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Abstract
Speaker-conditioned target speaker extraction systems rely
on auxiliary information about the target speaker to ex-
tract the target speaker signal from a mixture of multiple
speakers. Typically, a deep neural network is applied to
isolate the relevant target speaker characteristics. In this
paper, we focus on a single-channel target speaker extrac-
tion system based on a CNN-LSTM separator network and
a speaker embedder network requiring reference speech of
the target speaker. In the LSTM layer of the separator net-
work, we propose to customize the LSTM cells in order to
only remember the specific voice patterns corresponding
to the target speaker by modifying the information process-
ing in the forget gate. Experimental results for two-speaker
mixtures using the Librispeech dataset show that this cus-
tomization significantly improves the target speaker ex-
traction performance compared to using standard LSTM
cells.

1 Introduction
Recently, the problem of speaker extraction has attracted a
lot of attention in the speech processing community. The
goal of speaker extraction is to extract a target speaker sig-
nal from a mixture of multiple speakers. In principle, this
can be achieved by first extracting all individual speak-
ers from the mixture using blind source separation [1–6]
and then selecting the extracted signal that corresponds
to the target speaker. However, a disadvantage of such a
two-step approach is that the number of speakers needs
to be known or estimated, which is not trivial in prac-
tice. Alternatively, one-step approaches have been pro-
posed which aim at directly extracting the target speaker
from the mixture by utilizing auxiliary information about
the target speaker [7–16]. Such approaches are also re-
ferred as speaker-conditioned target speaker extraction tech-
niques. Commonly used auxiliary information includes
reference speech of the target speaker [7–11], video of the
target speaker [12–14, 17], directional information [15, 18,
19], or information about the speech activity of the target
speaker [16]. In this paper, we focus on single-channel tar-
get speaker extraction using reference speech as auxiliary
information.

The single-channel speaker-conditioned target speaker
extraction systems in [8–11] consist of two networks: a
separator network and a speaker embedder network. The
speaker embedder network is used to generate embeddings
from the reference speech of the target speaker. These
embeddings are used along with the mixture in the sepa-
rator network with the goal to extract the target speaker
signal from the mixture. The separator networks in [8, 9]

estimate a time-frequency mask to perform speaker ex-
traction, whereas the separator networks in [10, 11] per-
form speaker extraction in the time-domain. The embedder
networks in [8, 11] utilize the same LSTM-based archi-
tecture of a speaker verification system proposed in [20],
whereas different ResNet-based speaker verification sys-
tems are utilized in [9, 10] to generate embeddings of the
target speaker. In [10] the speaker embedder network and
the separator network are trained jointly using a weighted
combination of a cross-entropy loss function and a scale-
invariant signal-to-noise ratio (SI-SNR) loss function, while
in [8, 9, 11] the speaker embedder network and the sep-
arator network are trained separately. The system in [8]
utilizes a convolutional long short-term memory (CNN-
LSTM) separator network trained with a power-law com-
pression loss function, while the system in [9] utilizes an
attention-based separator network trained with a squared
l2-norm loss function and the system in [11] utilizes a sep-
arator network similar to [5] trained with an SI-SNR loss
function. In this paper, our proposed speaker-conditioned
target speaker extraction system is mostly inspired by the
system presented in [8] (VoiceFilter).

In order to improve the performance of the baseline
system in [8], in this paper we propose two modifications.
First, instead of using standard LSTM cells in the separa-
tor network we introduce an LSTM cell that is customized
for speaker-conditioned target speaker extraction. The pur-
pose of this customization is to force the forget gate of the
LSTM cell to only remember the specific voice patterns
corresponding to the target speaker, which are needed to
distinguish between the target speaker and the other speak-
ers present in the mixture. Second, instead of using the
spectral-domain power-law compression loss function we
use the time-domain SI-SNR loss function. Experimen-
tal results for two-speaker mixtures from the Librispeech
dataset show that the target speaker extraction performance
can be significantly improved compared to the baseline
system [8] in terms of signal-to-distortion ratio (SDR) [21]
and perceptual evaluation of speech quality (PESQ) [22].

The remainder of this paper is organized as follows. In
Section 2 we introduce the considered target speaker ex-
traction system, where we mainly focus on the proposed
customization of the LSTM cells. Section 3 discusses the
network architectures and the parameters used for training
and evaluation. Section 4 presents the target speaker ex-
traction results.

