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Abstract
In this paper, we compare two extended generalized sidelobe can-
celler (GSC) structures, which exploit external microphones in
conjunction with a local microphone array to improve the noise
and interferer reduction. As a baseline algorithm we consider a
local GSC using only the local microphones, for which the rela-
tive transfer function (RTF) vector of the target speaker is known.
To incorporate the external microphones in a minimum power
distortionless response beamformer, the RTF vector of the target
speaker needs to be estimated. Since the estimation accuracy of
this RTF vector depends on the signal-to-interferer ratio, the GSC
with external speech references (GSC-ESR) pre-processes the ex-
ternal microphone signals to reduce the interferer. In a simpli-
fied extended structure, namely the GSC with external references
(GSC-ER) no such pre-filtering operation is performed. Simu-
lation results show that the GSC-ESR structure yields the best
results in terms of noise and interferer reduction, especially in
adverse conditions.

1 Introduction
In assistive listening devices such as hearing aids or cochlear
implants, speech quality and speech intelligibility are often de-
graded by background noise and competing speakers. Hence,
single- and multi-microphone speech enhancement algorithms are
used, aiming at joint noise and interferer reduction [1–3]. Popu-
lar multi-microphone speech enhancement algorithms are based
on minimum variance distortionless response (MVDR) or mini-
mum power distortionless response (MPDR) beamforming [4, 5],
which can be implemented using the generalized sidelobe can-
celler (GSC) structure [6–8]. To implement these beamformers,
the direction-of-arrival (DoA) or more general the relative trans-
fer function (RTF) vector of the target speaker between the mi-
crophones is required. Although several RTF vector estimation
methods have been proposed [7–11], these methods yield biased
estimates of the target RTF vector when one or more compet-
ing speakers are present. In hearing aid applications, it is hence
commonly assumed that the DoA or the RTF vector of the target
speaker between the head-mounted microphones is known (e.g.,
frontal direction).

It has been shown that external microphones (eMics) enable
to improve the speech enhancement performance compared to
only using the head-mounted microphones [12–18]. This can
be explained by the fact that the eMics allow for a more diverse
sampling of the sound field than the head-mounted microphones,
which will be referred to as the local microphone array (LMA)
in this paper (see Fig. 1). In [16], a promising structure was pro-
posed which allows to incorporate eMics into a local GSC (L-
GSC) using only the LMA, assuming that the local RTF vector of
the target speaker is known. In this paper, we consider the struc-
ture proposed in [16] and reformulate it in terms of an MPDR
beamformer instead of an MVDR beamformer such that not only
noise but also interferer can be cancelled. This structure, referred
to as the GSC with external speech references (GSC-ESR), pre-
filters the noise-and-interferer references of the L-GSC to reduce
the interferer in the eMic signals. Using these pre-processed sig-
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Figure 1: Top view of the considered acoustic scenario and mi-
crophone configuration with Ma = 4 head-mounted microphones
of the LMA and Me = 2 external microphones (eMics).

nals instead of the unprocessed eMic signals allows to improve
the estimation accuracy of the external RTF vector of the target
speaker, which is subsequently used in an MPDR beamformer for
joint noise and interferer reduction. To assess the benefit of the
pre-filtering operation, also the structure using the unprocessed
eMic signals is considered, which is referred to as the GSC with
external references (GSC-ER).

In the experimental evaluation, we compare the performance
of both extended GSC structures and the L-GSC in terms of noise
and interferer reduction using reverberant recordings. The re-
sults show that the pre-filtering operation in the GSC-ESR indeed
increases the performance in terms of interferer reduction com-
pared to the GSC-ER. In addition, we investigate the sensitivity
against a mismatch of the - assumed to be known - local RTF vec-
tor. When using an approximate anechoic local RTF vector, the
results show that the pre-filtering operation induces target speech
cancellation, which decreases the performance of the GSC-ESR
in comparison to the GSC-ER at high signal-to-interferer ratios
(SIRs).

