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Abstract
Recently a method has been proposed to blindly es-
timate the geometry of an array of distributed micro-
phones using reverberant speech, which relies on estimat-
ing the coherence matrix of the reverberation using an it-
erative expectation conditional-maximization (ECM) ap-
proach. Instead of using a data-independent initial es-
timate of the coherence matrix and a matched beam-
former to estimate the initial speech and reverberation
power spectral densities, in this paper we propose to use
a data-dependent initial estimate of the coherence ma-
trix and a time-varying minimum-power-distortionless-
response beamformer. Simulation results show that the
proposed ECM initialization significantly improves the es-
timation accuracy of the microphone array geometry and
increases the generalizability for microphone arrays of dif-
ferent sizes.

1 Introduction
Through the technological development and availability of
digital devices with built-in microphones, such as mobile
phones or smart wearable devices, ad-hoc distributed mi-
crophones are becoming more ubiquitously available for
signal processing applications such as speaker localization
or speech enhancement. In ad-hoc situations, acoustical
quantities provide a cheap and convenient way to blindly
estimate the microphone array geometry (MAG) (see [1]
for an overview). In this paper we focus on blind MAG
estimation (also referred to as geometry calibration) using
reverberant speech.

An acoustical quantity which is commonly used to
blindly estimate the MAG is the time-difference of arrival
(TDOA) between the microphones. The TDOA encodes
a component of the pairwise distances between the micro-
phones, depending on the direction of arrival of the source.
However, it has been shown that estimating the MAG using
TDOAs [2, 3] requires either a relatively large number of
source signals from different locations or a moving source.
In addition, TDOA estimation becomes increasingly unre-
liable in high reverberation [4].

Alternatively, it has been shown in [5, 6] that the co-
herence of diffuse or reverberant sound fields can be used
for blind MAG estimation. The method proposed in [6]
assumes a single speech source in a reverberant environ-
ment and consists of three steps. First, the coherence ma-
trix of the reverberation is estimated from the reverber-
ant microphone signals using an expectation conditional-
maximization (ECM) approach [7, 8]. The pairwise dis-
tances between the microphones are then estimated by
comparing the entries of the estimated coherence matrix to
a distance-dependent coherence model [9] for a set of fre-
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quencies. Finally, the MAG is estimated from the pairwise
distances using multi-dimensional scaling [5, 10, 11].

In ECM, the coherence matrix and the speech and re-
verberation power spectral densities (PSDs) are estimated
by iteratively increasing a non-convex likelihood func-
tion, which describes how well these parameters repre-
sent the reverberant speech signals. If the initial esti-
mates of these parameters are poor, the optimization may
converge to a local optimum. In [6], ECM is initialized
with a data-independent estimate of the coherence ma-
trix and a matched beamformer is used to estimate the
initial speech and reverberation PSDs. To improve these
initial estimates, in this paper we propose to initialize
ECM with a data-dependent estimate of the coherence ma-
trix and replace the matched beamformer with a time-
varying minimum-power-distortionless-response (MPDR)
beamformer. We experimentally show that the frequency
range used to estimate the pairwise distances plays an
important role and demonstrate the advantage of using a
data-dependent ECM initialization. In addition, for spa-
tially distributed microphone arrays of different sizes (with
microphone distances up to 87 cm), experimental results
show that the proposed data-dependent initialization con-
sistently results in significantly smaller MAG estimation
errors than using a data-independent initialization.

2 Signal Model
We consider a reverberant environment with one speech
source and a spatially distributed, 3-dimensional micro-
phone array with M ≥ 2 microphones, where mm ∈ R3

denotes the absolute position of them-th microphone. The
aim is to estimate the MAG, i.e., the relative microphone
coordinates Mrel = [mrel,1,mrel,2, ... ,mrel,M ], which are
related to the absolute microphone positions by an arbi-
trary rotation, translation, and/or reflection. In the short-
time Fourier transform (STFT) domain, the m-th micro-
phone signal Xm[k,l] consists of a direct speech compo-
nent Xd,m[k,l] and a reverberation component Xr,m[k,l],
i.e.,

Xm[k,l] =Xd,m[k,l] +Xr,m[k,l] , (1)

where k∈{1,2,...,K} denotes the frequency bin index and
l∈{1,2,...,L} denotes the time frame index. In vector no-
tation, the corresponding M -dimensional microphone sig-
nal vector x[k,l] = [X1[k,l],X2[k,l], ...,XM [k,l]]T can be
written as

x[k,l] = xd[k,l] +xr[k,l] . (2)

The direct speech component vector xd[k,l] can be related
to the direct speech component in the first microphone
Xd,1[k,l] as

xd[k,l]=g[k]Xd,1[k,l] , (3)

with g[k] = [G1[k], G2[k], ... , GM [k]]T the relative di-
rect transfer function (RDTF) vector. Assuming free-
field transmission, i.e., no object or head between micro-
phones, the elements of the RDTF vector are equal to
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Figure 1: Block-diagram of the state-of-the-art MAG esti-
mation.