2 Target Speaker Extraction System
We consider a scenario where a single microphone records
a mixture of I speakers, i.e., in the time-domain the micro-
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phone signal can be written as

y(n) =
I

∑
i=1

xi(n), (1)

where xi(n) denotes the speech signal of the i-th speaker
and n denotes the discrete-time index. The goal is to ex-
tract the speech signal corresponding to the target speaker
from the mixture, where without loss of generality the j-th
speaker will be assumed to be the target speaker.

Similarly to [8–11], we consider a speaker-conditioned
target speaker extraction system consisting of two parts
(see Figure 1), namely, a speaker embedder network and a
separator network. The speaker embedder network is used
to generate the embeddings from the reference speech of
the target speaker. Based on the target speaker embeddings
and the mixture, the separator network aims at extracting
the target speaker signal from the mixture. In this section,
we will mainly discuss the separator network, while details
about the embedder network will be provided in Section
3.1.

In [8, 9] speaker extraction was performed in the short-
time Fourier transform (STFT) domain. The magnitude
spectrum of the target speaker signal was estimated from
the magnitude spectrum of the microphone signal using a
(soft) mask M(k, l), i.e.,

X̃j(k, l) =M(k, l)Y (k, l), (2)

where k and l denote the frequency index and the time
frame index, respectively. Using the CNN-LSTM network
proposed in [8], the mask was computed from the target
speaker embeddings ej and the mixture as

M(k, l) = φ(r,ej), (3)

r= g(|Y (k, l)|), (4)

where g(◦) denotes the convolutional layers of the separa-
tor network used to obtain the intermediate representation
r, and φ(◦) denotes the rest of the separator network.

Instead of using standard LSTM cells in φ(◦), we pro-
pose to customize the information processing through the
forget gate of the LSTM cells such that the specific voice
patterns of only the target speaker are remembered, which
helps to distinguish the target speaker from the other speak-
ers in the mixture when performing the extraction. After
briefly reviewing the standard LSTM cell used in the base-
line system [8] in Section 2.1, in Section 2.2 we discuss
the proposed customization of the LSTM cell.

2.1 Standard LSTM cell
The working principle of an LSTM cell [23, 24] is deter-
mined by its state and three gates: the forget gate, the input
gate, and the output gate (see Figure 2). The cell state be-
haves like the memory of the network with the ability to
retain information through time, while the gates can add
or remove information at each step t. In the following,
the weight matrix and the bias of the forget gate, the input
gate, the output gate and the control update are denoted by
Wf , Wi, Wc, Wo and bf , bi, bc, bo, respectively. The
current and previous cell states are denoted by ct and ct−1,
while the current and previous hidden states are denoted by
ht, ht−1.

As can be seen from (3), the input to the LSTM layer
(and hence each LSTM cell) is the concatenation of the
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Figure 1: Block diagram of the used speaker-conditioned
target speaker extraction system, consisting of a speaker
embedder network and a separator network.

speaker embeddings ej and the output of the convolutional
layers r. The recursive nature allows the LSTM cell to
store information from the previous state. The forget gate
of the LSTM cell decides which information should be re-
tained or disregarded based on the previous hidden state
and the current input. The information is retained in the
cell state if the output of the forget gate is close to 1, oth-
erwise it is disregarded. The output of the forget gate is
obtained as

ft = σ(Wf [ht−1,(r,ej)]+bf ), (5)

where σ denotes the Sigmoid activation function.
The input gate decides which information is updated

and stored in the cell state, and its output is obtained as

it = σ(Wi[ht−1,(r,ej)]+bi). (6)

The cell state behaves like the memory of the network, and
is updated as

c̃t = tanh(Wc[ht−1,(r,ej)]+bc), (7)

ct = ft ∗ct−1 + it ∗ c̃t, (8)

where ∗ denotes point-wise multiplication. Finally, the
output gate decides which part of the cell state is trans-
ferred to the next hidden state, and its output is obtained
as

ot = σ(Wo[ht−1,(r,ej)]+bo). (9)

Finally, the hidden state is updated as

ht = ot ∗ tanh(ct). (10)

2.2 Customized LSTM cell
As already mentioned, the forget gate is used to retain the
relevant information and disregard irrelevant information,
based on the previous hidden state and the current input.
With the specific goal of speaker extraction in mind, in-
tuitively the LSTM cell is supposed to learn to retain in-
formation related to the target speaker, while disregarding
information unrelated to the target speaker, i.e., originating
from the other speakers present in the mixture.

