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Abstract
In this paper we present our algorithms submitted to the Clarity
Enhancement Challenge, aiming at improving speech intelligibility
for hearing-impaired listeners in a reverberant acoustic scenario
with a target speaker and an interfering source. The algorithms
combine 1) a weighted binaural linearly constrained minimum
power beamformer, performing joint dereverberation and interferer
reduction, 2) a deep binaural multi-frame postfilter to reduce
residual interference, and 3) an audiogram-based hearing loss
compensation stage. Objective metrics as well as subjective
listening experiments with hearing-impaired listeners show that all
submitted systems result in a significant improvement in terms of
speech intelligibility compared with the baseline system.

1. Introduction
In the Clarity Enhancement Challenge (CEC1) [1], a hearing-
impaired listener is considered at a fixed position and orientation in
a moderately reverberant room, wearing 2 hearing aids with 3 micro-
phones on each hearing aid. Two competing sources, i.e. one target
speaker and one interfering source (speech or noise), are simulated
with stationary room impulse responses (RIRs), where the target
speaker starts 2s after the interfering source. In general, acoustic dis-
turbances, such as interfering sources, ambient noise, reverberation,
as well as hearing loss are known to degrade speech intelligibil-
ity [2–5]. We propose to tackle this challenging scenario with a
system consisting of 3 cascaded blocks (see Figure 1), i.e., a binau-
ral beamformer for joint interferer reduction and dereverberation, a
binaural postfilter for residual interferer reduction, and a hearing loss
compensation stage. In the following subsections, we will first pro-
vide some general background information about these three blocks,
before presenting the details of the proposed system in Section 2.

1.1. Binaural Beamforming

Different multi-microphone techniques have been proposed
in the literature to reduce noise, interfering sources and/or
reverberation [6, 7]. A commonly used multi-microphone noise
reduction technique is the minimum power distortionless response
(MPDR) beamformer [6,8], which aims at minimizing the output
power while leaving the desired speech component undistorted.
The linearly constrained minimum power (LCMP) beamformer
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generalizes the MPDR beamformer, providing the possibility of
multiple linear constraints, e.g., to perform controlled interferer
reduction [8–10]. Often the constraints are formulated in terms of
the relative transfer function (RTF) vectors of the sources [11].

To achieve dereverberation, the weighted prediction error
(WPE) technique and its variants are commonly employed [12–14].
WPE uses a convolutional filter, applied to a number of past frames
in the short-time Fourier transform (STFT) domain, to estimate and
subtract the late reverberation component. Since the usual WPE
cost functions do not have analytic solutions, it has been proposed
to use iterative alternating optimization schemes. Aiming at joint
dereverberation and noise reduction, it has been proposed to perform
multiple-input multiple-output (MIMO) WPE as a preprocessing
stage before MPDR beamforming in a cascade system [15]. By
unifying the optimization of the convolutional WPE filter and the
MPDR beamformer the so-called weighted power minimization
distortionless response (WPD) convolutional beamformer [16,17]
and its generalization using sparse priors [18] were shown to
outperform cascade systems. The unified WPD beamformer
is optimized similarly to the WPE filter with an additional
distortionless constraint using the RTF of the target speaker.

Aiming at jointly performing dereverberation and interferer
reduction and preserving the binaural cues of all sources, the
weighted binaural linearly constrained minimum power (wBLCMP)
beamformer proposed in [19] generalizes the WPD beamformer
by unifying WPE dereverberation and LCMP beamforming [9,10].
In our CEC1 contribution we used an adaptive version of this
wBLCMP beamformer. Similarly as in [18], the convolutional
beamformer is computed by minimizing a sparsity-promoting
`p-norm cost function.

1.2. Binaural Postfilter

Typically, some residual interference will remain in the output of
the wBLCMP beamformer. While this may be desirable, e.g., to
preserve awareness of the acoustic scene, it may also be desirable to
achieve more interferer reduction. A common approach to achieve
this is to include a postfilter at the output of the beamformer [6,7].
Noting that the goal is to perform interferer reduction in a binaural
listening scenario, an additional desired property of the postfilter
is to preserve the binaural cues of the target speaker.