2 Signal Model and Notation
We consider an acoustic scenario with one target speaker, one in-
terferer and background noise (see Fig. 1). The LMA is equipped
with Ma head-mounted microphones and Me additional eMics
are present, resulting in a total of M = Ma +Me microphones.
In the short time Fourier transform (STFT) domain the m-th mi-
crophone signal is given by

Ym(k, l)=Xm(k, l)+Im(k, l)+Nm(k, l), m∈{1, . . . ,M}, (1)

where k and l denote the frequency bin index and the frame in-
dex, respectively, Xm(k, l) denotes the target speech component,
Im(k, l) denotes the interferer component and Nm(k, l) denotes
the noise component in the m-th microphone. In the follow-
ing, we neglect the indices k and l for conciseness. For the
stacked signal vector y, we distinguish between the Ma local mi-
crophones and the Me eMics, i.e.

y = [Ya,1,Ya,2, . . . ,Ya,Ma ,Ye,1, . . . ,Ye,Me ]
T = [yT

a ,yT
e ]T , (2)

where {·}T denotes the transpose operator. By defining the signal
component vectors x, i and n, the vector y can be written as

y = x+ i+n . (3)
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Since the target speaker is assumed to be a coherent source, the
target speech component vector can be written as

x= hX1 , (4)

where X1 is the target speech component in the first microphone
and h denotes the RTF vector of the target speaker between all
(local and external) microphones and the first microphone, i.e.

h= [1,Ha,2, . . . ,Ha,Ma ,He,1, . . . ,He,Me ] = [hT
a , hT

e ]T , (5)

where ha denotes the local RTF vector and he contains the ex-
ternal RTFs. Similarly, the interferer component vector can be
written as

i= bI1 , (6)

where I1 is the interferer component in the first microphone and
b denotes the RTF vector of the interferer.
Assuming all signal components to be uncorrelated with each
other, the M ×M -dimensional noisy covariance matrix Ry =

E {yyH}, with E {·} the expectation operator and {·}H the Her-
mitian transpose operator, can be written as

Ry =Rx+Ri+Rn , (7)

with Rx the target speech covariance matrix, Ri the interferer
covariance matrix and Rn the noise covariance matrix. Using
(4) and (6), the rank-1 target speech and interferer covariance
matrices can be written as

Rx = φxhh
H , Ri = φibb

H , (8)

where φx =E {|X1|2} and φi =E {|I1|2} denote the target speech
power spectral density (PSD) and the interferer PSD in the first
microphone, respectively. Assuming the noise field to be homo-
geneous, the noise covariance matrix is full-rank and given by

Rn = φnΓ , (9)

where φn denotes the noise PSD and Γ denotes the spatial coher-
ence matrix of the noise field. The signal-to-interferer ratio (SIR)
and signal-to-noise ratio (SNR) are defined as

SIR=
φx

φi
, SNR=

φx

φn
. (10)

The Ma ×Ma-dimensional noisy covariance matrix for the LMA
only can be extracted from Ry as

Ry,a =EaRyE
T
a , (11)

where Ea = [IMa×Ma , 0Ma×Me ] is a selection matrix.

3 RTF Vector Estimation
A commonly used method for RTF vector estimation is covari-
ance whitening (CW), which has been thoroughly analyzed [10]
and used for several applications [8, 19, 20]. First, a square-root
decomposition (e.g., Cholesky decomposition) of the estimated
noise covariance matrix R̂n is computed, i.e.

R̂n = R̂
1/2
n R̂

H/2
n . (12)

A whitening operation is then applied to R̂y − R̂n, which yields
the pre-whitened covariance matrix

R̂w
y = R̂

−1/2
n (R̂y − R̂n)R̂

−H/2
n . (13)

Based on the principal eigenvector vmax of R̂w
y , the RTF vector

is then estimated as

ĥCW =
R̂

1/2
n vmax

eT1 R̂
1/2
n vmax

, (14)

Figure 2: Processing scheme encompassing all considered struc-
tures. Upper branch (black) in gray box: L-GSC exploiting a-
priori RTF vector h̃a. Including the lower branch (red): GSC-
ESR with pre-filters ve,me or GSC-ER without ve,me .

where e1 denotes the M -dimensional selection vector, which con-
tains all zeros except for the entry corresponding to the first mi-
crophone, which is equal to 1.

We now analyze the CW method for the considered acoustic
scenario assuming no estimation errors in R̂y and R̂n. Using
(8), the pre-whitened covariance matrix in (13) is given by

Rw
y = φxR

−1/2
n hhHR

−H/2
n +φiR

−1/2
n bbHR

−H/2
n . (15)

In case no interferer is present (φi = 0), i.e. only the target
speaker and noise are present, Rw

y in (15) is a rank-1 matrix
and the principal eigenvector vmax is a scaled version of the pre-
whitened target RTF vector R−1/2

n h. However, if the interferer
is present, Rw

y in (15) is a rank-2 matrix spanned by the pre-

whitened RTF vectors R−1/2
n h and R

−1/2
n b, such that the prin-

cipal eigenvector vmax is a linear combination of these vectors,
i.e.

vmax = αxR
−1/2
n h+αiR

−1/2
n b . (16)

It can be shown that the weighting factors αx and αi depend on
the SIR [9], i.e. for high SIR the estimated RTF vector in (14)
corresponds predominantly to the target RTF vector, for low SIR
it corresponds predominantly to the interferer RTF vector.