Gm[k]=exp(−i2πτmk/K), where the relative time delay
between the m-th and the first microphone is defined as
τm=(||q−mm||−||q−m1||)fs/c, with q the source po-
sition, fs the sampling frequency, and c the speed of sound.

Assuming that the direct and reverberation components
are uncorrelated, the reverberant speech covariance matrix
Φx[k,l]=E{x[k,l]xH[k,l]}, with E{·} the expectation op-
erator, can be decomposed into a (rank-1) direct speech co-
variance matrix Φd[k,l] =E{xd[k,l]x

H
d [k,l]} and a rever-

beration covariance matrix Φr[k,l] = E{xr[k,l]x
H
r [k,l]}.

Assuming a homogeneous sound field for the reverberation
component [9, 12, 13] with a time-invariant spatial coher-
ence matrix Γ[k], the reverberant speech covariance matrix
can be written as

Φx[k,l]=φd[k,l]g[k]g
H[k]︸ ︷︷ ︸

Φd[k,l]

+φr[k,l]Γ[k]︸ ︷︷ ︸
Φr [k,l]

, (4)

where φd[k,l] =E{|Xd,1[k,l]|2} denotes the time-varying
direct speech PSD in the first microphone and φr[k,l] de-
notes the time-varying reverberation PSD. In this paper,
the reverberant sound field is assumed to be spherically
isotropic [14], such that the frequency-dependent coher-
ence between the a-th and b-th microphone can be modeled
as

γ(k,da,b) = sinc
(

2πfskda,b
cK

)
, (5)

where da,b denotes the microphone distance.

3 MAG Estimation
In this section we describe the MAG estimation procedure
proposed in [6], which consists of three steps (see Fig. 1).
First, the coherence matrix is estimated from the reverber-
ant microphone signals using the ECM approach (Section
3.1). From the estimated coherence matrix, the pairwise
distances are then estimated (Section 3.2). Finally, the
MAG is estimated from the estimated pairwise distances
using multi-dimensional scaling (Section 3.3).

3.1 Coherence Estimation Using ECM
In this section, the frequency bin index k is omitted for
conciseness, however, the parameter estimation is carried
out in each frequency bin independently. Using ECM
[7, 8], the time-invariant coherence matrix Γ and the time-
varying speech and reverberation PSDs φd[l] and φr[l] are
iteratively estimated given the reverberant speech signals
x[l] and an estimate of the RDTF vector ĝ. The proce-
dure is derived in batch-mode, i.e., it is assumed that x[l] is
available for all time-frames, i.e., X= [x[1],x[2],...,x[L]].
The batch direct speech PSD φφφd, and reverberation PSD
φφφr are defined similarly. The set of parameters to be esti-
mated is defined as θ={φφφd,φφφr,Γ}. The speech and rever-
beration components are modeled as independent complex

Gaussians with zero-mean and variance φd[l] and covari-
ance matrix Φr[l], respectively.

Assuming independent time-frames, the estimated pa-
rameter set θ̂(i) is updated in each iteration i by increasing
the expectation of the log-likelihood function (dependent
on the probability density function ψ(Xd,1[l],xr[l];θ), de-
fined as in [6] Eq. (14)), conditioned on the estimated pa-
rameters, i.e.,

Q
(
θ;θ̂(i−1)

)
=E

{
L

∑
l=1

logψ(Xd,1[l],xr[l];θ)|X,ĝ;θ̂(i−1)

}
.

(6)
In the expectation step (E-step), estimates of the direct
speech PSD σ̂

(i)
d [l], the covariance matrix of the reverber-

ant speech Φ̂
(i)
x [l] and of the reverberation Φ̂

(i)
r [l] are up-

dated as

Φ̂(i)
x [l]= φ̂

(i−1)
d [l]ĝĝH+φ̂(i−1)

r [l]Γ̂(i−1) , (7a)

σ̂
(i)
d [l]= |φ̂(i−1)

d [l]ĝH(Φ̂(i)
x [l])−1x[l]|2 + ...

