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Abstract—In this paper we consider a binaural hearing aid
setup, where in addition to the head-mounted microphones an
external microphone is available. For this setup, we investigate
the performance of several relative transfer function (RTF)
vector estimation methods to estimate the direction of arrival
(DOA) of the target speaker in a noisy and reverberant acoustic
environment. More in particular, we consider the state-of-the-art
covariance whitening (CW) and covariance subtraction (CS)
methods, either incorporating the external microphone or not,
and the recently proposed spatial coherence (SC) method,
requiring the external microphone. To estimate the DOA from
the estimated RTF vector, we propose to minimize the frequency-
averaged Hermitian angle between the estimated head-mounted
RTF vector and a database of prototype head-mounted RTF
vectors. Experimental results with stationary and moving speech
sources in a reverberant environment with diffuse-like noise
show that the SC method outperforms the CS method and
yields a similar DOA estimation accuracy as the CW method at
a lower computational complexity.

Index Terms—direction of arrival estimation, relative transfer
function, external microphone, binaural hearing aids

I. INTRODUCTION

For binaural hearing aid (HA) applications, estimating the
direction of arrival (DOA) of the target speaker in a noisy and
reverberant acoustic environment is important, e.g., to steer a
beamformer towards this speaker [1]. Several methods have been
proposed for binaural DOA estimation, e.g., based on interaural
time and level differences [2], [3], generalized cross-correlation
(GCC) features [4]–[7], or relative transfer function (RTF)
vectors [8]. For a binaural HA setup incorporating an external
microphone, an RTF-vector-based DOA estimation method
was proposed in [9], where it was however assumed that the
external microphone was worn by the target speaker, such that
the external microphone signal almost does not capture any
noise or reverberation.

To estimate the RTF vector of the target speaker from noisy
microphone signals, several methods have been proposed in the
literature [10]–[14], where the most popular methods are based
on covariance subtraction (CS) or covariance whitening (CW).
These methods require an estimate of the covariance matrix
of the noisy microphone signals (e.g., estimated during speech-
plus-noise time-frequency (TF) bins) and the noise covariance

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project ID 352015383 (SFB 1330 B2) and Project ID 390895286
(EXC 2177/1).

matrix (e.g., estimated during noise-only TF bins). In should
be realized that due to the involved eigenvalue decomposition
the computational complexity of the CW method is in general
high, which is especially relevant for an online implementation.
Exploiting the availability of an external microphone, in [15],
[16] the spatial coherence (SC) method was proposed to estimate
the (head-mounted) RTF vectors. The SC method relies on the
assumption that the coherence between the noise component
in the external microphone signal and the noise components in
the head-mounted microphone signals is low. This assumption
holds quite well, for example, when the distance between the
external microphone and the head-mounted microphones is
large enough and the noise field is diffuse-like. In comparison
to the CS and CW methods an additional advantage is the fact
that no estimate of the noise covariance matrix is required.

For a binaural hearing aid setup with an external microphone
that is not worn by the target speaker, in this paper we analyze
the performance of several RTF-vector-based DOA estimation
methods, more in particular, CS and CW (either incorporating
the external microphone or not) and SC (incorporating the
external microphone). Instead of using a statistical classifier or
a neural network to estimate the DOA from the estimated RTF
vectors [17], [18], we follow an approach similar to [5], [8],
where the estimated head-mounted RTF vectors are compared
to a database of anechoic prototype RTF vectors for several
directions. However, instead of using a least-squares-based
cost function, we propose to use a cost function based on the
Hermitian angle. Experimental results using recorded signals
in a reverberant environment with diffuse-like noise show that
the SC method outperforms the CS method and yields a similar
DOA estimation accuracy as the more computational complex
CW method, both for a static as well as for a moving target
speaker and for several positions of the external microphone.