4 Local GSC
In this section, we discuss the local GSC (L-GSC) using only
the Ma head-mounted microphones of the LMA, i.e. the upper
branch in Fig. 2. The GSC [6–8] can be considered as an alterna-
tive implementation of the MPDR beamformer [4, 5]. Despite its
theoretical equivalence, the GSC structure is chosen here for its
larger flexibility. The GSC consists of three processing blocks:
(1) a fixed beamformer fa, generating a so-called speech refer-
ence, (2) a blocking matrix Ca, generating so-called noise-and-
interferer references, and (3) a filter va, aiming at minimizing
the correlation between the noise-and-interferer references and
the speech reference. For the fixed beamformer and the blocking
matrix an estimate of the local RTF vector of the target speaker
ha is required, which will be referred to here as the a-priori RTF
vector h̃a, since it is assumed to be known.

For the fixed beamformer, we will use the Ma-dimensional
matched filter fa = h̃a/||h̃a||22, for which fHa h̃a = 1. This matched
filter preserves sounds arriving from the direction associated with
the a-priori RTF vector h̃a, while passively cancelling sounds ar-
riving from other directions. Applying the fixed beamformer to
the LMA signals yields the speech reference Yf, i.e.

Yf = fHa ya . (17)
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The Ma× (Ma−1)-dimensional blocking matrix Ca is designed
to be orthogonal to h̃a, i.e. CH

a h̃a = 0(Ma−1)×1, and can there-
fore be constructed as [7, 8]

Ca =

[
−H̃∗a,2 ,−H̃∗a,3 , ... ,−H̃∗a,Ma

I(Ma−1)×(Ma−1)

]
. (18)

The blocking matrix aims at blocking out sounds arriving from
the direction associated with the a-priori RTF vector. Apply-
ing the blocking matrix to the head-mounted microphone signals
yields (Ma−1) noise-and-interferer references, i.e.

ua = CH
a ya . (19)

The filter va aims at minimizing the correlated parts between the
speech references Yf and the noise-and-interferer references ua.
It should be noted that contrary to [16], the filter va is designed to
minimize the total power, corresponding to an MPDR implemen-
tation, instead of minimizing the power of the noise component
only, i.e.

va =
(
CH

a R̂y,aCa

)−1
CH

a R̂y,afa . (20)

When minimizing the power of the noise component, i.e. using
R̂n,a instead of R̂y,a in (20), the interferer is hardly reduced.
When minimizing the total power instead, the interferer will be
reduced, but it comes with the risk of target speech cancellation
in case of speech leakage in the noise-and-interferer references,
which occurs in case of a mismatch between the a-priori RTF
vector h̃a and the (true) local RTF vector ha. The output signal
of the L-GSC is then given by

Za = Yf−vH
a ua . (21)

5 Extended GSC Structures
In this section, we present and discuss two extended GSC struc-
tures incorporating the eMics. The first structure, the GSC with
external speech references (GSC-ESR) is adopted from [16] and
modified in order to achieve joint noise and interferer reduction.
The GSC-ESR aims at suppressing the interferer component in
the eMic signals by pre-filtering the noise-and-interferer refer-
ences of the L-GSC. The second structure, the GSC with exter-
nal references (GSC-ER) is a simpler structure without this pre-
filtering operation. The RTF vector of the target speaker between
the eMics and the first microphone is then estimated based on the
output signal of the L-GSC and the pre-processed/unprocessed
eMic signals, which is subsequently used in an MPDR beam-
former.

