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ABSTRACT
Aiming at estimating the direction of arrival (DOA) of a
desired speaker in a multi-talker environment using a mi-
crophone array, in this paper we propose a signal-informed
method exploiting the availability of an external microphone
attached to the desired speaker. The proposed method ap-
plies a binary mask to the GCC-PHAT input features of
a convolutional neural network, where the binary mask is
computed based on the power distribution of the external
microphone signal. Experimental results for a reverberant
scenario with up to four interfering speakers demonstrate that
the signal-informed masking improves the localization accu-
racy, without requiring any knowledge about the interfering
speakers.

Index Terms— signal-informed, source localization,
GCC-PHAT, binary masking, external microphone

1. INTRODUCTION

In the last decades, a wide range of direction of arrival
(DOA) estimation methods using microphone arrays have
been proposed, ranging from correlation-based approaches,
e.g., exploiting the generalized cross-correlation (GCC) [1,2],
beamforming-based approaches, e.g., steered response power
with phase transform (SRP-PHAT) [3] or diagonal unload-
ing [4], subspace-based approaches [5] to approaches based
on deep neural networks (DNNs) [6–12]. A specific problem
is the localization of a single desired speaker in a multi-
talker scenario. Without any knowledge about the desired
speaker, calculating a reliable DOA estimate is obviously a
challenge [13]. The sparse nature of speech – temporally as
well as spectrally – may provide a valuable leverage point.
Several authors have proposed the use of masking to guide
the DOA estimation towards a desired speaker [7, 8, 10, 11].

In this paper we assume the availability of an external mi-
crophone close to the desired speaker (see Fig. 1), which is
exploited as an additional source of information (similarly as
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Fig. 1. Scenario with one desired speaker and two interfering
speakers. The external microphone is attached to the desired
speaker we would like to localize.

in [14, 15]). For example, one could consider a classroom
scenario where the teacher (desired speaker) wears a micro-
phone, e.g. to support a student with hearing disabilities, and
the objective is to localize the teacher in the presence of mul-
tiple interfering speakers (students). We propose to utilize
the power distribution from the external microphone signal to
compute a binary mask that is applied to the input features of
a DNN to calculate a signal-informed DOA estimate for the
desired speaker. The algorithm is evaluated under reverber-
ant conditions with a single desired speaker in a multi-talker
environment. Results demonstrate that the signal-informed
masking improves the localization accuracy, without requir-
ing any knowledge about the acoustic scenario.

2. SIGNAL MODEL

We consider a reverberant scenario with one desired speaker,
J interfering speakers, and a small amount of background
noise. The speech signals are captured by a microphone
array with M microphones and an external microphone
close to the desired speaker (see Fig. 1). In the frequency
domain, the desired speech signal is denoted by D(ω),
while the m-th microphone signal and the external micro-
phone signal are denoted by Ym(ω) and E(ω), respectively.
The (M+1)-dimensional vector of all microphone signals
Y(ω) = [Y0(ω), Y1(ω), ..., YM−1(ω), E(ω)]T , where (·)T
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denotes transpose, can be written as

Y(ω) = D(ω)HD(ω) +

J∑
j=1

Ij(ω)Hj(ω) + V(ω), (1)

where HD(ω) denotes the vector of acoustic transfer func-
tions between the desired speaker and the microphones, Ij(ω)
denotes the j-th interfering speech signal, Hj(ω) denotes the
vector of acoustic transfer functions between the j-th interfer-
ing speaker and the microphones and V(ω) denotes the back-
ground noise.

3. SIGNAL-INFORMED DOA ESTIMATION
EXPLOITING AN EXTERNAL MICROPHONE

The proposed algorithm uses time-domain generalized cross-
correlation with phase transform (GCC-PHAT) [1] features as
input to a convolutional neural network. We exploit the exter-
nal microphone signal to generate a binary mask that is ap-
plied to the input features. The DOA estimation is formulated
as a multi-class classification task with C=72 classes repre-
senting a set of DOAs with 5° resolution in the horizontal
plane. For each audio frame a set of GCC-PHAT features is
calculated and a DOA estimate is produced. Figure 2 depicts
an overview of the algorithm. The remainder of this section
is divided into three parts. In Section 3.1 the input features
are described. In Section 3.2 we explain how the external mi-
crophone signal can be used to compute a mask and guide
the DOA estimation towards the desired speaker. Finally, in
Section 3.3, the DNN architecture is presented.

3.1. Input Features

As input features to the DNN we use the well-known GCC-
PHAT. The GCC-PHAT between microphones k and l at time
lag τ is defined as

γk,l(τ) = F−1
{
Yk(ω) · Y ∗l (ω)
|Yk(ω) · Y ∗l (ω)|

}
(2)

where (·)∗ denotes complex conjugation andF−1 denotes the
inverse Fourier Transform. Through the PHAT weighting, the
GCC-PHAT only depends on the phase difference between
the microphone signals, i.e.

