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Parameter Estimation Procedures for Deep
Multi-Frame MVDR Filtering for

Single-Microphone Speech Enhancement
Marvin Tammen , Student Member, IEEE, and Simon Doclo , Senior Member, IEEE

Abstract—Aiming at exploiting temporal correlations across
consecutive time frames in the short-time Fourier transform
(STFT) domain, multi-frame algorithms for single-microphone
speech enhancement have been proposed. Typically, the multi-
frame filter coefficients are either estimated directly using deep neu-
ral networks or a certain filter structure is imposed, e.g., the multi-
frame minimum variance distortionless response (MFMVDR) filter
structure. Recently, it was shown that integrating the fully differ-
entiable MFMVDR filter into an end-to-end supervised learning
framework employing temporal convolutional networks (TCNs)
allows for a high estimation accuracy of the required parameters,
i.e., the speech inter-frame correlation vector and the interference
covariance matrix. In this paper, we investigate different covariance
matrix structures, namely Hermitian positive-definite, Hermitian
positive-definite Toeplitz, and rank-1. The main differences be-
tween the considered matrix structures lie in the number of param-
eters that need to be estimated by the TCNs as well as the required
linear algebra operations. For example, assuming a rank-1 matrix
structure, we show that the MFMVDR filter can be written as a
linear combination of the TCN outputs, significantly reducing com-
putational complexity. In addition, we consider a covariance matrix
estimation procedure based on recursive smoothing. Experimental
results on the deep noise suppression challenge dataset show that
the estimation procedure using the Hermitian positive-definite ma-
trix structure yields the best performance, closely followed by the
rank-1 matrix structure at a much lower complexity. Furthermore,
imposing the MFMVDR filter structure instead of directly esti-
mating the multi-frame filter coefficients slightly but consistently
improves the speech enhancement performance.

Index Terms—Matrix structures, multi-frame filtering, MVDR
filter, speech enhancement, supervised learning.

I. INTRODUCTION

IN MANY speech communication systems such as hearing
aids, mobile phones, and smart speakers, the microphones

pick up ambient noise in addition to the desired speech signal,
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often leading to a degradation of speech quality and speech intel-
ligibility. Hence, a large variety of single- and multi-microphone
speech enhancement algorithms have been proposed [1], [2],
[3], [4], [5]. Typically, single-microphone speech enhancement
algorithms first apply a transform to the noisy time domain sig-
nal, either a signal-independent transform such as the short-time
Fourier transform (STFT) or an auditory-inspired filterbank [1],
[2], [6], a signal-dependent transform such as the Karhunen-
Loève transform [7], [8], or a learned transform [9].

In the STFT domain, it is frequently assumed that adjacent
STFT coefficients are uncorrelated over time and frequency,
which is a suitable assumption when considering sufficiently
long time frames. In this case, the clean speech STFT coefficients
can be estimated by simply applying a gain (commonly called
mask) to the noisy STFT coefficients. Assuming the phase of
the speech STFT coefficients to be uniformly distributed, it has
been shown that the minimum mean square error estimate of
the clean speech phase is the noisy phase [10], resulting in a
real-valued mask. The latter approaches mainly differ in the
considered network architecture and in the target definition, e.g.,
mask approximation, signal approximation, or a-priori signal-
to-noise-ratio (SNR) approximation. Supervised learning-based
approaches employing a real-valued mask have also been pro-
posed for other filterbanks, e.g., a multi-phase gammatone fil-
terbank [6] or a learned filterbank [9], [11]. The popular Conv-
TasNet algorithm [9] combines an end-to-end encoder-masking-
decoder structure with a deep neural network (DNN) architec-
ture based on temporal convolutional networks (TCNs) [12]
and the scale-invariant signal-to-distortion-ratio (SI-SDR) loss
function, which is defined in the time domain. The learned linear
encoder first transforms the time domain noisy microphone sig-
nal into a hidden representation that is optimized for speech sep-
aration. The speakers are then separated by applying real-valued
masks to the hidden representation. Finally, the estimated hidden
representations of the individual speakers are transformed back
to the time domain using a learned linear decoder. Instead of
applying a real-valued mask to the noisy STFT coefficients,
complex-valued masking algorithms have been proposed, which
aim at not only improving the amplitude but also the phase.
To estimate this complex-valued mask, both statistical model-
based approaches [13] as well as supervised learning-based
approaches [14], [15], [16], [17], [18], [19] have been proposed.

Aiming at exploiting temporal correlations, algorithms have
been proposed which can be broadly separated into two
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categories. First, implicitly exploiting temporal correlations
across consecutive STFT frames, supervised learning-based
complex spectral mapping algorithms have been proposed,
which exploit spectro-temporal patterns in the noisy micro-
phone signal to directly estimate the clean speech STFT coeffi-
cients [20]. Second, explicitly exploiting temporal correlations
across consecutive STFT frames, multi-frame algorithms for
single-microphone speech enhancement have been proposed,
which apply a (complex-valued) filter instead of a gain to the
STFT coefficients. In this article, we focus on the last category
of algorithms. In [21], an estimate of the clean speech STFT
coefficients was obtained by applying a spectro-temporal filter
to a neighborhood of the noisy STFT coefficients. The filter
coefficients were directly estimated using a DNN with bidirec-
tional long short-term memory layers. Alternatively, it has been
proposed to impose a certain structure on the spectro-temporal
filter. Similarly to the minimum variance distortionless response
(MVDR) beamformer [3], [22], [23] for multi-microphone sce-
narios, a frequently used structure for single-microphone scenar-
ios is the multi-frame minimum variance distortionless response
(MFMVDR) filter [1], [24]. The MFMVDR filter estimates
the clean speech STFT coefficients by minimizing the output
interference power while preserving the speech inter-frame cor-
relation (IFC) [1], [24], thereby requiring estimates of the highly
time-varying speech IFC vector and the interference covariance
matrix. Although it has been shown that the MFMVDR filter
yields a very good noise reduction with little speech distortion
provided that accurate estimates of these quantities are available,
its performance is rather sensitive to estimation errors, especially
in the speech IFC vector [25]. To estimate the speech IFC vector
and the interference covariance matrix from the noisy STFT
coefficients, both statistical model-based as well as supervised
learning-based approaches have been proposed. In [26], a max-
imum likelihood estimator for the speech IFC vector has been
proposed, assuming a white Gaussian interference and requir-
ing an estimate of the a-priori SNR. Alternatively, in [27] the
speech IFC vector was estimated based on a low-rank model of
the speech covariance matrix. Conventionally, the interference
covariance matrix is estimated using a recursive smoothing pro-
cedure, requiring an estimate of the speech presence probability
(SPP) [28].