φ̂
(i−1)
d [l]

[
I−φ̂(i−1)

d [l]ĝHΓ̂(i−1)ĝ
]
, (7b)

x̂(i)
r [l]= φ̂(i−1)

r [l]Γ̂(i−1)(Φ̂(i)
x [l])−1x[l] , (7c)

Φ̂(i)
r [l]= x̂(i)

r [l](x̂(i)
r [l])H+φ̂(i−1)

r [l] Γ̂(i−1) ...[
I−(Φ̂(i)

x [l])−1Γ̂(i−1)φ̂(i−1)
r [l]

]
, (7d)

with I the M ×M -dimensional identity matrix. In the
conditional-maximization step (CM-step), the parameters
in θ are estimated as

φ̂
(i)
d [l] = σ̂

(i)
d [l] , (8a)

Γ̂(i) =
1
L

L

∑
l=1

Φ̂
(i)
r [l]

Tr{Φ̂(i)
r [l]}

, (8b)

φ̂(i)r [l] = Tr{Φ̂(i)
r [l] (Γ̂(i))−1} . (8c)

with Tr{·} the trace-operator. The E- and CM-steps are
iterated I times.

3.2 Pairwise Distance (PD) Estimation
The distance da,b between microphones a and b is esti-
mated as in [5, 6] by determining the distance d for which
the coherence model in (5) is most similar to the estimated
coherence Γ̂

(I)
a,b[k] in (8b) between microphones a and b,

for a set K of frequency bins, i.e.,

d̂a,b = argmin
d

∑
k∈K
|Γ̂(I)

a,b[k]−γ(k,d)|
2 . (9)

3.3 Geometry Estimation
As shown in [5, 10], the P × M -dimensional MAG
(with P = min(M, 3) in R3) can be inferred from the
pairwise distances between the microphones with multi-
dimensional scaling. Using the M × M -dimensional
Euclidean distance matrix, i.e., the matrix of squared
distances, D = [d2

a,b], a geometric centering operation
G = − 1

2 (I−
1
M 11T)D(I− 1

M 11T) is first applied, with
1 an M -dimensional vector of ones. Using the eigenvalue
decomposition G = UΛUT, with U a matrix containing
the eigenvectors and Λ a diagonal matrix containing P
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non-negative eigenvalues λ1 ≥ ... ≥ λP ≥ 0, it can be
shown that the MAG Mrel is related to the eigenvectors
and eigenvalues as

Mrel = [diag(
√
λ1,...,

√
λP ),0P×(M−P )]U

T . (10)

When estimating the MAG using the estimated Euclidean
distance matrix D̂=[d̂2

a,b], the corresponding Ĝ might not
be positive semi-definite and may have more than P non-
zero eigenvalues due to estimation errors, so only the P
largest positive eigenvalues are used in (10).

4 Data-based ECM Initialization
The ECM algorithm, described in Section 3.1, needs to
be initialized using initial estimates of the coherence ma-
trix Γ̂(0)[k] and the reverberation and direct speech PSDs
φ̂
(0)
r [k,l] and φ̂(0)d [k,l]. Similarly as in [15, 16], these initial

PSDs are estimated as

φ̂(0)r [k,l]=
1

M−1
xH[k,l](Γ̂(0)[k])−1[I−ĝ[k]hH[k,l]

]
x[k,l],

(11a)

φ̂
(0)
d [k,l]=hH[k,l]

[
x[k,l]xH[k,l]−φ̂(0)r [k,l]Γ̂(0)[k]

]
h[k,l],

(11b)
with h[k,l] a beamformer.

In [6], a data-independent initial estimate of the co-
herence matrix Γ̂(0)[k] and a data-independent minimum-
variance-distortionless-response (MVDR) beamformer
h[k] were used, i.e.,

Γ̂
(0)
I [k]=I , ∀k, (12a)

hMVDR[k]=
(Γ̂(0))−1[k]ĝ[k]

ĝH[k](Γ̂(0))−1[k]ĝ[k]
=

ĝ[k]

||ĝ[k]||2
, (12b)

where the time-invariant MVDR beamformer in (12b) sim-
plifies to a matched filter [17] since an uncorrelated sound
field was assumed for the reverberation in (12a).