However, since in practice this will not be perfectly
achieved, we propose to customize the LSTM cell in or-
der to only retain the target speaker information by chang-
ing the information processing through the forget gate (see
Figure 3). Instead of considering the concatenation of the
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Figure 2: Standard LSTM cell.

target speaker embeddings ej and the output of the convo-
lutional layer r, we only consider the target speaker em-
beddings, i.e.,

ft = σ(We[ht−1,ej ]+be), (11)

where We and be denote the weight matrix and the
bias of the customized forget gate. It should be noted that
all other gates, i.e., the input and output gates, and the cell
update remain the same as described in the previous sec-
tion.

In the customized LSTM cell, the forget gate in (11)
aims at mapping the target speaker close to 1. This allows
the current cell state in (8) to retain the target speaker infor-
mation by multiplying the previous cell state with a value
close to 1, while disregarding the information related to the
other speakers from the previous cell state ct−1. We only
customize the forget gate, since the forget gate is the main
gate modifying the cell state. We do not customize the in-
put and output gates. Since the input gate can only add
but cannot remove information from the current cell state,
a similar customization for the input gate might not be as
effective as for the forget gate. A similar customization
for the output gate may even lead to the loss of relevant
information in the next hidden state.

3 Experimental Setup
In this section, we discuss the network architecture, the
used parameters and the training procedure for the speaker
embedder network and the separator network.

3.1 Speaker Embedder Network
We have used the same speaker embedder network as the
baseline system [8], namely the speaker verification net-
work originally proposed in [20]. It consists of 3 LSTM
layers, each having 768 nodes. As input features the net-
work uses 40-dimensional log-Mel-features, which are com-
puted using an FFT size of 512 at a sampling frequency of
16 kHz, a Hann window with a frame length of 400 and a
frame shift of 160 samples. Given the log-Mel-features of
the reference speech of a target speaker, the speaker em-
bedder network generates fixed (time-independent) 256-
dimensional embeddings to be utilized further in the sepa-
rator network.

We have used the official training and validation split
of the Voxceleb dataset [25] to retrain the speaker embed-
der network. The Voxceleb dataset is a large speaker ver-
ification dataset that consists of more than one million ut-
terances from more than 7000 speakers.
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Figure 3: Proposed customized LSTM cell for speaker-
conditioned target speaker extraction.

3.2 Separator Network
Similarly as for the baseline system [8], the separator net-
work consists of eight 2D dilated convolutional layers, a
customized LSTM layer and two fully connected (FC) lay-
ers. Each convolutional layer is followed with a batch-
normalization layer and a ReLU activation function, where
the dilated convolutional layers are used to increase the
size of the receptive field of the network. The number of
filters, filter-size and the dilation parameters for the con-
volutional layers are the same as for the baseline system
[8] (see Table 1). The only difference in the architecture of
the proposed separator network compared to the baseline
is the number of nodes for the customized LSTM layer
and the FC layers. We have used 600 nodes for the cus-
tomized LSTM layer and the first FC layer consists of 514
nodes followed with a ReLU activation function, while the
second FC layer consists of 257 nodes with a Sigmoid ac-
tivation function. As input features the network uses the
magnitude of the STFT coefficients of the mixture. The
STFT coefficients are computed using an FFT size of 512
at a sampling frequency of 16 kHz, a square-root Hann
window with a frame length of 512 and a frame shift of
256 samples.

To train the separator network we have considered two
different loss functions: a spectral-domain loss function
based on power-law compression (PLC) [8], and the scale-
invariant signal-to-noise ratio (SI-SNR) loss function in the
time-domain [5]. In total we have trained three different
separator networks:
1. Standard / PLC: using the PLC loss function and the

standard LSTM cells. This separator network is similar
to the baseline system in [8]. Since the baseline system
is not publicly available, we retrained it using the same
loss function and model parameters.

2. Standard / SI-SNR: using the SI-SNR loss function
and standard LSTM cells.

3. Customized / SI-SNR: using the SI-SNR loss function
and the proposed customized LSTM cells.

The Adam optimizer [26] with a learning rate of 0.0002
was used. We used a batch size of 16 and fixed the total
number of epochs to 50, while clipping the gradient norm
to 10. An early stopping criterion was used to prevent the
network from further training if the validation loss did not
decrease after 7 epochs.