In [29] we proposed a supervised learning-based approach
to estimate all required quantities of the MFMVDR filter by
integrating the fully differentiable MFMVDR filter into an end-
to-end supervised learning framework using TCNs. Instead of
using a loss defined on the quantities, the TCNs were trained
by minimizing the SI-SDR loss function at the output of the
MFMVDR filter. It was shown that this estimation approach
yields an improved speech enhancement performance compared
with statistical model-based estimators. Similarly, in [23] a
supervised learning-based approach to estimate all required
quantities of the multi-microphone multi-frame MVDR filter
was proposed. In contrast to the single-microphone algorithm
in [29], the multi-microphone algorithm in [23] additionally
uses direction of arrival features. Estimates of the speech and
noise components are first obtained by applying complex-valued

multi-microphone multi-frame filters to the noisy STFT coeffi-
cients. These estimates are then used to compute estimates of
the instantaneous spatio-temporal covariance matrices, which
are mapped to the quantities required by the multi-microphone
multi-frame MVDR filter using DNNs.

Whereas in [29] the covariance matrices were assumed to be
Hermitian positive-definite, in this article we investigate differ-
ent matrix structures for the covariance matrices, namely Hermi-
tian positive-definite, Hermitian positive-definite Toeplitz, and
rank-1. For the Hermitian positive-definite matrix structure, we
consider an estimation procedure based on recursive smoothing,
where only the smoothing factors are estimated using TCNs,
as well as an estimation procedure based on the Cholesky
decomposition. The main differences between the considered
covariance matrix estimation procedures lie in the number of
parameters that need to be estimated by the TCNs as well
as the required linear algebra operations, yielding a different
computational complexity. In the case of rank-1 covariance
matrices, we show that the MFMVDR filter can be written as a
linear combination of the TCN outputs, significantly reducing
the computational complexity. Experimental results on the deep
noise suppression (DNS) challenge dataset including stationary
and non-stationary noise at SNRs ranging from 0 dB to 19 dB
show that the covariance matrix estimation procedure using
the Hermitian positive-definite matrix structure based on the
Cholesky decomposition yields the best performance. Interest-
ingly, the estimation procedure using the rank-1 matrix structure
yields only a slightly lower performance, with the advantage
of being computationally less demanding. Furthermore, it is
shown for the best-performing MFMVDR filters that imposing
the MFMVDR filter structure instead of directly estimating the
multi-frame filter coefficients slightly but consistently improves
the speech enhancement performance.

The remainder of the article is organized as follows. In
Section II, we describe the signal model, define the MFMVDR
filter, and introduce the considered matrix structures for the
covariance matrices. In Section III, the conventional SPP-based
supervised learning approach to estimate the quantities of the
MFMVDR filter is reviewed. In Section IV, the proposed signal-
based supervised learning-based approach to estimate the quan-
tities of the MFMVDR filter is described, including multiple
procedures to estimate the required covariance matrices. The
simulation setup is discussed in Section V, and the correspond-
ing simulation results are presented in Section VI.

II. MULTI-FRAME MVDR FILTER FOR SINGLE-MICROPHONE

SPEECH ENHANCEMENT

A. Signal Model

We consider an acoustic scenario in which a speech source
and additive noise (e.g., traffic, keyboard typing, fan noise) are
recorded by a single microphone. In the STFT domain, the noisy
STFT coefficient Yk,l at the k-th frequency bin and l-th time
frame is given by

Yk,l = Xk,l +Nk,l, (1)
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where Xk,l and Nk,l denote the speech and noise STFT coeffi-
cient, respectively. Assuming independent frequency bins, each
frequency bin will be processed separately, such that the index
k will be omitted in the remainder of this article.

In many single-frame speech enhancement algorithms, a mask
Ml is applied to the noisy STFT coefficient to obtain an estimate
of the speech STFT coefficient, i.e.,

X̂l = MlYl, (2)

where the maskMl can be either real-valued [2], [30], [31], [32],
[33], [34], [35], [36] or complex-valued [13], [14], [15], [16],
[17], [18], [19]. In contrast, multi-frame speech enhancement
algorithms apply a (complex-valued) filter to theN -dimensional
noisy vector yl, defined as

yl =
[
Yl Yl−1 . . . Yl−N+1

]
T, (3)

where ◦T denotes the transpose operator and where we define
Yl = 0 ∀ l < 0. An estimate of the speech STFT coefficient is
obtained as

X̂l =
N−1∑
μ=0

W ∗
l,μYl−μ = wH

l yl, (4)

where N denotes the number of filter coefficients, ◦∗ denotes
the complex-conjugate operator, ◦H denotes the Hermitian trans-
pose operator, and the multi-frame filter is defined as

wl =
[
Wl,0 Wl,1 . . . Wl,N−1

]
T, (5)

where Wl,μ denotes the μ-th filter coefficient of wl.
Using (1), the noisy vector in (3) can be written as

yl = xl + nl, (6)

where the speech and noise vectors xl and nl are defined sim-
ilarly as yl. Assuming the speech and noise STFT coefficients
to be uncorrelated, the N ×N -dimensional noisy covariance
matrix Φy,l = E{yly

H
l }, with E{◦} the expectation operator,

can be written as

Φy,l = Φx,l +Φn,l, (7)

whereΦx,l = E{xlx
H
l } andΦn,l = E{nln

H
l }denote the speech

and noise covariance matrix, respectively. To exploit the speech
correlation across consecutive time frames, it was proposed
in [1], [24] to decompose the speech vector xl into temporally
correlated and uncorrelated components, i.e.,

xl = γx,lXl︸ ︷︷ ︸
correlated

+ x′l︸︷︷︸
uncorrelated

. (8)

The normalized speech inter-frame correlation (IFC) vector γx,l

contains the correlation between the speech STFT coefficient
Xl at the l-th time frame and the N most recent speech STFT
coefficients, i.e.,

γx,l =
E{xlX

∗
l }

E{|Xl|2} =
Φx,le

eTΦx,le
, (9)

where e = [1 0 . . . 0]T denotes an N -dimensional selection
vector and the normalization factorE{|Xl|2} = eTΦx,le = φx,l

corresponds to the speech power spectral density. Due to this

normalization, the first element of the speech IFC vector is equal
to one, i.e.,

γH
x,l e = 1, (10)

and the first element ofx′l in (8) is equal to zero. It is important to
note that the correlated speech componentγx,lXl in (8) contains
both the desired speech component Xl as well as components
that are correlated with Xl. The speech components that are
uncorrelated with Xl, i.e., the elements of x′l, are considered to
be undesired. On the one hand, for temporally correlated sounds,
e.g., voiced sounds, the correlated componentγx,lXl is typically
dominant compared to the uncorrelated component x′l. On the
other hand, for temporally uncorrelated sounds, e.g., unvoiced
sounds, the uncorrelated component x′l may be quite large.