II. SIGNAL MODEL

We consider a binaural hearing aid setup consisting of M
head-mounted microphones and one external microphone, which
is spatially separated from the head-mounted microphones, thus,
M+1 microphones in total. We consider a single speech source
at DOA θs (in the azimuthal plane) in a noisy and reverberant
acoustic environment, see Fig. 1. The m-th microphone signal can
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be written in the short-time Fourier transform (STFT) domain as

Ym(k,l)=Xm(k,l)+Nm(k,l), m∈{1,...,M+1}, (1)

where the speech and noise components at the k-th frequency
bin (k∈{1,...,K}) and the l-th frame (l∈{1,...,L}) are
denoted by Xm (k,l) and Nm (k,l), respectively. Since all
frequency bins are assumed to be independent and are hence
treated independently, we will omit the index k in the remainder
of the paper where possible. Stacking the M+1 microphone
signals in a vector y (l) = [Y1(l),...,YM+1(l)]

T , where (·)T
denotes transposition, and defining x(l) and n(l) similarly as
y(l), the vector y(l) can be written as

y(l)=x(l)+n(l)∈CM+1. (2)

Assuming that the multiplicative transfer function approximation
[19] holds, the speech vector x(l) can be written as

x(l)=g(l)X1(l), (3)

where the (M+1)-dimensional extended RTF vector

g(l)=[1,G2(l),...,GM+1(l)]
T (4)

contains the reverberant RTFs of the speech source between
all microphones (including the external microphone) and
the reference microphone, for which we have used the first
microphone without loss of generality. The M -dimensional head-
mounted RTF vector gh(l) corresponding to the head-mounted
microphones can be extracted from g(l) in (4) as

gh(l)=Eg(l), E=[IM×M ,0M ], (5)

where IM×M is the M×M -dimensional identity matrix and
0M is the M -dimensional zero vector. Since it can be assumed
that the relative positions of the head-mounted microphones are
fixed (ignoring small movements of the hearing aids due to head
movements) whereas the external microphone can be located
at an arbitrary position, it should be realized that although the
extended RTF vector g(l) encodes the DOA θs, it depends on
the (unknown) position of the external microphone, whereas
the head-mounted RTF vector gh(l) encodes the DOA θs and
obviously does not depend on the position of the external
microphone. Hence, for DOA estimation, we will only consider
the head-mounted RTF vector.

The (M+1) × (M+1)-dimensional speech and noise
covariance matrices are defined as

Φx(l)=E{x(l)xH(l)}=g(l)gH(l)ΦX1
(l), (6)

Φn(l)=E{n(l)nH(l)}, (7)

where ΦX1
(l)=E

{
|X1(l)|2

}
denotes the power spectral density

of the speech component in the reference microphone signal,
and the operators (·)H and E{·} denote complex transposition
and expectation, respectively. Assuming uncorrelated speech
and noise components, the covariance matrix of the noisy
microphone signals Φy(l) can be written as

Φy(l)=E{y(l)yH(l)}=Φx(l)+Φn(l). (8)

The M×M -dimensional covariance matrices corresponding to
the head-mounted microphones can be extracted from (6) - (8) as

Φx,h(l)=EΦx(l)ET , Φn,h(l)=EΦn(l)ET , (9)

Φy,h(l)=EΦy(l)ET =Φx,h(l)+Φn,h(l). (10)

III. RTF VECTOR ESTIMATION

In this section we discuss several RTF vector estimation
methods. In Sections III-A and III-B we review the state-of-
the-art covariance subtraction (CS) and covariance whitening
(CW) methods [10], [11], [14], which are general methods
that can be used to estimate the extended RTF vector (using all
microphones) or the head-mounted RTF vector (using only the
head-mounted microphones). In Section III-C we discuss the
recently proposed spatial coherence method [15], [16], which
requires the availability of an external microphone to estimate
the head-mounted RTF vector.

A. Covariance Subtraction (CS)

Using (6) and (8), the extended RTF vector g (l) can be
obtained from any column of the rank-1 speech covariance
matrix Φx(l) with appropriate normalization [10], [14], i.e.,

g(l)=
Φx(l)ej

eT1 Φx(l)ej
=

(Φy(l)−Φn(l))ej
eT1 (Φy(l)−Φn(l))ej

, (11)

where ej = [0,...,1,0...,0]
T is an (M+1)-dimensional vector

with zeros except the j-th element. In practice, estimates of
the noisy covariance matrix Φ̂y (l) and the noise covariance
matrix Φ̂n(l) are used (e.g., obtained via recursive smoothing
during speech-plus-noise and noise-only TF bins), yielding the
CS estimate of the extended RTF vector