In this paper, we propose a data-dependent initializa-
tion of the coherence matrix estimate and beamformer to
estimate the direct speech and reverberation PSDs. The
initial estimate of the coherence matrix Γ̂(0)[k] is obtained
by averaging the trace-normalized covariance matrix of the
reverberant speech signals over all time frames, i.e.,

Γ̂(0)
x [k] =

1
L

L

∑
l=1

x[k,l]xH[k,l]
1
M Tr(x[k,l]xH[k,l])

(13)

The data-dependent (but time-invariant) coherence matrix
initialization in (13) could be used in (12b) to compute
the beamformer h[k,l]. However, to take into account the
time-varying nature of the speech and reverberation, we
propose to use a time-varying MPDR beamformer instead,
i.e.,

hMPDR[k,l] =
(Φ̂

(0)
x )−1[k,l]ĝ[k]

ĝH[k](Φ̂
(0)
x )−1[k,l]ĝ[k]

(14)

This is motivated by the fact that unlike for the coherence
matrix of the reverberation, an unbiased, time-varying es-
timate of the covariance matrix of the reverberant speech
signals can be easily estimated as

Φ̂(0)
x [k,l] = ρΦ̂(0)

x [k,l−1]+(1−ρ)x[k,l]xH[k,l] , (15)

with ρ a recursive smoothing parameter. In speech en-
hancement applications, the MVDR beamformer is typ-
ically preferred over the MPDR beamformer since the
MPDR beamformer results in speech distortion in case of
estimation errors in the RDTF vector g[k] [18, 19]. How-
ever, in this application, avoiding target cancellation is not
as important as accurately estimating the initial speech and
reverberation PSDs.

5 Experimental Evaluation
In this section, we experimentally compare the influence
of the proposed data-dependent initialization scheme on
the PD estimation error for different frequency ranges
(Section 5.2) and the MAG estimation error for different
microphone array sizes (Section 5.3).

5.1 Scenario and Algorithm Parameters
For the simulations we considered a rectangular room with
dimensions 6×6×2.4 m and simulated room impulse re-
sponses (RIRs) using the image method [20, 21], assum-
ing equal reflection coefficients for all walls. For each re-
sult shown, 50 acoustic scenarios were simulated, where
one scenario consists of a unique combination of random
source location, random microphone array location and ge-
ometry, and random 5s anechoic speech signal from [22],
convolved with simulated RIRs. For each acoustic sce-
nario, the reflection coefficient was chosen such that the
direct-to-reverberant ratio in the first microphone (arbitrar-
ily chosen) was approximately 0 dB.

The sampling frequency was equal to 16 kHz. For the
STFT framework, the frame length was 512 samples (cor-
responding to 32 ms), with 50% overlap between frames,
and a square-root-Hann analysis window was used. The
recursive smoothing parameter in (15) was set to ρ = 0.9
and I=3 ECM iterations were performed.

5.2 Frequency Range Sensitivity Analysis
To analyse the influence of the frequency range K in
(9) for both initialization schemes, we considered acous-
tic scenarios with M = 2 microphones and evaluated the
normalized PD error, defined as

εPD=
|d̂1,2−d1,2|

d1,2
, (16)

with d̂1,2 the estimated distance between both micro-
phones. For this analysis, the oracle RDTF vector g[k]
was used (computed as in [23] using the anechoic RIR).

For two distances (d1,2 = 10 cm, d1,2 = 30 cm) and
for both initialization schemes, Fig. 2 depicts the median
normalized PD error for all scenarios, where the lower and
upper frequency limits flow and fup in (9) were varied in
the range 0 to 4 kHz.

For the data-independent initialization (top plots), it
can be observed that the median PD error is large for low
lower frequency limits (below 1 kHz for d1,2 = 10 cm and
below 300 Hz for d1,2 = 30 cm) and high lower frequency
limits (above 3 kHz for d1,2 = 10 cm and above 1 kHz for
d1,2 = 30 cm) but does not depend very much on the upper
frequency limit. By selecting the optimal frequency range,
the minimum achievable median PD error was equal to
12% for d1,2=10 cm (flow=1.55 kHz and fup=1.65 kHz)
and 14% for d1,2 = 30 cm (flow = 450 Hz and fup = 550

ITG-Fachbericht 298: Speech Communication ∙ 29.09. – 01.10.2021, online

ISBN 978-3-8007-5627-8 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach76



d1,2= 10 cm d1,2= 30 cm

d1,2= 10 cm d1,2= 30 cm

Figure 2: Median PD error between a pair of microphones
for different frequency ranges (top plots: data-independent
initialization, bottom plots: data-dependent initialization)
The two red circles indicate the frequency ranges consid-
ered in Section 5.3.