Substituting (8) into (6), we obtain the multi-frame signal
model

yl = γx,lXl + x′l + nl︸ ︷︷ ︸
=:il

, (11)

where the interference vector il contains both the uncorrelated
speech component as well as the noise component. Using (11),
the noisy covariance matrix in (7) can be written as

Φy,l = φx,lγx,lγ
H
x,l +Φx′,l +Φn,l︸ ︷︷ ︸

=:Φi,l

, (12)

with the interference covariance matrix Φi,l = E{iliHl } and
Φx′,l = E{x′lx′lH}. Using (10), it can be shown that

Φy,le = φx,lγx,l +Φi,le, (13)

such that the speech IFC vector can be written as

γx,l =
Φy,le

φx,l
− Φi,le

φx,l
. (14)

By defining the a-priori signal-to-interference-ratio (SIR) as

ξl =
φx,l

φi,l
, (15)

with φi,l = eTΦi,le the interference power spectral density, and
using

φy,l = eTΦy,le = φx,l + φi,l, (16)

the speech IFC vector in (14) can be written in terms of the noisy
covariance matrix Φy,l, the interference covariance matrix Φi,l,
and the a-priori SIR ξl as

γx,l =
1 + ξl
ξl

Φy,le

eTΦy,le
− 1

ξl

Φi,le

eTΦi,le
. (17)

Since the first element of x′l is equal to zero, it can be easily
shown that φx′,l = eTΦx′,le = 0, such that the a-priori SIR in
(15) is equal to the a-priori SNR, i.e.,

ξl =
φx,l

φi,l
=

φx,l

φn,l + φx′,l
=

φx,l

φn,l
. (18)
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B. Multi-Frame MVDR Filter

In [1], [24] the MFMVDR filter was proposed, which aims at
minimizing the output interference power spectral density while
not distorting the correlated speech component, i.e.,

wl = argmin
w ∈CN

wHΦi,lw, s.t. wHγx,l = 1. (19)

Solving (19) yields the MFMVDR filter vector

wl =
Φ−1i,l γx,l

γH
x,lΦ

−1
i,l γx,l

. (20)

To implement the MFMVDR filter in (20), estimates of the in-
terference covariance matrixΦi,l and the speech IFC vectorγx,l

are required. Due to the highly time-varying speech correlation,
accurately estimating these quantities is not straightforward,
and estimation errors may result in reduced noise reduction
and speech distortion in the output of the MFMVDR filter. In
particular, estimation errors in the speech IFC vector may result
in time-varying distortion perceivable as musical noise. Hence,
in (20) the interference covariance matrix Φi,l has often been
replaced either by the noisy covariance matrix Φy,l, leading
to the multi-frame minimum power distortionless response fil-
ter [24], [26], [27], [37], which is very sensitive to estimation
errors in the speech IFC vector [25], or by the noise covariance
matrix Φn,l (see Section III) [28], thereby however neglecting
the uncorrelated speech component x′l.

In this article, we will consider the formulation in (17) for the
speech IFC vector, such that the quantities to be estimated are
the noisy covariance matrix Φy,l, the interference covariance
matrix Φi,l, and the a-priori SIR ξl. We will consider different
supervised learning-based approaches, which differ both in the
training target as well as in the procedure to estimate the covari-
ance matrices. In Section III, we review the approach presented
in [28], where the training target is the SPP (used to estimateΦn,l

and ξl), and hence no end-to-end training using a signal-based
loss function is performed. In Section IV, we propose several
procedures to estimate Φy,l, Φi,l, and ξl by integrating the
fully differentiable MFMVDR filter into a supervised learning
framework and using a signal-based loss function for end-to-end
training.

C. Covariance Matrix Structures

In this article, we will consider different matrix structures for
the N ×N -dimensional noisy and interference covariance ma-
trices, which differ in the number of parameters required to deter-
mine these matrices. First, by definition, covariance matrices are
Hermitian. We assume that the considered covariance matrices
are full-rank (rank-N ), such that they are positive-definite, i.e.,
all eigenvalues are real-valued and larger than zero. Hence, the
noisy and interference covariance matrices can be decomposed
using the Cholesky decomposition [38] as

Φν,l = Lν,lL
H
ν,l, ν ∈ {y, i}, (21)

where the Cholesky factor Lν,l is an N ×N -dimensional
complex-valued lower-triangular matrix with real and positive
diagonal elements, determined by N2 real-valued parameters.

Assuming the signals to be stationary over N frames, the
covariance matrices also exhibit a Toeplitz structure, i.e., the
elements on all diagonals are equal. It has been shown in [39]
that Hermitian positive-definite Toeplitz (PDT) matrices can
be decomposed using their so-called balanced Vandermonde
factorization as

Φν,l = Vν,lDν,lV
H
ν,l, ν ∈ {y, i}, (22)

with Dν,l an N ×N -dimensional diagonal matrix with real and
positive elements and Vν,l an N ×N -dimensional balanced
Vandermonde matrix, defined as

Vν,l =

⎡⎢⎢⎢⎢⎣
1 ζ1ν,l,0 ζ2ν,l,0 . . . ζN−1ν,l,0

1 ζ1ν,l,1 ζ2ν,l,1 . . . ζN−1ν,l,1
...

...
...

. . .
...

1 ζ1ν,l,N−1 ζ2ν,l,N−1 . . . ζN−1ν,l,N−1

⎤⎥⎥⎥⎥⎦ , (23)

with ζν,l,μ a complex number on the unit circle, i.e., ζν,l,μ =
exp(jθν,l,μ) ∀μ ∈ {0, . . . , N − 1}. Hence, since a balanced
Vandermonde matrix can be fully described by the angles θν,l,μ,
the matrices Vν,l and Dν,l are described by N real-valued
parameters each. It should be noted that this assumption presum-
ably holds better for the noise component than for the speech and
interference components, which tend to be quite non-stationary.

III. SPP-BASED DEEP MFMVDR FILTER

In this section, we briefly review the SPP-based deep
MFMVDR filter approach presented in [28] (depicted in
Fig. 1(a)), which will be used as one of the baseline approaches in
the simulations. This approach neglects the uncorrelated speech
componentx′l in (8), such that the interference covariance matrix
Φi,l in (12) reduces to the noise covariance matrix Φn,l. The
speech IFC vector γx,l in (17) and the MFMVDR filter vector
in (20) are then equal to

γx,l =
1 + ξl
ξl

Φy,le

eTΦy,le
− 1

ξl

Φn,le

eTΦn,le
, (24)

wl =
Φ−1n,lγx,l

γH
x,lΦ

−1
n,lγx,l

. (25)

In this approach, a DNN is trained to map the logarithmic
magnitude of the noisy STFT coefficients to an estimate of the
SPP, i.e.,

̂SPPl = DNNSPP {log10 |Yl|} . (26)

The training target is the SPP defined in [40] using oracle infor-
mation about the noise component, i.e., no end-to-end training
using a signal-based loss function is performed (for more details
on the training procedure, we refer to Section V-C). The SPP
estimate in (26) is then used to estimate the noise covariance
matrix Φn,l based on recursive smoothing using a time-varying
SPP-based smoothing factor λSPP

n,l [41], i.e.,

Φ̂SPP
n,l = λSPP

n,l Φ̂
SPP
n,l−1 + (1− λSPP

n,l )yly
H
l (27)