With these considerations in mind, in our CEC1 contribution
we propose a binaural extension of the deep multi-frame minimum
variance distortionless response (MFMVDR) filter [20], termed
deep binaural MFMVDR (BMFMVDR) filter, as the postfilter.
The deep BMFMVDR filter aims at minimizing the power spectral
density of the undesired components while preserving the binaural
correlated components of the target speaker (and, as a result, the
corresponding binaural cues). Similarly as in [20], all required
parameters, i.e., the noisy and undesired spatio-temporal covariance



matrices as well as the inter-frame correlation vectors, are estimated
by minimizing the scale-dependent signal-to-distortion ratio [21]
using temporal convolutional networks [22].

1.3. Hearing Loss Compensation

To compensate for the potential hearing loss of the listener, we
consider two options, which both make use of the bilateral pure-tone
audiograms. The first option consists of a multi-band dynamic
range compressor [23], which is also used in the CEC1 baseline
system. The second option consists of a simple broadband gain
which is computed based on the half-gain rule.

2. Proposed System
Figure 1 depicts a block diagram of the proposed algorithms, consist-
ing of a weighted binaural LCMP beamformer (see Section 2.1), an
optional deep binaural MFMVDR postfilter (see Section 2.2) and a
hearing loss compensation stage (see Section 2.3). The combination
of these algorithmic blocks into the three systems submitted to the
challenge will be explained in more detail in Section 3.

2.1. Weighted binaural LCMP beamformer

2.1.1. Signal Model

Although only 2 sources and no ambient noise are present in the
CEC1 scenario, we will explain the wBLCMP beamformer for a
more general acoustic scenario, consisting of J sources captured by
M microphones in a noisy environment. Without loss of generality,
the first source is considered to be the target speaker. The STFT
coefficients of the microphone signals at time frame t and any
frequency bin are given by

yt=
[
y1,t ··· yM,t

]T∈CM×1, (1)

with (·)T denoting the transpose operator. The frequency index is
omitted for brevity since it is assumed that each frequency subband
is independent and hence can be processed individually. Similarly
to [16–18], the multi-channel microphone signal yt is modeled
as the sum of the convolutions of each source signal sj,t with
its respective multi-channel convolutive transfer function (CTF)
matrix Aj =

[
aj,0 ··· aj,La−1

]
∈CM×La plus additive noise

nt∈CM×1, i.e.

yt=

J∑
j=1

La−1∑
l=0

aj,lsj,t−l + nt (2)

=

J∑
j=1

τ−1∑
l=0

aj,lsj,t−l︸ ︷︷ ︸
:=dj,t

+

J∑
j=1

La−1∑
l=τ

aj,lsj,t−l︸ ︷︷ ︸
:=rj,t

+ nt, (3)

where La denotes the number of taps of the CTFs. The delay
τ separates the early reflections from the late reverberation,
decomposing the reverberant signal for the j-th source into its direct
component dj,t ∈CM×1 (including early reflections) and its late
reverberation component rj,t∈CM×1. The direct component for
the j-th source can be approximated using the multiplicative transfer
function (MTF) vector vj,t∈CM×1 as [24]

dj,t≈vj,tsj,t=ṽj,m,tdj,m,t j∈{1,...,J}, m∈{1,...,M},
(4)

where dj,m,t denotes the direct component of the j-th source
in the reference microphone m at time frame t. The vector
ṽj,m,t=vj,t/vj,m,t∈CM×1 denotes the RTF vector for the j-th
source, where vj,m,t is them-th entry of vj,t.

Binaural
beamformer

DNN-based
postfilter
(optional)

Hearing loss
compensation

Figure 1: Block diagram of the proposed algorithms, consisting of
a weighted binaural LCMP beamformer, an optional deep binaural
MFMVDR postfilter, and a hearing loss compensation stage.

2.1.2. Convolutional Filter

To obtain an estimate zm,t of the direct target speech component
d1,m,t in the reference microphone m at time frame t, it
has been proposed in [16–19] to apply a convolutional filter
h̄m,t∈CM(Lh−τ+1)×1 to the noisy STFT vector in (1), i.e.

zm,t=h̄H
m,tȳt, (5)

where (·)H denotes the conjugate transpose operator and the stacked
microphone signal vector ȳt is defined as

ȳt=
[
yT
t | yT

t−τ ··· yT
t−Lh+1

]T∈CM(Lh−τ+1)×1. (6)

It should be noted that the vector ȳt only includes a subset of theLh
most recent frames, i.e. it includes the current frame but excludes the
preceding τ−1 frames, aiming at preserving the early reflections.