ĝ(CS)(l)=

(
Φ̂y(l)−Φ̂n(l)

)
ej

eT1

(
Φ̂y(l)−Φ̂n(l)

)
ej
. (12)

Similarly, when using the covariance matrices corresponding to
the head-mounted microphones (i.e., not exploiting the external
microphone), the CS estimate of the head-mounted RTF vector
is given by

ĝ
(CS)
h (l)=

(
Φ̂y,h(l)−Φ̂n,h(l)

)
eh,j

eTh,1

(
Φ̂y,h(l)−Φ̂n,h(l)

)
eh,j

(13)

where eh,j =[0,...,1,0...,0]
T is an M -dimensional vector with

zeros except the j-th element. It can be easily shown that

ĝ
(CS)
h (l)=Eĝ(CS)(l), (14)

such that this estimate does not depend on the position of the
external microphone. Hence, in the experiments in Section V
we will only consider one version of the CS method (without
the external microphone).
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B. Covariance Whitening (CW)
Instead of subtracting Φ̂n(l) from Φ̂y(l), the CW method

first prewhitens the estimated noisy covariance matrix with a
square-root decomposition (e.g., Cholesky decomposition) of
the estimated noise covariance matrix [11], [14], i.e.,

Φ̂n(l)= L̂n(l)L̂Hn (l), Φ̂
(w)

y (l)= L̂−1
n (l)Φ̂y(l)L̂−H

n (l). (15)

The CW estimate of the extended RTF vector is then obtained
as the normalized de-whitened principal eigenvector of the
pre-whitened noisy covariance matrix, i.e.,

ĝ(CW)(l)=
L̂n(l)P

{
Φ̂

(w)

y (l)
}

eT1 L̂n(l)P
{

Φ̂
(w)

y (l)
} (16)

where P{·} denotes the principal eigenvector of a matrix.
Similarly, when using the covariance matrices corresponding

to the head-mounted microphones (i.e., not exploiting the
external microphone), the CW estimate of the head-mounted
RTF vector is given by

ĝ
(CW)
h (l)=

L̂n,h(l)P
{

Φ̂
(w)

y,h (l)
}

eTh,1L̂n,h(l)P
{

Φ̂
(w)

y,h (l)
} (17)

with

Φ̂n,h(l)= L̂n,h(l)L̂Hn,h(l), Φ̂
(w)

y,h (l)= L̂−1
n,h(l)Φ̂y,h(l)L̂−H

n,h (l).
(18)

Since contrary to the CS method

ĝ
(CW)
h (l) 6=Eĝ(CW)(l) (19)

in the experiments in Section V we will consider two versions of
the CW method, either exploiting the external microphone or not.
Due to the required square-root decomposition in (15) or (18) and
the eigenvalue decomposition in (16) or (17), the computational
complexity for the CW method is larger than for the CS method.

C. Spatial Coherence (SC)
The SC method [15], [16] requires an external microphone

and assumes a low coherence between the noise component
in the external microphone signal and the noise components
in the head-mounted microphone signals, i.e.,

E
{
Ni(l)N

∗
M+1(l)

}
≈0, i∈{1,...,M}, (20)

As shown in [15], [16], this assumption holds quite well for a
diffuse-like noise field (e.g., multi-talker babble noise) when the
distance between the external microphone and the head-mounted
microphones is large enough. Using (20), it can be easily shown
that

E
{
Yi(l)Y

∗
M+1(l)

}
=E
{
Xi(l)X

∗
M+1(l)

}
, i∈{1,...,M}, (21)

such that, using (6), the head-mounted RTF vector can be
estimated from the (M+1)-th column of the estimated noisy
covariance matrix Φ̂y(l) as

ĝ
(SC)
h (l)=E

Φ̂y(l)eM+1

eT1 Φ̂y(l)eM+1

(22)

The SC method has a similar computational complexity as the
CS method and a lower complexity as the CW method, but
contrary to the CS and CW method does not require an estimate
of the noise covariance matrix Φ̂n(l).