λSPP
n,l = αSPP

n + (1− αSPP
n )̂SPPl, (28)
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Fig. 1. Block diagrams of the SPP-based and signal-based deep MFMVDR filters. The shaded rectangular boxes represent trainable modules, i.e., TCNs, whereas
the rounded boxes represent non-trainable modules.

with αSPP
n a constant. The noisy covariance matrix Φy,l is

estimated based on recursive smoothing using a fixed smoothing
factor λSPP

y , i.e.,

Φ̂SPP
y,l = λSPP

y Φ̂SPP
y,l−1 + (1− λSPP

y )yly
H
l . (29)

To ensure invertibility of the estimated noise covariance matrix
before using it in (25), diagonal loading is applied, i.e.,

˜̂
ΦSPP

n,l = Φ̂SPP
n,l + ρSPP

n,l IN , (30)

with ◦̃ denoting regularization, IN the N ×N -dimensional
identity matrix, and ρSPP

n,l a regularization factor, which is defined
as [26], [42]

ρSPP
n,l =

ρ

N
trace

{
Φ̂SPP

n,l

}
, (31)

withρ a small constant. The a-priori SNR ξl in the l-th time frame
is estimated using the decision-directed approach (DDA) [30],
i.e.,

ξ̂SPP
l = λDDA

∣∣∣X̂l−1
∣∣∣2

φ̂SPP
n,l−1

+ (1− λDDA)max

{
|Yl|2
φ̂SPP
n,l

− 1, 0

}
,

(32)
with λDDA a smoothing factor, φ̂SPP

n,l = eTΦ̂SPP
n,l e an estimate

of the noise power spectral density based on the estimated
noise covariance matrix in (27), and X̂l−1 the estimated speech
component in the previous frame.

IV. SIGNAL-BASED DEEP MFMVDR FILTER

Contrary to the SPP-based approach described in the pre-
vious section, in this section we propose a signal-based deep
MFMVDR filter approach (depicted in Fig. 1(b)), where all
quantities are estimated with DNNs that are jointly trained using

a signal-based loss function at the output of the MFMVDR filter.
In other words, the training of the DNNs is guided by the speech
estimate obtained at the output of the deep MFMVDR filter, i.e.,
no ground-truth quantities are required. As already mentioned
in Section II, the quantities required to compute the speech IFC
vector γx,l in (17) and the MFMVDR filter vector in (20) are
the noisy covariance matrix Φy,l, the interference covariance
matrix Φi,l, and the a-priori SIR ξl. A separate DNN is used per
quantity, with different input features for the DNNs estimating
the covariance matrices (Section IV-A) and the a-priori SIR
(Section IV-B).

A. Covariance Matrices

In this section we propose different estimation procedures for
the noisy and interference covariance matricesΦy,l andΦi,l. All
estimation procedures have in common that the DNN estimating
Φy,l and the DNN estimating Φi,l are jointly trained using a
signal-based loss function (see Fig. 1(b)), i.e., without the need
for defining target covariance matrices. In the following, we will
consider Hermitian positive-definite, Hermitian PDT, and rank-1
matrix structures, where the main difference lies in the number of
parameters that need to be estimated as well as in the required
linear algebra operations. It should be noted that similarly to
(30), diagonal loading is applied to the estimated interference
covariance matrix before using it in (20). Since the covariance
matrices contain complex-valued elements, we propose to use a
concatenation of the logarithmic magnitude as well as the cosine
and sine of the phase of the noisy STFT coefficients as input
features fl for both DNNs, i.e.,

fl =
[
log10(|Yl|+ ε) cos∠Yl sin∠Yl

]
T, (33)
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where ε denotes a small positive constant to avoid numerical
issues, and ∠◦ denotes the phase of ◦. Note that both the cosine
and sine of the phase are used in order to avoid an ambiguous
phase encoding [43].

1) Hermitian Positive-Definite: Based on the assumed Her-
mitian positive-definite structure for covariance matrices, we
propose two different estimation procedures. The first procedure
is based on recursive smoothing and only requires one parameter
to be estimated by each DNN, while the second procedure is
based on the Cholesky decomposition and requires N2 param-
eters to be estimated by each DNN.

a) Recursive Smoothing (RS): Similarly to (27), the noisy and
interference covariance matrices are estimated as

Φ̂RS
ν,l = λRS

ν,lΦ̂
RS
ν,l−1 + (1− λRS

ν,l)yly
H
l , (34)

where the recursive smoothing factors are estimated using
DNNs, i.e.,

λRS
ν,l = sigmoid{DNNRS

ν {fl}}, (35)

where a sigmoid activation function is used to ensure that the
recursive smoothing factors are bounded to [0, 1]. The pro-
posed recursive smoothing procedure differs from the con-
ventional recursive smoothing procedure (see Section III) by
allowing a time-varying smoothing factor for both covariance
matrices and by jointly training the DNNs with a signal-based
loss function instead of an SPP-based loss function.

b) Cholesky Decomposition (CD): As already mentioned
in Section II-C, the N ×N -dimensional lower-triangular
Cholesky factors Ly,l and Li,l of the noisy and interference
covariance matrices are fully determined by N2 real-valued
parameters each, which can be stacked in the vectorshCD

y,l ,h
CD
i,l ∈

RN2
. We propose to estimate these vectors using separate DNNs,

i.e.,

ĥCD
y,l = DNNCD

y {fl}, ĥCD
i,l = DNNCD

i {fl}. (36)

The estimated Cholesky factors L̂y,l and L̂i,l are assembled
from ĥCD

y,l and ĥCD
i,l as described in Algorithm 1, where separate

subsets of the real-valued vector elements are used for the real
strictly lower triangular part, the imaginary strictly lower trian-
gular part, and the real positive diagonal part. Positivity of the
diagonal part is ensured by using a softplus activation function.
Finally, estimates of the covariance matrices are obtained as
Φ̂CD

y,l = L̂y,lL̂
H
y,l and Φ̂CD

i,l = L̂i,lL̂
H
i,l.

2) Hermitian Positive-Definite Toeplitz (PDT): When as-
suming stationarity of the noisy and interference components
over N frames, the respective covariance matrices Φy,l and Φi,l

exhibit a Hermitian PDT structure. As mentioned in Section II-C,
PDT matrices can be decomposed as Φν,l = Vν,lDν,lV

H
ν,l,

where the balanced Vandermonde matrixVν,l in (23) is fully de-
termined by N angles θν,l,μ, and the (positive-definite) diagonal
matrix Dν,l is fully determined by N real-valued parameters.
These angles and parameters can be stacked in the vectors
hPDT
y,l ,h

PDT
i,l ∈ R2N . We propose to estimate these vectors using

separate DNNs, i.e.,

ĥPDT
y,l = DNNPDT

y {fl}, ĥPDT
i,l = DNNPDT

i {fl}. (37)

Algorithm 1: Construct a Hermitian Positive-Definite Ma-
trix Φ̂ From a Vector of Real-Valued Parameters ĥ Using
its Cholesky Decomposition. stril{◦} Assembles a Strictly
Lower Triangular Matrix from ◦.