2.1.3. Filter Optimization

We propose to optimize the convolutional wBLCMP beamformer
by explicitly taking into account that the direct target speech
component in the STFT domain is sparser than the noisy reverberant
mixture recorded by the microphones. Hence similarly to the WPD
variant in [18], we propose to optimize the convolutional filter in
(5) using an `p-norm cost function, i.e.

L
(
h̄m,t

)
∝

t∑
n=1

γt−n|zm,n|p, (7)

where p ∈ (0,2] denotes the so-called shape parameter and the
smoothing parameter γ ∈ (0, 1] allows adaptation to possibly
time-varying transfer functions. The shape parameter determines
the sparsity of the cost function, where small values of p promote
sparsity and it should be noted that for 0<p<1 this cost function
is non-convex. In addition, linear constraints for each source are
imposed using their RTFs, i.e.

h̄H
m,tv̄j,m,t=βj, (8)

where βj denotes a scaling factor for each source and
v̄j,m,t =

[
ṽT
j,m,t 0T

]T with 0 a vector containing M (Lh−τ)
zeros. The scaling factor β1 is usually set to 1, corresponding
to a distortionless constraint for the target speaker, whereas all
other scaling factors are usually chosen to be close to 0, aiming at
suppressing the interfering sources.

Similarly as in [13, 18, 25], we propose to use an iteratively
reweighted least squares (IRLS) method to minimize the cost
function in (7) subject to the constraints in (8). The basic idea is to
replace the non-convex `p-norm minimization problem with a series
of convex `2-norm minimization subproblems, where in each itera-
tion the `2-norm minimization subproblem has an analytic solution.
The two alternating steps are described in the following paragraphs.



(1) Constrained `2–Norm Subproblem Minimization In each
iteration i, the non-convex cost function in (7) is replaced with a
convex weighted `2-norm cost function, i.e.

L
(
h̄m,t,i

)
∝

t∑
n=1

γt−nwn,i|zm,n,i|p (9)

where the weights wn,i are real-valued and positive. The binaural
filter minimizing (9) subject to the linear constraints in (8) with
respect to the left and right reference microphone denoted by
m=ν∈{L,R} is equal to

h̄ν,t,i=R̄−1
y,t,iC̄t

(
C̄H
t R̄−1

y,t,iC̄t

)−1

BC̄H
t eν (10)

where R̄y,t,i=
∑t
n=1γ

t−nwn,iȳnȳ
H
n denotes the weighted noisy

spatio-temporal covariance matrix of the stacked microphone signals,
C̄t=

[
v̄1,ν,t ··· v̄J,ν,t

]
denotes the constraint matrix containing

the RTF vectors for all sources, B = diag
([
β1 ··· βJ

]T)
denotes the diagonal scaling matrix containing the scaling factors for
all sources, and eν is a selection vector with its entry corresponding
to the left or right reference microphone equal to 1 and all other
entries equal to 0.

(2) Weight Update Similarly as in [13,18,25], in each iteration
the weights in (9) are updated as

wt,i+1=

(∑
ν

|zν,t,i|2
)p/2−1

=

(∑
ν

∣∣h̄ν,t,iȳt∣∣2)p/2−1

, (11)

such that (9) is a first-order approximation of (7).

2.1.4. Parameter Estimation

The wBLCMP beamformer in (10) requires an estimate of the RTFs
of each source. In the CEC1 scenario, one stationary target speaker
(j = 1) and one stationary interfering source (j = 2) are present,
where the target speaker starts exactly 2s after the interfering source.
Taking advantage of this scenario allows to estimate the (stationary)
RTF of the interfering source as the normalized principal eigenvector

of the interference covariance matrix Ri=
∑t

∧
=2s
n=1yny

H
n . The RTF

of the target speaker can then be estimated using the covariance
whitening method [26], i.e. based on the generalized eigenvalue
decomposition of the noisy covariance matrix Ry,t=

∑t

n
∧
=2s

yny
H
n

and the interference covariance matrix Ri. The RTF of the target
speaker is constantly updated for every frame t starting from 2s.

2.2. Deep Binaural Multi-Frame MVDR Filter

In this section, we describe the proposed deep BMFMVDR filter,
which is used as the binaural postfilter of the wBLCMP beamformer
in one of our submitted systems. The deep BMFMVDR filter is
a binaural extension of the deep MFMVDR filter proposed in [20].

2.2.1. Signal Model

We consider the binaural output of the wBLCMP beamformer in
the STFT domain zt=[zL,t, zR,t]

T =xt+it as the binaural input
signal of the deep BMFMVDR filter, where xt and it denote the
residual speech and interference components.

