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ABSTRACT

Labeling audio material to train classifiers comes with a large amount
of human labor. In this paper, we propose an active learning method for
sound event classification, where a human annotator is asked to manually
label sound segments up to a certain labeling budget. The sound event
classifier is incrementally re-trained on pseudo-labeled sound segments
and manually labeled segments. The segments to be labeled during the
active learning process are selected based on the model uncertainty of
the classifier, which we propose to estimate using Monte Carlo dropout, a
technique for Bayesian inference in neural networks. Evaluation results on
the UrbanSound8K dataset show that the proposed active learning method,
which uses pre-trained audio neural network (PANN) embeddings as input
features, outperforms two baseline methods based on medoid clustering,
especially for low labeling budgets.

Index Terms— sound event classification, active learning, Monte
Carlo dropout, self-training, transfer learning

1. INTRODUCTION

Sound event classification, being an important part of machine audition [1],
aims at differentiating between situations or events based on their
acoustic properties [2–4]. Some of its applications include acoustic
scene classification [5], environmental noise classification [6], traffic
surveillance [7], monitoring of patient health [8], wildlife sound
classification [9] and music genre classification [10]. To train a sound
event classifier, a corpus of labeled recordings is required. While recording
a sufficiently large audio corpus can be time-consuming by itself, the
subsequent manual labeling of the recordings typically requires even more
effort and is usually the bottleneck in the data preparation process.

In active learning (AL) [11,12], a human annotator is queried to man-
ually label unlabeled data during the training process. AL is usually
formulated as a process that iterates between re-training the classifier upon
receiving new labels from the annotator, and selecting unlabeled data to be
manually labeled next. For a given labeling budget, i.e. the maximum num-
ber of labels a human annotator is asked to provide within the AL process,
the aim is to maximize the accuracy of the classifier. Hence, algorithms are
typically designed to maximize the informativeness of the received labels.
In the context of sound event classification, AL has been applied to train
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support vector machine (SVM) classifiers [13,14], a random forest [15],
and a combination of an SVM and a nearest-neighbor classifier [16].

Rather than fitting a single or a handful of classifiers, one can
instead model a Bayesian distribution over hypotheses, e.g., using neural
networks [17–21]. In [17] it was shown that variational Bayesian inference
can be performed by training a neural network in which a dropout
layer precedes every weight layer. This technique, known as Monte
Carlo (MC) dropout, allows to sample hypotheses from an approximate
Bayesian posterior by means of sampling dropout masks. Although MC
dropout has been successfully employed to improve informativeness
estimates in AL [22, 23], to the best of our knowledge it has not yet
been applied to sound event classification. Our proposed method, MC
dropout active learning (DAL), combines AL, self-training by generating
pseudo-labels for unlabeled sound segments, and transfer learning by
using pre-trained audio neural network (PANN) embeddings [24] as input
features. Evaluation results on the UrbanSound8k dataset [25] show that
the proposed DAL method yields a larger classification accuracy than
two baseline methods, especially for low labeling budgets.

In Section 2, we formalize the underlying active learning problem. Base-
line AL methods based on medoid clustering are described in Section 3.
Section 4 describes the proposed MC dropout AL method. In Section 5,
the evaluation procedure and the experimental results are presented.

2. PROBLEM DEFINITION

Given is a labeling budget N , a set of sound event classes C, and a
partially labeled set of sound segments, where each segment contains
sound events from exactly one class c inC. The ith segment is represented
by its corresponding feature vector xi. We define the unlabeled set
SU = {xi}, containing feature vectors xi of unlabeled segments, and
the (manually) labeled set SL ={(xi,li)}, containing tuples of feature
vectors xi and labels li of labeled segments. Each label corresponds to
exactly one class in C. In the following, we use the term “segment” to
refer to the feature vector corresponding to a segment.

The goal is to fit a classifier that predicts the class label l̂ of any segment
x as accurately as possible. To train the classifier, we have access to the
sets SU and SL, and we are allowed to request labels for up toN−|SL|
unlabeled segments, with |SL| the cardinality of SL. The choice of the
unlabeled segments that are labeled within the AL process may have a
large impact on the resulting classifier’s accuracy.
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3. BASELINE METHODS

In this section we briefly review the medoid active learning (MAL)
method for sound event classification proposed in [14] and a modified
version using PANN embeddings [24], referred to as MAL-PANN.

In MAL, a fully unlabeled set of segments is first split into small
clusters using k-medoid clustering. The inter-segment distance metric used
for clustering is based on segment-wide statistics of mel frequency cepstral
coefficients (MFCCs) and their first- and second-order time derivatives.
Specifically, for each MFCC and each time derivative, a normal distribu-
tion is fitted, and the distance between segments is computed based on the
Kullback-Leibler divergence between the respective normal distributions.
Starting from the largest cluster, medoids are then selected for labeling,
where a medoid’s label is propagated to other segments in the respective
cluster. Once the number of labeled medoids matches the labeling budget
N , an SVM classifier is fitted on both manually assigned as well as prop-
agated labels. Acoustic features used for training the SVM are minimum,
maximum, median, mean, variance, skewness, kurtosis of MFCCs as
well as mean and variance of the first- and second-order time derivatives.