1: procedure CHOLESKY(ĥ ∈ RN2
)

2: construct strictly lower triangular matrices:
3: Â� = stril{[ĥ]0: 12 (N2−N)−1}
4: Â� = stril{[ĥ] 1

2 (N
2−N):N2−N−1}

5: construct real-valued positive diagonal matrix:
6: B̂ = diag{softplus{[ĥ]N2−N :N2−1}}
7: construct Cholesky factor:
8: L̂ = Â� + jÂ� + B̂, j2 = −1
9: return Φ̂ = L̂L̂H

Algorithm 2: Construct a Hermitian PDT Matrix Φ̂ From a
Vector of Real-Valued Parameters ĥ Using its Vandermonde
Factorization.

1: procedure VANDERMONDE(ĥ ∈ R2N )

2: ζ̂=
[
ζ̂0 . . . ζ̂N−1

]
T=exp(jπ tanh{[ĥ]0:N−1})

3: using ζ̂, assemble V̂ as in (23)
4: D̂ = diag{softplus{[ĥ]N :2N−1}}
5: return Φ̂ = V̂D̂V̂H

The estimated Hermitian PDT matrices Φ̂PDT
y,l and Φ̂PDT

i,l are

assembled from ĥPDT
y,l and ĥPDT

i,l as described in Algorithm 2. The

angles are computed from the firstN elements of ĥPDT
ν,l , bounded

to [−π, π] using a scaled hyperbolic tangent activation function,
i.e., θ̂ν,l,μ = π tanh{[ĥPDT

ν,l ]μ}. The diagonal matrix D̂ν,l is

computed from the secondN elements of ĥPDT
ν,l , where positivity

of the diagonal elements is ensured by using a softplus activa-
tion function. Finally, estimates of the covariance matrices are
obtained as Φ̂PDT

y,l = V̂y,lD̂y,lV̂
H
y,l and Φ̂PDT

i,l = V̂i,lD̂i,lV̂
H
i,l.

3) Rank-1 (R1): Although the noisy and interference covari-
ance matrices are full-rank, here we assume that these matrices
can be approximated using a rank-1 structure,1 i.e.,

ΦR1
y,l = hR1,C

y,l

(
hR1,C
y,l

)
H, (38)

ΦR1
i,l = hR1,C

i,l

(
hR1,C
i,l

)
H, (39)

where hR1,C
y,l and hR1,C

i,l denote N -dimensional complex-valued
vectors fully determined by 2N real-valued parameters each,
which can be stacked in the vectors hR1

y,l,h
R1
i,l ∈ R2N . We pro-

pose to estimate these vectors using separate DNNs, i.e.,

ĥR1
y,l = DNNR1

y {fl}, ĥR1
i,l = DNNPDT

i {fl}. (40)

The vectors ĥR1,C
y,l and ĥR1,C

i,l can then be obtained as

ĥR1,C
ν,l = [ĥR1

ν,l]0:N−1 + j [ĥR1
ν,l]N :2N−1. (41)

1Although we realize that this approximation lacks a theoretical motivation,
especially for the noisy covariance matrix, it will result in a lower-complexity
estimation procedure with a very good performance (see Section VI).
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Since the rank-1 matrix Φ̂R1
i,l = ĥR1,C

i,l (ĥR1,C
i,l )H is not invertible

and hence can not be directly used in (20), diagonal loading is
applied, i.e.,

˜̂
ΦR1

i,l = ĥR1,C
i,l

(
ĥR1,C
i,l

)
H + ρR1

i,lIN , (42)

where the regularization factor ρR1
i,l is defined as in (31), i.e.,

ρR1
i,l =

ρ

N
trace

{
Φ̂R1

i,l

}
=

ρ

N

∥∥∥ĥR1,C
i,l

∥∥∥2
2
, (43)

with ρ a small constant and ‖ ◦ ‖2 denoting the �2-norm of ◦.
Using the (regularized) rank-1 covariance matrices in (38) and
(42), it can be shown that the MFMVDR filter in (20) can be
directly computed as a linear combination of the DNN outputs
ĥR1,C
y,l and ĥR1,C

i,l without requiring computationally complex
matrix inversions. First, using (38) and (42) in (17), the speech
IFC vector can be written as a linear combination of the DNN
outputs, i.e.,

γ̂R1
x,l = αy,lĥ

R1,C
y,l + αi,lĥ

R1,C
i,l + αe,le, (44)

with

αy,l =
1 + ξ̂l

ξ̂l

1

[ĥR1,C
y,l ]0

(45)

αi,l = − 1

ξ̂l

[ĥR1,C
i,l ]∗0

|[ĥR1,C
i,l ]0|2 + ρR1

i,l

(46)

αe,l = αi,l

ρR1
i,l

[ĥR1,C
i,l ]∗0

. (47)

By using the matrix inversion lemma, it can be easily shown that
the inverse of the interference covariance matrix in (42) is equal
to (

˜̂
ΦR1

i,l

)−1
=

1

ρR1
i,l

(
IN − ηlĥ

R1,C
i,l

(
ĥR1,C
i,l

)
H
)
, (48)

with

ηl =
1

ρR1
i,l +

∥∥∥ĥR1,C
i,l

∥∥∥2
2

∈ R. (49)

By plugging (48) into (20), the MFMVDR filter vector can be
written as

wR1
l =

(
IN − ηlĥ

R1,C
i,l

(
ĥR1,C
i,l

)
H
)

(
γ̂R1
x,l

)
H
(
IN − ηlĥ

R1,C
i,l

(
ĥR1,C
i,l

)
H
)
γ̂R1
x,l

γ̂R1
x,l (50)

=
1

κl

(
IN − ηlĥ

R1,C
i,l

(
ĥR1,C
i,l

)
H
)
γ̂R1
x,l, (51)

with

κl =
∥∥γ̂R1

x,l

∥∥2
2
− ηl

∣∣∣(ĥR1,C
i,l

)
Hγ̂R1

x,l

∣∣∣2 ∈ R. (52)

Finally, by plugging (44) into (51), the MFMVDR filter vector
can be written as a linear combination of the DNN outputs, i.e.,

wR1
l =

1

κl

[
αy,lĥ

R1,C
y,l +

(
αi,l−ηl

(̂
hR1,C
i,l

)
Hγ̂R1

x,l

)
ĥR1,C
i,l +αe,le

]
.