To train and validate our separator networks, we have
used the official training and validation set from the Lib-
rispeech dataset [27]. To generate the training and valida-
tion triplets (mixture, reference and target), we have used
100 hours of clean speech of training set and clean speech
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Layer Kernel
Size Dilation Filters

/Nodes
Baseline

[8]
Conv1 (1×7) (1×1) 64 64
Conv2 (7×1) (1×1) 64 64
Conv3 (5×5) (20×1) 64 64
Conv4 (5×5) (21×1) 64 64
Conv5 (5×5) (22×1) 64 64
Conv6 (5×5) (23×1) 64 64
Conv7 (5×5) (24×1) 64 64
Conv8 (1×1) (1×1) 8 8
Customized
LSTM - - 600 -
Standard
LSTM - - - 400
FC 1 - - 514 600
FC 2 - - 257 600

Table 1: Parameters of the proposed separator network and
Baseline(VoiceFilter) [8].

development set from the Librispeech dataset. We have
followed the same procedure as in [8] to create the mixture,
the reference speech and the target speech, each having a
length of 4 seconds. The mixture is constructed (assuming
I=2 speakers) by summing the utterances of two randomly
chosen different speakers (target and interfering) from the
dataset, while the reference speech is a randomly chosen
utterance of the target speaker, which is completely differ-
ent from the utterances used for constructing the mixture.

4 Results and Discussion
We have evaluated the performance of all considered target
speaker extraction systems using the official test set of the
Librispeech dataset 1. The same procedure as for training
has been used to generate the triplets (mixture, reference
and target) (see Section 3.2). As performance measures,
we have used the signal to distortion ratio (SDR) [21] and
the perceptual evaluation of speech quality (PESQ) [22]
measure. SDR is a common measure to evaluate the per-
formance of source separation systems, while PESQ is a
speech quality metric commonly used for speech enhance-
ment systems. For both performance measures, the clean
target speech signal was used as the reference signal.

For the three considered target speaker extraction sys-
tems, Table 2 shows the mean SDR improvement (in dB)
and the mean PESQ improvement with respect to the mix-
ture. For reference, this table also shows the mean SDR
improvement of the baseline (VoiceFilter) reported in [8].
We do not show the mean PESQ improvement for the base-
line as no PESQ results were reported in [8]. For the mix-
ture, the mean SDR is equal to 0.14 dB and the mean PESQ
is equal to 1.37. First, it can be observed that the mean
SDR improvement of our retrained system using standard
LSTM cells and PLC loss function is very similar to the
mean SDR improvement of the original VoiceFilter [8],
showing the validity of retraining the networks. Second, it
can be observed that by using the SI-SNR loss function in-
stead of the PLC loss function (with standard LSTM cells),
the mean SDR is improved by 1.37 dB, while the mean

1Audio Examples can be found at https://github.com/
SinhaRagi/ITG_Target-Speaker-Extraction/tree/
main/Audio_Examples

Mean
∆SDR (dB)

Mean
∆PESQ

Baseline (VoiceFilter) [8] 5.50 -
Standard / PLC 5.62 1.95
Standard / SI-SNR 6.99 2.01
Customized / SI-SNR 7.96 2.07

Table 2: Mean SDR improvement (∆SDR) and mean
PESQ improvement (∆PESQ) of baseline system (Voice-
Filter), retrained system using standard LSTM cells and
PLC loss function, system using standard LSTM cells and
SI-SNR loss function, and proposed system using cus-
tomized LSTM cells and SI-SNR loss function.

PESQ is improved by 0.06. Third, by using the proposed
customized LSTM cells (with the SI-SNR loss function)
the mean SDR can be further improved by 0.97 dB, while
the mean PESQ can be further improved by 0.06. These
results show that both proposed modifications significantly
improve the performance compared to the baseline target
speaker extraction system.

5 Conclusion
For a CNN-LSTM target speaker extraction system, in this
paper we have proposed customized LSTM cells aimed
at retaining information of the target speaker and disre-
garding irrelevant information of the other speakers. To
this end, we have modified the forget gate of the LSTM
cell, considering only the target speaker embeddings, while
keeping the other gates and the cell state update unchanged.
Experimental results for two-speaker mixtures using the
Librispeech dataset show that the proposed customization
yields performance improvements in terms of both SDR
and PESQ compared to using standard LSTM cells. In fu-
ture work, we will investigate the usage of the proposed
customized LSTM cells when jointly training the speaker
embedder network and the separator network, and we will
consider different auxiliary modalities of the target speaker.
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