5.1 GSC-ESR
The GSC-ESR structure was introduced in [16] (there referred
to as GEVD-based method) and is depicted in Fig. 2. Similarly
as for the L-GSC, we propose to use an MPDR implementation
instead of an MVDR implementation (used in [16]), since other-
wise the interferer cannot be be actively suppressed in the eMic
signals. It should however be noted that speech leakage in the
noise-and-interferer references ua may lead to target speech can-
cellation in the pre-processed eMic signals ze. The main idea is to
pre-filter the noise-and-interferer references ua of the L-GSC us-
ing the filters ve,me , aiming at cancelling correlated components
between ua and the eMic signals ye, i.e.

ve,me =
(
CH

a R̂y,aCa

)−1
CH

a EaR̂yee,me ,me ∈ {1, . . . ,Me} ,
(22)

with ee,me a selection vector for the me-th external microphone.
The pre-processed eMic signals ze are given by

ze = ye− [ve,1, . . . ,ve,Me ]
Hua (23)

Subsequently, the output signal Za of the L-GSC and the pre-
processed eMic signals ze are combined using an MPDR beam-
former, i.e.

w =
R̂−1

y,zĥz

ĥH
z R̂−1

y,zĥz
, (24)

where R̂y,z is an estimate of the pre-processed covariance matrix
Ry,z , defined as

Ry,z = E

{[
Za
ze

]
[Z∗a , z

H
e ]

}
, (25)

and ĥz is the RTF vector estimate of the target speaker between
the external microphones and the first microphone. This estimate
is obtained by applying the CW method discussed in Section 3
on R̂y,z and R̂n,z , where Rn,z is defined similarly to Ry,z in
(25). The output signal of the GSC-ESR is obtained as

Z = wH

[
Za
ze

]
. (26)

Based on (16), the RTF vector estimate ĥz will be more accurate
when more interferer is suppressed by the L-GSC and by the pre-
filters ve,me .

5.2 GSC-ER
The GSC-ER can be seen as a simplified version of the GSC-
ESR, where the pre-filters ve,me are set to zero (see Fig. 2), such
that

Ze,me = Ye,me . (27)

On the one hand, this means that no interferer is suppressed in the
eMic signals ye, resulting in estimation errors for the RTF vector
ĥz (depending on the SIR). On the other hand, no target speech
cancellation in the eMic signals occurs due to speech leakage in
the noise-and-interferer references ua.

6 Experimental Results
In this section, we experimentally evaluate the performance of the
considered GSC structures, i.e. the L-GSC using only the head-
mounted microphones and the GSC-ESR and GSC-ER incorpo-
rating the eMics, at different input SIR and SNR. Furthermore,
we investigate their robustness against mismatches of the local
RTF vector.

6.1 Recording Setup and Implementation
The investigated algorithms are evaluated using real-world sig-
nals, recorded in a laboratory at the University of Oldenburg with
a reverberation time of approximately 350 ms. The LMA con-
sisted of binaural hearing aids with two microphones per ear, i.e.
Ma = 4 local microphones. The hearing aids were mounted on
a KEMAR head-and-torso simulator (HATS). The reference mi-
crophone was the front microphone on the left side. In addition,
Me = 2 eMics were placed in the room as depicted in Fig. 1, ap-
proximately 1.5 m from the HATS. The target speaker was a male
English speaker played back via a loudspeaker, placed about 35°
to the right of the HATS. The interferer was a female English
speaker played back via a loudspeaker, placed about 35° to the
left of the HATS. Both loudspeakers were placed about 2 m from
the HATS and 0.5 m from the eMics. Diffuse-like noise was gen-
erated with four loudspeakers facing the corners of the laboratory,
playing back different versions of multi-talker babble noise. The
signal components x, i and n were recorded separately at a sam-
pling frequency of 16 kHz and subsequently mixed at input SIR
SIRin = {-10, 0, 10} dB and input SNR SNRin= {-10, 0, 10} dB.

For the STFT framework, the following parameters were used:
a frame length of 1024 samples (corresponding to 64 ms), a frame
overlap of 50% and a square-root Hann window as analysis and
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Figure 3: Broadband SIR and SNR improvement for the considered GSC structures (L-GSC, GSC-ESR, GSC-ER) for different input
SIRs and SNRs, either using an ideal RTF vector (RIR) or an anechoic RTF vector (anech.) for the L-GSC.

synthesis windows. To allow for a more controlled investigation
of the considered algorithms without the interplay of different
SIRs, SNRs and a voice activity detection algorithm, the covari-
ance matrices were estimated in a batch implementation assum-
ing oracle knowledge about the noise. For the L-GSC, two differ-
ent a-priori RTF vectors were considered: (1) an ideal RTF vector
obtained from the measured room impulse response of the target
speaker, denoted by "RIR" and (2) an anechoic RTF vector from
a database using the same hearing aids [21], in the direction of
the target speaker (denoted by "anech."). As described in Section
5, the external RTF vector ĥz in the extended GSC structures was
estimated using CW.