(53)

B. A-Priori SIR

To estimate the a-priori SIR ξl, a similar approach is used
as for the covariance matrices. Instead of training a DNN to
map input features to an a-priori SIR target, a DNN is trained
by minimizing a signal-based loss function at the output of the
MFMVDR filter (see Fig. 1(b)), where it should be noted that the
DNN estimating the a-priori SIR is trained jointly with the DNNs
estimating the covariance matrices (see Section IV-A). Since
the a-priori SIR is a quantity relating signal powers, magnitude
information is assumed to be sufficient for its estimation. Hence,
similarly as in (26), we propose to use the logarithmic magnitude
of the noisy STFT coefficients as input feature, i.e.,

ξ̂l = softplus{DNNξ{log10 |Yl|}}, (54)

where positivity of ξ̂l is ensured by using a softplus activation
function.

V. SIMULATION SETUP

In this section, we present our simulation setup, more in
particular the used datasets (Section V-A), the baseline speech
enhancement algorithms (Section V-B), and the settings of the
considered algorithms (Section V-C).

A. Datasets

The data used to train, validate, and test the DNNs are based
on the first DNS challenge [44].

1) Training & Validation: The training and validation
datasets were generated using the official dataset generator of
the DNS challenge [44], i.e., 500 h of clean speech from 2150
speakers from the LibriSpeech dataset [45], 60000 noise clips
from the Audioset dataset [46], and 10000 noise clips from the
Freesound and DEMAND datasets [47], [48]. Noisy utterances
were generated by randomly choosing clean speech and noise
and mixing them at broadband SNRs ranging from 0 dB to 19 dB
with a length of 4 s per utterance.

2) Testing: To test the considered speech enhancement algo-
rithms, we used the official DNS challenge test dataset, compris-
ing English clean speech from the Graz University dataset [49]
and noise from the Audioset and Freesound datasets, totaling
150 utterances at SNRs ranging from 0 dB to 19 dB. All test
utterances have a length of 10 s, and the training, validation, and
test datasets are disjoint.

B. Baseline Algorithms

In addition to comparing the different proposed estima-
tion procedures for the signal-based deep MFMVDR filter
(Section IV), we compare the signal-based deep MFMVDR filter
to several baseline algorithms:

1) SPP-based deep MFMVDR filter (Section III), aiming at
investigating the difference between using the SPP as a
training target and using a signal-based loss function at
the output of the MFMVDR filter.

2) Masking: Aiming at investigating the benefit of multi-
frame filtering, i.e., N > 1, we also consider single-frame
masking algorithms as described in (2), i.e., X̂l = MlYl,
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either using a real-valued mask Ml ←MR
l or a complex-

valued mask Ml ←MC
l . The real-valued mask is esti-

mated using a DNN as

MR
l = sigmoid{DNNR{fl}}, (55)

where a sigmoid activation function is used to ensure that
the mask is bounded to [0, 1]. The complex-valued mask
is estimated using a DNN as[

�{MC
l }

�{MC
l }

]
= tanh{DNNC{fl}}, (56)

where �{◦} and �{◦} denote the real and imaginary
part of ◦, respectively, and a hyperbolic tangent activation
function is used to ensure that both parts are bounded to
[−1, 1].

3) Direct multi-frame filtering (DMFF): Aiming at investi-
gating the benefit of imposing the MFMVDR filter struc-
ture in (20), we also consider directly estimating the
complex-valued elements of the N -dimensional multi-
frame filter in (5) using a DNN, similarly to [21]. The
real and imaginary parts of the multi-frame filter wDMFF

l

are estimated as[
�{wDMFF

l }
�{wDMFF

l }

]
= tanh{DNNDMFF{fl}}, (57)

where a hyperbolic tangent activation function is used
to ensure that the real and imaginary parts of all filter
coefficients are bounded to [−1, 1] as in [21].

C. Algorithmic Settings

For all considered algorithms, the same STFT framework was
used. To increase speech correlation across consecutive STFT
frames, a high temporal resolution was utilized, i.e., a frame
length of 8 ms and a frame overlap of 75% , similarly as in [24],
[29]. A square root Hann window was used both as analysis
and synthesis window. All algorithms using multi-frame filters,
i.e., all deep MFMVDR filters and the DMFF algorithm, used
a filter length of N = 5, enabling the algorithms to exploit
temporal correlations within 16 ms. Similarly as in [28], for the
SPP-based deep MFMVDR filter we used a smoothing constant
αSPP
n = 0.9694 (corresponding to about 50 ms) for the noise

covariance matrix in (28), a smoothing factor λSPP
y = 0.8464

(corresponding to about 12 ms) for the noisy covariance matrix
in (29), and a smoothing factor λDDA = 0.9408 (corresponding
to about 33 ms) for the decision-directed approach (DDA) in
(32). The target SPP was defined as [40]

SPPl =

(
1 + (1 + ξH1

)e
− |Yl |2

φ̂n,l

ξH1
1+ξH1

)−1
(58)

φ̂n,l = λSPP
n,l φ̂n,l−1 + (1− λSPP

n,l )|Nl|2, (59)

with λSPP
n,l defined in (28). For the deep MFMVDR filter, diagonal

loading with a fixed regularization constant ρ = 10−3 was ap-
plied to all estimated interference or noise covariance matrices.
In (33), we used ε = 1× 10−8 to avoid numerical issues. No

recursive smoothing was applied in the case of the Cholesky
decomposition (CD), PDT, or rank-1 (R1) deep MFMVDR
filters.

To limit speech distortion, a smooth minimum gain was
applied to the output X̂l of all considered algorithms, i.e., the
final speech estimate X̂fin

l used in the evaluation was obtained
as

X̂fin
l = βlX̂l + (1− βl)GminYl, (60)

where the factor βl interpolates between the estimated speech
component X̂l and a hard minimum gain Gmin applied to the
noisy STFT coefficients. We propose to use a smooth (time-
varying) interpolation factor

βl =
1

1 + e−2s(| ̂Xl|−|GminYl|)
, (61)

where s controls how accurately the hard minimum gain Gmin

is approximated. The advantage of using the minimum gain
approximation in (60) over a hard minimum gain (corresponding
to s =∞) is the fact that the former is smoothly differentiable,
allowing for it to be used during back-propagation. For all
algorithms, we used Gmin = −17 dB and s = 10.