γk,l(τ) = F−1
{
eiφk,l(ω)

}
(3)

= F−1
{
ei·(arg {Yk(ω)}−arg {Yl(ω)})

}
(4)

and not on the magnitude spectrum of the sound source.
In practice, we limit the time lag τ to the interval [−τmax,
τmax−1], where τmax is an integer number of samples which
depends on the maximum inter-microphone distance of the
array. Considering all possible microphone combinations

Fig. 2. Block diagram of the signal-informed DOA estimation
algorithm

(including k=l), a complete GCC-PHAT feature map has di-
mensions M × M × (2τmax). The fact that every source
direction results in a distinct GCC-PHAT pattern inspires the
usage of a DNN for image classification (see Section 3.3).

3.2. Signal-informed Masking

To guide the algorithm towards localizing the desired speaker
in a multi-talker scenario, we propose to utilize the informa-
tion from the external microphone. Since the external micro-
phone is assumed to be close to the desired speaker, its power
relative to the other speakers can be assumed to be large in
the external microphone signal. We propose to generate a bi-
nary mask by comparing the magnitude of the time-aligned
external microphone signal |E(ω)| to a threshold, i.e.

M(ω) =

{
1 |E(ω)| ≥ Px(|E(ω)|)
0 else (5)

where Px(|E(ω)|) denotes the x-th percentile of |E(ω)|. It
should be noted that to compute the mask M(ω), no knowl-
edge about the interfering speakers nor the noise is required.
Similar to [11], where a binary mask was applied to raw in-
put phases, we propose to apply the binary mask in (5) to the
phase differences and add random noise, i.e.

φ̃k,l(ω) =M(ω) · (arg {Yk(ω)} − arg {Yl(ω)})+
(1−M(ω)) · U(ω), (6)

which are then used to compute an informed GCC-PHAT

γ̃k,l(τ) = F−1
{
ei·φ̃k,l(ω)

}
. (7)

Directly multiplying the mask with the phase differences, i.e.
setting x percent of the phase bins to zero, would result in
a biased source direction as a phase difference of 0 between
two microphones implies equidistance to a source. Therefore,
uniformly distributed random noise U(ω) ∈ [0, 2π] is added



Fig. 3. DNN architecture: 3 convolution layers with dimen-
sionality reduction, 2 fully connected (FC) layers followed by
an output layer with C=72 classes.

in (6), which does not contribute to the DOA estimation but
indirectly guides the estimation towards the spectral compo-
nents dominated by E(ω). Because the mask is applied dur-
ing feature generation, it may be changed without the need
for retraining the DNN. Since the external microphone signal
is transmitted directly, E(ω) is time-aligned with the micro-
phone signals Y0(ω)...YM−1(ω) in order to account for the
travel time of the sound wave from the source to the micro-
phone array. We approximate this time difference as the time
lag that maximizes the cross-correlation between E(ω) and
the central microphone signal of the array.

3.3. DNN architecture

Figure 3 depicts the considered DNN architecture. Like in [6]
we use a cascade of 3 convolution layers, but with kernel di-
mensions of 3×3. Each stage includes batch normalization,
max pooling (2×2 for the first two stages, 3×3 for the last
stage), 50 % dropout, and a leaky ReLU activation function.
Through the continuous dimensionality reduction, the recep-
tive field is gradually broadened, from small details in the
feature (3×3) to the whole feature in the end. After a flat-
tening layer, two fully connected layers with 128 neurons are
followed by the output layer, resulting in C=72 neurons, one
for each class. A DOA estimate is defined as the class with
the largest value at the output of the DNN. Comprising only
36008 learnable parameters, this architecture is comparatively
small.

4. EXPERIMENTAL VALIDATION

In this section we explain the acoustic setup and the training
and evaluation of the proposed algorithm. It should be noted
that training is only conducted using a single sound source
and no masking is applied, whereas in the evaluation there
is a desired speaker in a multi-talker environment and the bi-
nary mask is applied to guide the DOA estimation towards the
desired speaker.

Room dimensions: [9.0, 5.0, 3.0] m ± [1.0, 1.0, 0.5] m
Array position: [4.5, 2.5, 1.5] m ± [0.5, 0.5, 0.5] m
Source distance: 1.0 - 3.0 m [within boundaries]
Source direction: 0° : 5° : 355°
T60: 0.13 s - 1.0 s
SNR: 0 - 30 dB

Table 1. Simulation parameters

4.1. Acoustic Setup

For the experimental validation, we consider a non-uniformly
spaced two-dimensional array with M=15 microphones,
where the microphones are log-log-spaced on an arc, with
a width of approximately 0.4 m and a depth of approximately
0.13 m (see Fig. 1 for outline). According to the array geom-
etry we assume τmax=12 smpls. To simulate sound sources
with directional cues, we convolve clean monophonic signals
with room impulse responses (RIRs), that we generate using
pyroomacoustics [16]. All simulations are performed using
Hann windowed non-overlapping frames with a length of
32 ms at a sampling rate of 8 kHz.