Stacking the N most recent time frames in a vec-
tor, we obtain the binaural multi-frame signal vector
z̄t=

[
zL,t ··· zL,t−N+1 zR,t ··· zR,t−N+1

]T
= x̄t+ īt,

with the vectors x̄t and īt defined similarly.

In [27], it has been proposed to exploit the speech correlation
across adjacent STFT frames by decomposing the (single-
microphone) multi-frame speech vector into a temporally correlated
and a temporally uncorrelated part. Similarly, in a binaural scenario,
the binaural multi-frame speech vector x̄t can be decomposed into
a spatio-temporally correlated and a spatio-temporally uncorrelated
part w.r.t. the left or the right speech component xL,t or xR,t, i.e.,

x̄t=γx,ν,txν,t︸ ︷︷ ︸
correlated

+ x̄′ν,t︸︷︷︸
uncorrelated

, (12)

with ν∈{L,R} denoting the left or right channel. The (highly time-
varying) left or right speech inter-frame correlation (IFC) vector
γx,ν,t describes the correlation between the current and previous
time frames w.r.t. the left or right speech STFT coefficient xν,t.

The binaural speech component xt is estimated by applying
(complex-valued) finite impulse response filters wL,t and wR,t

with 2N taps each to the binaural multi-frame signal vector, i.e.,

x̂t=
[
wH
L,tz̄t

wH
R,tz̄t

]
. (13)

Assuming that the speech and interference components are
uncorrelated, the 2N × 2N-dimensional input spatio-temporal
covariance matrix (STCM) Φz,t = E

{
z̄tz̄

H
t

}
, with E{·} the

expectation operator, can be written as

Φz,t=Φx,t+Φi,t, (14)

with the speech and interference STCMs Φx,t = E
{
x̄tx̄

H
t

}
and

Φi,t=E
{̄
it̄i

H
t

}
. Using (12), the STCM in (14) can be rewritten as

Φz,t=φx,ν,tγx,ν,tγ
H
x,ν,t+Φx′,ν,t+Φi,t︸ ︷︷ ︸

=:Φu,ν,t

, (15)

where the undesired STCM Φu,ν,t consists of both the uncorrelated
speech STCM Φx′,ν,t as well as the interference STCM Φi,t.
Using (15), the speech IFC vector γx,ν,t can be written as

γx,ν,t=
1+ξν,t
ξν,t

Φz,teν
eT
νΦz,teν

− 1

ξν,t

Φu,ν,teν
eTΦu,ν,teν

, (16)

where ξν,t=
eTνΦx,ν,teν
eTνΦu,ν,teν

denotes the a-priori signal-to-noise ratio
(SNR), and eν is a selection vector with its first or (N+1)-th entry
equal to 1 and all other entries equal to 0.

2.2.2. Optimization Problem and Solution

In [27], the MFMVDR filter for single-microphone speech
enhancement has been proposed, aiming at minimizing the output
undesired power spectral density (PSD) while not distorting the
correlated speech component. In our CEC1 contribution, we
propose to extend the MFMVDR filter to a binaural filter by
considering the left and right channels independently, i.e.,

argmin
wν,t

wH
ν,tΦu,ν,twν,t, s.t. wH

ν,tγx,ν,t=1. (17)

Solving this constrained optimization problem yields the
BMFMVDR filter vectors:

wBMFMVDR
ν,t =

Φ−1
u,ν,tγx,ν,t

γHx,ν,tΦ
−1
u,ν,tγx,ν,t

(18)



2.2.3. Parameter Estimation

To compute the BMFMVDR filters in (18), we require estimates
of the undesired STCMs Φu,ν,t as well as the speech IFC vectors
γx,ν,t. Rather than estimating γx,ν,t directly, we use the indirect
estimator in (16), resulting in the need to estimate the input STCM
Φz,t as well as the binaural a-priori SNRs ξν,t.

Similarly as in [20], we propose to estimate the required param-
eters from the binaural input signals zt using a deep learning-based
approach by minimizing the scale-dependent signal-to-distortion
ratio (SD-SDR) loss function at the output of the deep BMFMVDR
filter. Instead of using the real and imaginary STFT coefficients
as the input features as in [20], the STFT magnitude and the cosine
of the STFT phase are used as the concatenated input features of
the deep learning-based STCM estimators.