The DNNs were trained using the AdamW optimizer [50]
with an initial learning rate of 3× 10−4. The learning rate was
halved after the validation loss did not decrease for 3 consecutive
epochs, and training was stopped if either 50 epochs were com-
pleted or the validation loss did not decrease for 10 consecutive
epochs. The gradient �2-norms were clipped to 5, and a batch
size of 4 was used. As loss function for the SPP-based deep
MFMVDR filter we used the mean square error between the
estimated SPP in (26) and the target SPP defined in (58). For
all other algorithms, we used the signal-based SI-SDR as loss
function, i.e.,

SI-SDR = 10 log10

( |αx̄|2
|αx̄− ̂̄x|2

)
, α =

̂̄xTx̄
‖x̄‖22

, (62)

where x̄ and ̂̄x denote the clean speech signal and the estimated
speech signal after inverse STFT processing in the time domain.
All algorithms were implemented in PyTorch 1.10.1, and train-
ing and evaluation were performed on NVIDIA GeForce RTX
2080 Ti graphics cards. As the DNN architecture for all esti-
mators, we used temporal convolutional network (TCN), which
exhibit strong temporal and spectral modeling capabilities [12]
and have been shown to be quite effective in the context of
speech enhancement [9]. We used the official Conv-TasNet TCN
implementation,2 excluding the encoder and decoder modules,
since the proposed algorithms operate in the STFT domain. We
fixed the hyperparameters of all TCN modules to 2 stacks of
4 layers each, with a kernel size of 3, resulting in a temporal
receptive field size of 61 frames (corresponding to 128 ms).
Aiming at a fair comparison, the number of channels in the
convolutional block and the number of channels in the bottleneck
were varied to obtain a similar total number of trainable weights
for all considered algorithms (see Table II). The ratio between
these numbers was kept fixed at 4 as proposed in [9]. The

2[Online]. Available: https://github.com/naplab/Conv-TasNet

https://github.com/naplab/Conv-TasNet
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TABLE I
SPEECH ENHANCEMENT PERFORMANCE ON THE DNS TEST DATASET, PRESENTED IN TERMS OF SI-SDR, NARROWBAND PERCEPTUAL EVALUATION OF SPEECH

QUALITY (PESQ) (PESQ-NB), WIDEBAND PESQ (PESQ-WB), SHORT-TIME OBJECTIVE INTELLIGIBILITY (STOI), AND DNSMOS FOR DEEP MFMVDR FILTERS

USING DIFFERENT MATRIX ESTIMATION PROCEDURES BASED ON SPEECH PRESENCE PROBABILITY (SPP), RECURSIVE SMOOTHING (RS), CHOLESKY

DECOMPOSITION (CD), POSITIVE-DEFINITE TOEPLITZ (PDT), AND RANK-1 (R1), THE REAL- AND COMPLEX-VALUED MASKING ALGORITHMS, THE DIRECT

MULTI-FRAME FILTERING (DMFF) ALGORITHM, AS WELL AS THE DCCRN-MC AND DCUNET-MC ALGORITHMS

motivation behind varying these numbers as opposed to the
number of stacks/layers or the kernel size is to keep the temporal
receptive field size fixed, which might otherwise result in an
unfair comparison. Frequency bins were treated as channels in
the context of the TCN architecture, resulting in the following
input-to-output mapping: RB×3K×L → RB×(nparam K)×L, with B
the batch size, K the number of frequency bins, L the number of
time frames, and nparam the number of parameters per frequency
bin required by the specific covariance matrix estimation proce-
dure.

VI. SIMULATION RESULTS

In this section, we investigate the speech enhancement per-
formance and the computational complexity of the signal-based
deep MFMVDR filters using the different proposed matrix es-
timation procedures proposed in Section IV. In Section VI-A,
the SPP-based deep MFMVDR filter and the signal-based deep
MFMVDR filters using the different proposed matrix estimation
procedures are compared. In Section VI-B, the best-performing
deep MFMVDR filters are compared with several baseline al-
gorithms.

A. Comparison of Deep MFMVDR Filters

Table I shows the speech enhancement performance on the
DNS test dataset for the SPP-based deep MFMVDR filter
and the signal-based deep MFMVDR filters using the differ-
ent matrix estimation procedures (RS, CD, PDT, R1). In this
section, we focus on all considered deep MFMVDR filters.
The speech enhancement performance is presented in terms of
SI-SDR [52], the narrowband and wideband PESQ metrics [53],
the STOI metric [54], as well as the Deep Noise Suppression
Mean Opinion Score (DNSMOS) metric [55], using the clean
speech signal as the reference signal. As can be observed, all
considered signal-based MFMVDR filters yield a significant
improvement in terms of all performance metrics. Comparing
the SPP-based deep MFMVDR filter and the signal-based deep
MFMVDR filter using the recursive smoothing (RS) matrix
estimation procedure, which both utilize a variant of recursive
smoothing, a clear benefit of defining the loss function on the

signal level can be observed. A possible explanation is the fact
that the SPP-based deep MFMVDR filter requires a number of
smoothing parameters to be chosen by hand, i.e., αSPP

n for the
noise covariance matrix in (28) (also affecting the target used
in the loss function), λSPP

y for the noisy covariance matrix in
(29), and λDDA for the DDA in (32). The combination of these
smoothing parameters critically affects the resulting speech
enhancement performance, and different parameter choices may
be more suitable for different acoustic conditions. In contrast,
in the signal-based deep MFMVDR filter approach the required
smoothing parameters, i.e., λRS

y,l for the noisy covariance ma-
trix and λRS

i,l for the interference covariance matrix in (34) are
determined by the DNNs.

Comparing the signal-based deep MFMVDR filters, it can be
observed that the CD matrix estimation procedure consistently
yields the highest improvement in terms of all performance
metrics, closely followed by the R1 matrix estimation procedure.
The RS and PDT matrix estimation procedures yield the lowest
improvements.

As discussed in Section II-C, the CD matrix estimation pro-
cedure merely imposes a Hermitian positive-definite structure
on the estimated covariance matrices, i.e., it actually does not
restrict the estimated covariance matrices more than mathemat-
ically required. While the RS, PDT, and R1 matrix estimation
procedures also yield Hermitian positive-definite covariance
matrices, they impose further structure. More specifically, from
(34) it can be seen that the RS matrix estimation procedure
imposes rank-1 updates using the noisy vector. By imposing
a Toeplitz structure, the PDT matrix estimation procedure im-
poses stationarity over N frames on the noisy and interference
components, apparently leading to a significant reduction in
speech enhancement performance compared with the CD matrix
estimation procedure. Hence, a Toeplitz structure does not seem
to be a viable choice for modeling the noisy and interference
covariance matrices. Interestingly, the R1 matrix estimation
procedure, which imposes a dominant principal subspace on the
noisy and interference covariance matrices, yields quite a high
speech enhancement performance.

