of the interference weighting parameter λu =
λ1 = λ2 with λn = 1 − 2λu for various interference scaling pa-
rameter values (i.e., ηu equal to [ 0, 0.1, 0.2]).
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(a) Binaural SINR improvement
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(b) SNR and SIR improvement

Fig. 1: Dependence of binaural SINR improvement (a) and binaural
SIR and SNR improvement (b) on interference weighting parameter
λu.

Figure 1 depicts the binaural SINR improvement, the binaural
SIR improvement, and the binaural SNR improvement performance
measures as functions of the interference weighting parameter λu.
As the value of the interference weighting parameter λu increases,
the relative importance of the IR term becomes larger such that, on
the one hand, the binaural SNR improvement decreases and, on the
other hand, the SIR improvement increases. The SINR improvement
peaks at approximately λu = 0.35. This result is expected since
the SINR improvement trades off interference reduction and noise
reduction. As the interference scaling parameter ηu increases, both
the SIR improvement and SINR improvement decreases since the
MOP condition can be more easily met if a lower IR is required.

Figure 2 depicts the interference binaural cues as a function of
the interference weighting parameter λu. As the value of the inter-
ference weighting parameter λu increases, the interference binaural
cue errors for both sources decrease. As the interference scaling pa-
rameter ηu increases, the interference binaural cue errors for both
sources decrease. It is evident that for ηu equal to zero, the impact
of the weighting parameter λu on the interference binaural cue errors
is negligible.

5. DISCUSSION AND CONCLUSION

In this paper, we propose a unified Pareto optimization framework
for binaural distortionless beamformers, in the presence of multi-
interference signals in a noisy reverberant environment. To suppress
the interfering source while preserving its RTF, several SOP exten-
sions of the BMVDR were proposed in [5, 10, 11]. In the current
study, the problem is considered from a different perspective. The
approach here is to minimize simultaneously multiple cost functions,
i.e., to separately control the interference suppression for each of the
interfering sources and the noise reduction.

The proposed framework provides a different perspective for
solving the binaural problem. We provide a procedure with two sub-
tasks. First, a set of Pareto optimal solutions is provided, rather than
an SOP solution, as obtained when one optimizes a single cost func-
tion. All solutions in the obtained set are equally optimal. Then,
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(a) Interference 1 ILD error
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(c) Interference 2 ILD error
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Fig. 2: Dependence of interference sources’ binaural cues on inter-
ference weighting parameter λu.

in the second sub-task, the most preferred solution out of the opti-
mal Pareto set is selected by setting the controlling parameters in a
decision-making procedure. The trade-off parameters can be set in
accordance with various considerations, e.g., those that are based on
a required interference/noise reduction and those that are based on
interference binaural cue preservation. In this study, the interference
sources’ binaural cue preservation is not an explicit part of the MOP.
However, it is impacted by the parameters in the application of the
algorithm.

The novel approach can be easily extended by introducing addi-
tional cost functions to the respective Pareto MOP (e.g., by adding
multi-target and explicit RTF cost functions to the MOP).
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