2.3. Hearing Loss Compensation

The hearing loss compensation stage is used for bilateral pure-tone
audiogram-based compensation of hearing loss and further level
adjustments. It consists of a spectral-domain multi-band dynamic
range compressor (MBDRC) [23] implementing a noise gate,
frequency- and hearing loss-dependent amplification and limitation
of the maximum output level, and a volume control at the output.
The STFT and filterbank parameters and the noise gate levels for the
MBDRC were adopted from the CEC1 baseline system. The gains
applied in the MBDRC were computed using the compressive Cam-
fit gain prescription rule [28]. As an alternative to spectral-domain
MBDRC, a simple broadband gain based on the half-gain rule
(HGR) was considered, where the gain was computed as the pure-
tone audiogram average at 500 Hz, 1000 Hz, and 2000 Hz divided by
2. The system also takes care of calibration and soft-clipping of the
output signal, with settings adopted from the CEC1 baseline system.

3. Submitted Systems
Three systems were submitted to the challenge, where all systems
were evaluated using objective metrics and two systems were
evaluated using subjective listening experiments with hearing-
impaired listeners (see Section 4). All systems use the wBLCMP
beamformer (Section 2.1) as the first processing stage and hearing
loss compensation (Section 2.3) as the last processing stage. The
third submitted system additionally uses the deep BMFMVDR
postfilter (Section 2.2) after the wBLCMP beamformer and before
the hearing loss compensation stage.

• E016: Combination of wBLCMP beamformer and HGR-
based hearing loss compensation.

• E019: Combination of wBLCMP beamformer and MB-
DRC.

• E021: Combination of wBLCMP beamformer, deep
BMFMVDR postfilter and MBDRC.

3.1. Algorithm Settings

In this section, we briefly describe the settings of the used
algorithms. Before processing, the microphone signals have been
downsampled from 44.1 kHz to 16 kHz.

3.1.1. Weighted Binaural LCMP beamformer

The parameters of the STFT framework used for the wBLCMP
beamformer are presented in Table 1. The filter length Lh of the
wBLCMP beamformer was chosen to be 8 frames ∧= 20ms with
a delay τ of 2 frames ∧= 5ms as a good compromise between
performance and computational cost. The chosen shape parameter

Table 1: Parameter values used in the wBLCMP beamformer.

Parameter Symbol Value

STFT frame length 80 samples ∧=5ms

STFT frame shift 40 samples ∧=2.5ms
STFT window sqrt-Hann

of p = 0.5 promotes sparsity less than p = 0, which slightly
improved the performance. Since the RTFs of the target speaker
and the interfering source are stationary we chose the smoothing
constant γ= 1, corresponding to a growing window. The scaling
factor β1=1 corresponds to a distortionless constraint for the target
speaker and β2=0.1 was chosen to suppress the interfering source
only partly to keep the spatial awareness of the acoustic scene.

3.1.2. Deep Binaural Multi-Frame MVDR Filter

For the STFT framework we used the same parameters as for the
wBLCMP beamformer. The deep BMFMVDR filter used a filter
length of N = 4, and it was trained on the official CEC1 training
data for 67 epochs using the AdamW optimizer with an initial
learning rate of 10−3, which was halved after 3 consecutive epochs
without validation loss improvement, a weight decay of 10−2, and
a batch size of 4 using an NVIDIA GeForce® RTX 3090 graphics
card. The choice of training on the official CEC1 training data
instead of on the output of the wBLCMP beamformer was made
based on preliminary experiments.

For the employed temporal convolutional networks (TCNs),
we used 2 stacks of 8 layers each, with a kernel size of 3, resulting
in a temporal receptive field of about 2.56s and 3.02M parameters.
Note that the receptive field was deliberately chosen to be larger
than 2s in order to cover the full interferer-only segment at the start
of each CEC1 utterance.

3.1.3. Hearing Loss Compensation

For the hearing loss compensation stage, the parameters in Table 2
were selected for each of the submitted systems based on the results
obtained on a small development data subset: output gain volout,
MBDRC maximum output level levmax, attack time τatt and decay
time τdec of the MBDRC.

Table 2: Parameter values used in the hearing loss compensation
stage for the submitted systems.

E016 E019 E021

volout (dB) HGR 10 10
levmax (dB) — 120 120

τatt (s) — 0.002 0.001
τdec (s) — 0.01 0.01

4. Results
In this section, we present the evaluation results provided by the
CEC1 organizers based on the evaluation dataset. For each utterance
in the evaluation dataset, a bilateral pure-tone audiogram detailing
the hearing loss of a specific listener was provided, which was used
in the hearing loss compensation stage to individualize the output
signals for that specific listener.