Hz). It can be clearly observed that the frequency range
(especially the lower frequency limit), for which a low me-
dian PD error is obtained, highly depends on the distance
d1,2 such that this frequency range would need to be tuned
depending on the microphone array size, which is obvi-
ously not desired.

For the proposed data-dependent initialization (bottom
plots), it can be observed that the median PD error is less
sensitive to the selection of the lower and upper frequency
limits, allowing a fixed frequency range to be used for es-
timating the geometry of different-sized microphone ar-
rays. As well as reducing the frequency range sensitivity,
the minimum achievable median PD error was reduced to
6% for d1,2 = 10 cm (flow = 1.10 kHz and fup = 4 kHz)
and 8% for d1,2 = 30 cm (flow = 400 Hz and fup = 3.80
kHz). Although 1.1 kHz and 400 Hz constitute the optimal
lower frequency limits for the tested microphone distances,
it mainly seems to be important to capture the main-lobe
of the coherence (in the case of a sinc-shaped coherence or
similar), for which we select an upper frequency of 4 kHz
in the following section.

5.3 MAG Estimation Error for Different Ar-
ray Sizes

To investigate the MAG estimation performance for both
initialization schemes, we considered 3-dimensional arrays
with M = 6 microphones, randomly distributed within
randomly positioned cubes with different cube lengths
CL ∈ {10,20,...,50} cm (for the largest cube length, PDs
up to 87 cm are possible if microphones are located at op-
posite corners of the cube). To compute the MAG error,
the estimated MAG M̂rel in (10) was first aligned with the
true coordinates M using the Procrustes analysis solution
[1, 11, 24]. For each acoustic scenario, we evaluated the
normalized MAG error per microphone, defined as

εmm =
||m̂m−mm||2

CL
. (17)

Figure 3: Normalized MAG error εmm vs. cube length for
different ECM initializations and frequency ranges.

We compared the normalized MAG error for two fre-
quency ranges: the frequency range f ∈ [1,3] kHz, used
in [6], and f ∈ [0.2,4] kHz based on the results from the
previous section and given that a lower frequency limit of
200 Hz generally leads to the smallest errors when using
the data-dependent initialization, especially for increasing
PDs. For these experiments, the RDTF vector g[k] was es-
timated using the generalized cross-correlation with phase
transforms (GCC-PHAT) [25]. For the considered cube
lengths and for both initialization schemes, Fig. 3 shows
box plots of the normalized MAG error for all microphones
and acoustic scenarios. For the data-independent initializa-
tion, it can be observed that the normalized MAG error is
very high for CL = 10 cm (for both considered frequency
ranges). For larger cube lengths, the normalized MAG er-
ror becomes smaller, where the median MAG error is in
the range 15-55% for the frequency range [1,3] kHz and
50-65% for the frequency range [0.2, 4] kHz.

For the proposed data-dependent initialization, it can
be observed that with a frequency range [1,3] kHz, the nor-
malized MAG error is smaller than when using the data-
independent initialization for CL≤ 20 cm and similar for
CL > 20 cm. However, when selecting a more appropri-
ate frequency range based on Fig. 2, i.e., [0.2, 4] kHz, the
normalized MAG error is significantly smaller than when
using data-independent initializations for all cube lengths.
Even more importantly, the normalized MAG error is rel-
atively constant for all considered array sizes, namely in
the range 5-20%. This corresponds with the observation
in Fig. 2 that the selection of the frequency range for the
data-dependent initialization is far less dependent on the
microphone distance than for the data-independent initial-
ization. The significantly reduced normalized MAG error
and the improved generalizability for different array sizes
shows the importance of properly initializing the estimated
parameters in ECM.

6 Conclusions
Aiming at improving the MAG estimation performance us-
ing an iterative ECM approach, in this paper we proposed a
data-dependent initialization of the coherence matrix esti-
mate and the beamformer for estimating the speech and re-
verberation PSDs. Simulation results showed that the pro-
posed data-dependent initialization significantly reduced
the PD estimation error compared to a data-independent
initialization and allowed to select the frequency range for
PD estimation independently of the microphone distance.
In addition, the data-dependent ECM initialization resulted
in a significantly reduced MAG estimation error for all
considered array sizes.
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