4.2. Training

Training is conducted on single frames, each containing a sin-
gle sound source. As already mentioned, no masking is ap-
plied during training, therefore the external microphone sig-
nal is not used. Half of the source signals for training con-
sist of white noise, whereas the other half consist of speech.
The speech signals are taken from the “clean” section of the
LibriSpeech corpus [17], comprising 2700 recordings of male
and female speakers. Aiming at achieving a good level of
generalization against unseen conditions, we generate train-
ing data with a high intrinsic variance for all parameters. Ev-
ery training signal contains a new set of RIRs with random-
ized room dimensions, position of the microphone array, posi-
tion of the sound source in the room, as well as reverberation
time. Finally, we add either white noise or babble noise with
diffuse-like [18] as well as spatially uncorrelated characteris-
tics at different SNRs. All simulation parameters are given
in Table 1. The network is trained using the cross-entropy
loss function, together with the Adam optimizer operating at
a learning rate of 10−4 with mini-batches of 32 training sam-
ples and 105 training samples per epoch.

4.3. Evaluation

During evaluation, we only consider speech signals. Every
scenario consists of one desired speaker and a set of inter-
fering speakers J ∈ [0, 1, 2, 4], each interfering speaker hav-
ing the same power as the desired speaker. For every J , the
performance is evaluated for 5000 individual scenarios (tri-
als), each 5 s long. The evaluation data are generated with the



same parameter variance as the training data (see Table 1), ex-
cept for the reverberation time fixed to 0.5 s and the SNR fixed
to 20 dB. To prevent sources from overlapping, we impose a
minimum angular distance of 5 classes (=̂25◦) between the
desired speaker and the closest interfering speaker, and at
least one class (=̂5◦) between two interfering speakers. The
external microphone shares the same coordinates as the de-
sired speaker, but with an offset of 0.2 m on the vertical axis.
It is important to note, that in some scenarios, an interfering
speaker may be much closer to the microphone array than the
desired speaker, resulting in a negative signal-to-interference-
ratio at the microphone array.

4.4. Performance Measures

The DOA estimation performance is evaluated in terms of the
absolute angular error (in degrees) as

δ = | arg
{
ei2π · (θ̂−θt) / 360◦

}
| · 360

◦

2π
, (8)

where θ̂ denotes the estimated DOA and θt denotes the ground
truth DOA (both in degrees). A single DOA estimate is ob-
tained per trial by computing the median of the DOA esti-
mates over all frames that are labeled as speech. Speech
frames are defined as frames whose energy in the external mi-
crophone signal is larger than 4 dB below the global average.

5. RESULTS

In this section, we present the results for two sets of exper-
iments. First, we investigate the influence of the proposed
masking for a different number of interfering speakers J , us-
ing P50 as the masking threshold. Second, we investigate the
influence of the masking threshold Px for a different number
of interfering speakers. The respective combination of J and
Px is referred to as “condition”.

Figure 4 shows the impact of the proposed masking. For
the condition with one interfering speaker, it can be observed
that masking reduces the overall median error by about 14 %.
For the conditions with 2 and 4 interfering speakers, mask-
ing reduces the overall median error by about 36 % and 28 %,
respectively. In terms of the overall mean error, it can be ob-
served that masking results in a reduction of about 45 % for
the condition with one interfering speaker. For the conditions
with 2 and 4 interfering speakers, masking reduces the over-
all mean error by about 30 % and 18 %, respectively. Com-
prehensively, it can be observed that for all considered condi-
tions, using the proposed source-informed features as input to
the DNN substantially improves the localization accuracy of
the desired speaker.

Figure 5 shows the impact of the masking threshold Px.
For scenarios with a higher number of interfering speakers,
a larger threshold appears to yield a benefit. For the condi-
tion with one interfering speaker, P33 presents itself as the

Fig. 4. Angular error for different number of interfering
speakers J , with and without masking. Threshold: P50

Fig. 5. Impact of the masking threshold on the overall median
angular error for different number of interfering speakers J

optimal choice (overall median reduction of about 25 %). For
the condition with 2 interfering speakers, where the desired
source produces only about 33 % of the sound energy in the
room, P50 delivers the best results (overall median reduc-
tion of about 36 %), while for the condition with 4 interfering
speakers, P66 delivers the best results (overall median reduc-
tion of about 33 %). However, it can also be observed that a
masking threshold between P50 and P66 yields good results
for all considered acoustic scenarios.

6. CONCLUSION

This paper has demonstrated the benefit from integrating an
external microphone signal in a DNN-based DOA estimation
algorithm where a desired speaker is to be localized in the
presence of interfering speakers. The proposed algorithm ap-
plies a binary mask to the GCC-PHAT input features, where
this mask is computed based on the power distribution of the
external microphone signal. Experimental results for a va-
riety of acoustic scenarios show that the proposed algorithm
significantly improves the DOA estimation accuracy without
requiring any knowledge about the acoustic scenario. In fu-
ture work we will investigate different ways of integrating the
external microphone signal for informed DOA estimation.
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