For the objective evaluation, the CEC1 organizers processed
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Figure 2: Modified binaural short-term objective intelligibility
results of the baseline system and the submitted systems on the
evaluation dataset.

the output signals of our submitted systems using a hearing loss
model [29] that had previously been made available to the CEC1 par-
ticipants, before estimating the speech intelligibility using the (also
provided) modified binaural short-term objective intelligibility (MB-
STOI) measure [30]. Figure 2 depicts a violin plot of the MBSTOI
results for the baseline system and the three submitted systems. It can
be observed that all submitted systems achieve a significant improve-
ment compared with the baseline system, i.e., the submitted systems
achieve an MBSTOI median score of approximately 0.62 while
the baseline system achieves an MBSTOI median score of approx-
imately 0.31. Furthermore, the differences between the submitted
systems in terms of MBSTOI are relatively small, indicating that nei-
ther the more sophisticated MBDRC hearing loss compensation nor
the deep BMFMVDR postfilter achieve a significant improvement
in terms of speech intelligibility upon the system E016.

Based on these results and the algorithmic differences between
the submitted systems, two of our submitted systems were allowed
to proceed to the second evaluation stage. Aiming at evaluating
the effect of the deep BMFMVDR postfilter, we selected systems
E019 and E021, both including the wBLCMP beamformer and the
MBDRC hearing loss compensation, where only E021 included the
deep BMFMVDR postfilter. The second stage consisted of listening
tests, in which hearing-impaired listeners were presented with the
enhanced signals. For the noise interferer condition, the instructions
were: ”In the speech in noise test, you will hear a sentence and a
loud distracting noise (e.g., a washing machine). You need to repeat
what the talker is saying”. For the speech interferer condition, the
instructions were: ”In the two talker test, you will hear two talkers
speaking at the same time. One talker will start later than the other.
You must repeat what this second talker is saying”. Correctness was
then evaluated by dividing the number of correctly identified words
by the total number of words uttered by the target speaker.

The results of the perceptual evaluation stage are depicted as a vi-
olin plot in Figure 3 per interferer condition. First, it can be observed
that both submitted systems greatly outperform the baseline system.
More specifically, as stated in the official CEC1 results, the baseline
system and our submitted systems E019 and E021 achieved a cor-
rectness score of approximately 33.2 %, 86.7 %, and 84.9 % in the
noise interferer condition, and of approximately 51.2 %, 86.9 %, and
83.9 % in the speech interferer condition, respectively. Second, com-
paring the submitted systems, for the noise interferer condition the
correctness scores are similar, whereas for the speech interferer con-
dition there is a larger number of low correctness scores for system
E021 than for system E019. A possible explanation of this observa-
tion is that, in some scenarios, system E021 reduced the first (interfer-
ing) speaker to such an extent that the listeners perceived the second
(target) speaker as the first speaker, and thus did not repeat the un-
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Figure 3: Listening test results of the baseline system and the
submitted systems chosen for the second evaluation stage on the
evaluation dataset.

derstood words, as per the instructions quoted above. In such cases,
keeping a small residual of the interfering signal may be preferred.

5. Conclusion
Aiming at improving speech intelligibility for hearing-impaired
listeners in a reverberant scenario with a target speaker and an
interfering source, in our contribution we proposed different
combinations of a wBLCMP beamformer, a deep BMFMVDR
postfilter, and a hearing loss compensation stage. The wBLCMP
beamformer performs joint dereverberation and interferer reduction
by minimizing a sparsity-promoting `p-norm cost function subject
to linear constraints for both sources. These constraints aim at
preserving the target speaker without distortion and reducing
the interfering source in a controlled way, moreover preserving
the binaural cues of both sources to preserve spatial awareness
for the listener. To achieve additional interferer reduction, an
optional binaural MFMVDR filter is used, where the required
parameters are estimated using temporal convolutional networks
by minimizing the SD-SDR loss function. The audiogram-based
hearing loss compensation stage either uses a multi-band dynamic
range compressor or a broadband gain based on the half-gain rule.

All submitted systems were shown to considerably improve
speech intelligibility compared with the baseline system based
on objective metrics and subjective listening experiments with
hearing-impaired listeners. For the noise interferer condition, the
best performing system yielded 86.7 % intelligibility, whereas for
the speech interferer condition, the best performing system yielded
86.9 % intelligibility.
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