IV. DOA ESTIMATION

To estimate the possibly time-varying DOA θs(l) of the target
speaker from the estimated head-mounted RTF vector ĝh(k,l),
different approaches have been proposed1. Instead of using a
statistical classifier or a neural network as in [17], [18], in [5],
[8] it has been proposed to simply compare the estimated head-
mounted RTF vector with a database of anechoic prototype head-
mounted RTF vectors ḡh(k,θi) for different discrete directions
θi, i=1,...,I . These prototype head-mounted RTF vectors can
either be obtained using, e.g., a spherical diffraction model [20],
or measured using the same microphone array configuration as
used during the actual source localization. Whereas the cost func-
tions in [5], [8] use the (squared) norm between the (normalized)
estimated and prototype head-mounted RTF vectors, in this paper
we propose to use the so-called Hermitian angle [13] between
the estimated and prototype head-mounted RTF vectors, i.e.,

d(k,l,θi)=arccos

(
|ḡHh (k,θi)ĝh(k,l)|

‖ḡh(k,θi)‖2‖ĝh(k,l)‖2

)
, (23)

since this resulted in a better DOA estimation accuracy. The DOA
of the target speaker is then estimated as the direction for which
the frequency-averaged cost function in (23) is minimal, i.e.,

θ̂s(l)=argmin
θi

J(l,θi)=argmin
θi

1

K−1

K∑
k=2

d(k,l,θi). (24)

V. EXPERIMENTAL RESULTS

In this section we compare the DOA estimation accuracy
using four different RTF vector estimates:

• The CS-based estimate ĝ
(CS)
h (l) in (13) using only the head-

mounted microphones. It should be noted that this is similar
to the binaural DOA estimation method presented in [8].

• The CW-based estimates Eĝ(CW)(l) based on (16), using
all microphones, and ĝ

(CW)
h (l) in (17) using only the

head-mounted microphones.
• The SC-based estimate ĝ

(SC)
h (l) in (22) using all

microphones.
The experimental setup and implementation details are described
in Section V-A. Experimental results for a static and a moving
speaker in a reverberant environment with diffuse-like noise
are presented in Section V-B.

A. Experimental setup and implementation details

For the experiments we used recordings in a laboratory at the
University of Oldenburg with dimensions about (7×6×2.7)m3,
where the reverberation time can be easily changed by closing
and opening absorber panels mounted to the walls and ceiling.
Fig. 1 depicts the experimental setup, where a dummy head

1As already mentioned, since the estimated extended RTF vector ĝ(k,l)
depends on the (unknown) position of the external microphone, it cannot be
straightforwardly used for DOA estimation.
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≈ 50 °≈ −50 °
≈ 1.5 m

Fig. 1. Experimental setup for stationary speaker scenario (left) and moving
speaker scenario (right). The external microphone is depicted in brown whereas
the head-mounted microphones are depicted in black.

with binaural hearing aids (M = 4 microphones) is located
approximately in the center of the laboratory. The external
microphone is not restricted to be close to the target speaker.
We consider two scenarios, either with a stationary speaker
or with a moving speaker. For both scenarios, the speech and
noise components were recorded separately. Diffuse-like noise
was generated with four loudspeakers facing the corners of the
laboratory, playing back different multi-talker recordings. The
signal-to-noise ratio (SNR) was set as the ratio of the average
broadband speech power to broadband noise power in the front
microphones of both hearing aids.

For the stationary speaker scenario, three different positions
of the speech source and two different positions of the external
microphone are considered (see Fig. 1). The speech source is
located at approximately 2m from the dummy head at either
−145°, −35°, or 35°. The external microphone is located at
approximately 1.6m from the dummy head at either 45° or
130°. The speech source is constantly active and comprises
English sentences (duration: 30s).

For the moving speaker scenario, a male speaker moves
from approximately −50° to 50° at a distance of about 1.5m
from the dummy head (see Fig. 1). The external microphone
is located at approximately 1.5m in front of the dummy head.
The speaker is constantly active (duration: 25s).