The performance of the considered algorithms was evaluated
in terms of broadband SNR improvement (∆SNR) and broad-
band SIR improvement (∆SIR), where the powers of the sig-
nal components were computed in the time domain in sequences
where the target speaker and the interferer were active simultane-
ously.

6.2 Results
For the considered GSC structures, Fig. 3 depicts the broadband
SIR and SNR improvement for different input SIRs and SNRs.

In case of an ideal a-priori RTF vector ("RIR"), it can be ob-
served that the baseline system, i.e. the L-GSC, performs as ex-
pected according to the theoretical results from [22, 23]. At high
SNRs, a larger SIR improvement and lower SNR improvement is
obtained than at low SNRs. Realizing that the noise is diffuse,
this can be explained by the fact that at high SNRs the interferer
can be suppressed more due to a higher correlation between the
noise-and-interferer references ua and the speech reference Yf.
Compared to the L-GSC, it can be observed that the SIR im-
provement of the GSC-ER is worse (except at SIRin = 10 dB)
and the SNR improvement is better. This can be explained by
the fact that at low SIRs, the interferer is the dominant source
(also in the eMics) and therefore strongly influences the estima-
tion of the RTF vector ĥz . The subsequent MPDR beamformer
therefore mostly cancels the target and preserves the interferer,
compared to the L-GSC. The GSC-ESR outperforms the base-
line system for all considered scenarios in terms of both SNR
improvement (by up to 6 dB) and as well as SIR improvement
(by up to 4 dB). At low SIR, the pre-filters ve,me are able to sup-
press the interferer rather well from the eMics, such that the SIR
in the pre-processed eMic signals ze is larger than in the unpro-
cessed eMic signals ye. This leads to a more accurate estimate
of RTF vector ĥz in comparison to the GSC-ER, which uses the
unprocessed eMic signals. At high SIR, the performance differ-

ences between the GSC-ESR and the GSC-ER become smaller,
since the noise component can be assumed to be uncorrelated be-
tween the eMics and the LMA which leads to a lower correlation
between the noise-and-interferer references ua and the eMic sig-
nals ye.

In case of RTF mismatch, i.e. when using the anechoic local
RTF vector ("anech."), it can be observed that the SIR improve-
ment and the SNR improvement decrease for all algorithms, es-
pecially at high SIR and SNR. At high SIR, target speech leakage
into the noise-and-interferer references ua has the most severe
consequences: if there is so much speech leakage that the target
speech is the most coherent source between ua and the speech
reference Yf (or the eMic signals ye respectively), the target can
partly be cancelled due to the MPDR implementation in (20) and
(22). On the one hand, this leads to a decreased performance of
the L-GSC, even leading to negative ∆SIR and ∆SNR at SIRin
= 10 dB. On the other hand, the target speech cancellation in the
pre-processed eMic signals ze leads to a less accurate estimation
of the RTF vector ĥz . Hence, at high SIR the performance drop in
terms of SIR improvement and SNR improvement is much larger
for the GSC-ESR than for the GSC-ER, even leading to negative
∆SIR and ∆SNR for the GSC-ESR at SIRin = 10 dB. Never-
theless, in adverse conditions (SIRin 6 0 dB, SNRin 6 0 dB)
the performance of the GSC-ESR is better or comparable to the
performance of the L-GSC and the GSC-ER.

7 Conclusions
In this paper, we compared two extended GSC structures which
use eMics in conjunction with an LMA in terms of noise and in-
terferer reduction. The GSC-ESR uses the noise-and-interferer
references of the L-GSC to pre-process the eMic signals aiming
at reducing the interferer component. A simplified version of the
GSC-ESR is the GSC-ER, where no pre-processing of the eMic
signals is performed. Aiming at achieving joint noise and inter-
ferer reduction, we proposed to use an MPDR implementation
instead of an MVDR implementation for all processing blocks.

Experimental results with reverberant signals showed that the
GSC-ESR yields the best results in terms of noise and interferer
reduction, especially in scenarios where the input SIR is low. In
case of an ideal local RTF vector the GSC-ESR outperformed
the L-GSC and the GSC-ER in all conditions. In case of RTF
mismatch, speech leakage occurred which caused target speech
cancellation in the L-GSC and the pre-processing in the GSC-
ESR, heavily affecting the performance of all algorithms at high
SIR and SNR. Nevertheless, in adverse conditions the GSC-ESR
still outperformed the L-GSC and the GSC-ER.
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