For the deep MFMVDR filters, Table II shows the network
size in terms of trainable weights, bottleneck dimension size
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TABLE II
NETWORK SIZE, PRESENTED IN TERMS OF TRAINABLE WEIGHTS, BOTTLENECK DIMENSION SIZE AND MEMORY, AND COMPUTATIONAL COMPLEXITY, PRESENTED

IN TERMS OF THE REAL-TIME FACTOR (RTF), THE CONTRIBUTION OF THE MFMVDR LINEAR ALGEBRA OPERATIONS TO THE RTF, THE NUMBER OF FLOPS, AND

THE NUMBER OF ESTIMATED PARAMETERS

and memory, and the computational complexity in terms of the
real-time factor (RTF), defined as the ratio between processing
duration and signal duration, as well as the contribution of the
MFMVDR linear algebra operations to the RTF, the number of
floating point operations per second (FLOPS), and the number of
estimated parameters. As linear algebra operations any operation
is counted between obtaining the DNN outputs and applying the
multi-frame filter to the noisy vector. All metrics were computed
using the PyTorch profiler for the DNS test dataset, i.e., 100
signals of length 10 s, using a single core of an AMD EPYC
7443P CPU clocked at 3.8 GHz. First, it can be observed that
all deep MFMVDR filters exhibit an RTF that is significantly
smaller than 1. Second, the signal-based deep MFMVDR fil-
ter using the R1 estimation procedure exhibits a significantly
smaller RTF than the other deep MFMVDR filters. This can
be explained by the fact that the SPP-based, RS, CD and PDT
estimation procedures require relatively complex operations to
construct the covariance matrix estimates from the DNN outputs
(see, e.g., Algorithms 1 and 2) and require a matrix inversion to
compute the MFMVDR filter in (20). Hence, as can be observed
in Table II, the RTF is primarily determined by the MFMVDR
linear algebra operations and not by the number of parameters
that need to be estimated by the TCNs.

Relating the speech enhancement performance in Table I
and the computational complexity in Table II, a benefit of the
proposed R1 matrix estimation procedure can be identified, since
it yields a speech enhancement performance that is only slightly
lower than the CD matrix estimation procedure, while reducing
the RTF, the number of FLOPS, and the memory consumption
by approximately 30%.

B. Comparison With Baseline Algorithms

In this section, we focus on the best-performing deep
MFMVDR filters, i.e., the signal-based deep MFMVDR filter
using the CD and R1 matrix estimation procedures, and compare
their speech enhancement performance (Table I) and computa-
tional complexity (Table II) with several baseline algorithms.
As the first set of baseline algorithms, we consider the real-
and complex-valued masking as well as the DMFF algorithms
discussed in Section V-B, which are based on the same TCN ar-
chitecture and trained using the same procedure as the proposed

deep MFMVDR filters, thus allowing to investigate the effect of
imposing the deep MFMVDR structure. As additional state-of-
the-art baseline algorithms, we consider the deep complex con-
volutional recurrent network (DCCRN-MC) and the deep com-
plex U-Net (DCUNET-MC) algorithms proposed in [51]. These
algorithms integrate a complex convolutional recurrent-based or
a complex U-Net-based encoder-decoder structure with complex
convolutional block attention modules to estimate single-frame
complex-valued masks, which are applied to the noisy STFT
coefficients. The DCCRN-MC and DCUNET-MC were trained
using a mixed loss function, comprising an SI-SDR term as
well as a term consisting of the squared complex-valued mask
error.

Note that the DCCRN-MC and DCUNET-MC algorithms
were not retrained in the context of these simulations, and instead
the official published results on the DNS challenge test dataset
are presented, which is the reason for missing values in Tables I
and II.

First, comparing the speech enhancement performance of
the real- and complex-valued masking algorithms, it can be
confirmed that adding the potential of phase enhancement yields
an increased performance in terms of all considered metrics.
Second, comparing the complex-valued masking and DMFF
algorithms, it can be observed that the speech enhancement
performance is hardly improved by increasing the number of
filter coefficients from N = 1 to N = 5 (only improvement
in terms of SI-SDR and wideband PESQ). Third, comparing
the complex-valued masking algorithms employing either the
TCN architecture, the DCCRN architecture, or the DCUNET
architecture, it can be observed that the TCN-based complex-
valued masking algorithm performs slightly better than the
DCCRN-MC algorithm, while both algorithms are consistently
outperformed by the DCUNET-MC algorithm. Fourth, we com-
pare the best-performing proposed deep MFMVDR filters, i.e.,
using the R1 and the CD estimation procedure, with the best-
performing baseline algorithms, i.e., the DMFF algorithm and
the DCUNET-MC algorithm. The proposed R1 deep MFMVDR
filter outperforms the DMFF algorithm (except in terms of
SI-SDR) while being outperformed by the DCUNET-MC al-
gorithm. In contrast, the proposed CD deep MFMVDR filter
consistently outperforms the DMFF algorithm and outperforms
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the DCUNET-MC algorithm in terms of SI-SDR while yielding
a similar performance in terms of narrowband PESQ and STOI.
Exemplary audio examples are available online.3

In terms of computational complexity, it can be observed in
Table II that the RTF of the real- and complex-valued masking
algorithms as well as the DMFF algorithm is lower than the RTF
of the R1 and CD deep MFMVDR filters, due to the absence of
MFMVDR linear algebra operations. Hence, for the considered
algorithms employing a TCN architecture, a trade-off exists
between speech enhancement performance and computational
complexity.

VII. CONCLUSION

In this article, we proposed to integrate the MFMVDR filter
for single-microphone speech enhancement into a deep learning
framework. We proposed to estimate the required quantities of
the MFMVDR filter, i.e., the noisy and interference covariance
matrices as well as the a-priori SIR, using a signal-based loss
function defined at the output of the MFMVDR filter. For the
covariance matrices, we investigated different matrix structures,
namely Hermitian positive-definite, Hermitian positive-definite
Toeplitz (assuming stationarity of the noisy and interference
components over N frames) and rank-1 (assuming a dominant
principal subspace). For the Hermitian positive-definite matrix
structure, we proposed an estimation procedure based on recur-
sive smoothing, requiring one real-valued parameter for each
covariance matrix, and an estimation procedure based on the
Cholesky decomposition, requiring N2 real-valued parameters
for each covariance matrix. For the Hermitian positive-definite
Toeplitz matrix structure, we proposed an estimation procedure
involving balanced Vandermonde matrices, requiring 2N real-
valued parameters for each covariance matrix. For the rank-1
matrix structure, we showed that the MFMVDR filter can be
written as a linear combination of the DNN outputs, circumvent-
ing computationally complex matrix inversions, and proposed
an estimation procedure requiring 2N real-valued parameters
for each covariance matrix.

Experimental results on the DNS challenge dataset at SNRs
ranging from 0 dB to 19 dB show that the matrix estima-
tion procedure based on the Cholesky decomposition yields
the best speech enhancement performance, closely followed
by the computationally less complex rank-1 matrix estimation
procedure. The matrix estimation procedures based on recursive
smoothing and the positive-definite Toeplitz matrix structure
yield the lowest speech enhancement performance, hinting that
updating the covariance matrices based on recursive smoothing
or assuming stationarity are not as appropriate. In addition, the
simulation results show that the best-performing signal-based
deep MFMVDR filter outperforms real- and complex-valued
masking as well as direct multi-frame filtering, demonstrating
the benefit of imposing structure on the multi-frame filters,
and a competitive performance compared with state-of-the-art
algorithms is demonstrated.

3[Online]. Available: https://uol.de/en/sigproc/research/audio-demos/multi-
frame-speech-enhancement/deep-mfmvdr-journal
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