The microphone signals are recorded at a sampling frequency
fs =16kHz and processed in the STFT-domain using a 32ms
square-root Hann window with 50% overlap. The noisy and noise
covariance matrices are recursively estimated during detected
speech-plus-noise and noise-only TF-bins, respectively, as in
(25) and (26) using smoothing factors αy and αn corresponding
to time constants of 250ms for Φ̂y(k,l) and 500ms for Φ̂n(k,l)
for the stationary speaker scenario and using smoothing factors
corresponding to time constants of 150ms for Φ̂y (k,l) and
500ms for Φ̂n(k,l) for the moving speaker scenario.

Φ̂y(k,l)=αyΦ̂y(k,l−1)+y(k,l)yH(k,l) (25)

Φ̂n(k,l)=αnΦ̂y(k,l−1)+y(k,l)yH(k,l). (26)

Speech-plus-noise and noise-only TF bins are distinguished
based on the speech presence probabilities [21] in the head-
mounted microphones, which are averaged and thresholded per
TF bin. For the stationary speaker scenario initialization effects
are mitigated by using the first half of the signal as initialization
period and evaluating the performance on the second half
only. The prototype head-mounted RTF vectors ḡh(k,θi) were
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Fig. 2. Average localization accuracy for all considered RTF vector estimation
methods for different SNRs. Top: T60≈500ms, bottom: T60≈1000ms.

generated using the database of binaural anechoic room impulse
responses in [22] with an angular resolution of 5° (I=72).

As performance measure we use the localization accuracy,
i.e., the percentage of correctly localized frames, defined as

ACC=
1

L

L∑
l=1

U
(

∆θ−f
(
|θ̂s(l)−θs(l)|

))
×100%, (27)

where U is the Heaviside step function and f(·) is a circular
wrapping function to ensure an absolute error smaller than
180°. As tolerance we used ∆θ=5°, which corresponds to the
resolution of the prototype RTF vectors.

B. DOA estimation accuracy

For the stationary speaker scenario, Fig. 2 depicts the
localization accuracy (averaged over the three speaker positions)
for all considered RTF vector estimation methods as a function of
SNR for two reverberation times (T60≈500ms, T60≈1000ms).
For the CW and SC methods exploiting the external microphone,
the performance is shown for both considered positions of the
external microphone (45°,130°). First, it can be observed that
for both reverberation times and for all SNRs the CW and SC
methods outperform the CS method. Second, it can be observed
that for both reverberation times and for all SNRs except
−10dB the SC method yields a similar localization accuracy as
the CW methods. The performance of the SC method appears
to depend more on the position of the external microphone
than the performance of the CW method, which is especially
noticeable at SNR=−5dB.

For the moving speaker scenario, we only consider the SC
and CW methods incorporating the external microphone. Fig. 3
depicts for an SNR of 0dB and T60≈400ms the time-varying
estimated DOA θ̂s(l) (solid red line), while the gray background
encodes the cost function J (l,θi) in (24). Although no exact
ground-truth DOA is available for the moving speaker scenario,
it can be observed that the moving speaker can be localized well
using both considered RTF vector estimation methods. In addition,
it can be observed that a higher localization confidence is obtained
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Fig. 3. Localization performance for the moving speaker scenario for
SNR=0dB and T60≈400ms. Top: CW method with external microphone,
bottom: SC method

using the SC method than using the CW method, because the
region of small Hermitian angles around the estimated DOA is
more confined for the SC method than for the CW method.

The DOA estimation results for the stationary and moving
speaker scenario show that the low-complexity SC method
yields a comparable performance as the CW method, which
is in line with the beamforming results reported in [15], [23].

VI. CONCLUSIONS

In this paper we analyzed the DOA estimation performance
based on several RTF vector estimation methods for a binaural
hearing aid setup with an external microphone that is not
restricted to be close to the target speaker. More in particular,
we compared the performance of the state-of-the-art CW and
CS methods with the SC method. To estimate the DOA from the
estimated head-mounted RTF vector, we proposed to minimize
the frequency-averaged Hermitian angle between the estimated
head-mounted RTF vector and anechoic prototype head-mounted
RTF vectors for several directions. Experimental results with
real-world data for stationary and moving speaker scenarios
show that exploiting the external microphone using the SC
method yields a similar DOA estimation accuracy as the CW
method at a lower computational complexity.
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