MAL-PANN is our modification of the MAL method, where we
replace the MFCC-based features with the recently proposed PANN em-
beddings [24], i.e. the activations in the penultimate layer of the CNN-14
model that was trained on the AudioSet dataset [26]. Employing these
pre-trained features instead of the original arbitrarily chosen features makes
for a more fair benchmark to compare the DAL method (see Section 4)
against. The inter-segment distance metric s(x1,x2) in MAL-PANN is
based on the cosine similarity between PANN embeddings x1 and x2, i.e.

s(x1,x2)=1− xT
1 x2

||x1||·||x2||
, (1)

where (·)T denotes transpose, and ||·|| denotes the L2-norm of a vector.

4. MONTE-CARLO DROPOUT ACTIVE LEARNING (DAL)

Instead of only fitting the classifier once the labeling budget is depleted
(as in MAL), in the proposed DAL method the classifier is incrementally
re-trained during the AL process. To enhance the training process, self-
training is applied to generate pseudo-labels for unlabeled segments, which
act as additional training targets for the classifier. Furthermore, the selec-
tion of segments to be manually labeled is based on a so-called acquisition
function, which estimates the informativeness of labeling a segment. The
acquisition function employed is based on model uncertainty, i.e. on the dis-
agreement between individual hypotheses in a Bayesian posterior. To draw
hypotheses from the posterior, and to measure the disagreement between
their predictions, we propose to employ Monte Carlo dropout. To this end,
the classifier is designed as a neural network that contains a dropout layer
followed by a dense layer. Section 4.1 describes the architecture of the neu-
ral network classifier. In Section 4.2 the proposed iterative AL algorithm is
presented, where the classifier is incrementally re-trained on each iteration.

4.1. Classifier

Figure 1 depicts the architecture of the neural network classifier, which
maps a 2048-dimensional PANN embedding x of a sound segment to the
respective class. The neural network consists of a dense layer preceded by
a dropout layer with 50% dropout probability, and followed by a softmax
layer. The dropout layer is kept in stochastic mode both during training
and during inference.

A single forward pass through the network results in the class probabil-
ity distribution P(c|x,d) where d is the randomly sampled dropout mask.
This output can be interpreted as the prediction of a hypothesis about the

2048-dimensional PANN embedding x

dropout (0.5 probability), mask d

dense (2048→|C|)

softmax

class probability distribution P(c|x,d)

Figure 1: Neural network used in DAL for sound segment classification.

class distribution associated with the segment x. The posterior distribution
over classes P(c|x) can be computed via a Monte Carlo estimate by sam-
pling multiple dropout masks and averaging the individual outputs [17], i.e.

P(c|x)=
1

|D|
∑
d∈D

P(c|x,d), (2)

where D denotes the set of sampled dropout masks. The number of
sampled dropout masks |D| is a parameter of DAL.

The classifier’s predicted label for segment x corresponds to the class
with the highest predicted probability, i.e.

l̂(x)=argmax
c∈C

P(c|x). (3)

4.2. Iterative active learning algorithm

In addition to the unlabeled set SU and the (manually) labeled set SL,
DAL maintains a set SP of pseudo-labeled [27] sound segments, which
act as additional training targets for the classifier. The AL process starts
with an initialization stage, and then iterates between stage I and stage II
until the labeling budgetN is depleted.

4.2.1. Initialization stage

DAL requires an initial set of labeled segments, on which the classifier is
trained by minimizing the cross-entropy loss for a fixed number of gradient
descent steps. The initial labeled set counts toward the labeling budgetN .

4.2.2. Stage I: scanning SU and generating SP

For each unlabeled sound segment x∈SU , the confidence of the classifier
is defined as as the highest class probability P (̂l(x)|x). If the confidence
is larger than a certain threshold Θ, the tuple (x,̂l(x)) is copied into the
pseudo-labeled set

SP ={(x,̂l(x))|x∈SU ;P (̂l(x)|x)>Θ}, (4)

whereby the confidence threshold Θ is a parameter of DAL. Setting Θ=1
corresponds to turning off pseudo-labeling, whereas Θ=0 corresponds
to assigning pseudo-labels to all unlabeled segments. It should be noted
that SP is generated anew in each iteration.

In addition, to estimate the informativeness of labeling a segment, for
each unlabeled segment x ∈ SU we compute the acquisition function
value [22,28]. For that, each hypothesis sampled via MC dropout produces
a single vote in favor of one class, resulting in the so-called vote distribution

P̃(c|x)=
1

|D|
∑
d∈D

δc,vote(x,d), (5)
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with δ the Kronecker-delta and

vote(x,d)=argmax
c∈C

P(c|x,d) (6)

the class with the highest predicted probability when using the dropout
mask d. As acquisition function we use the vote entropy [29], i.e. the
entropy of the vote distribution P̃(c|x), i.e.

HP̃ (x)=−
∑
c∈C

P̃(c|x)·logP̃(c|x). (7)

The acquisition function thus captures the model uncertainty, i.e. the degree
of disagreement between predictions of the individual hypotheses. The
unlabeled segment with the highest vote entropyHP̃ is then presented to
the annotator, removed from the unlabeled set SU and added to the labeled
set SL along with the corresponding label. Each acquired label counts
toward the labeling budget. It should be noted that in the first T0 iterations
no manual labels are requested, enabling the classifier to train on labeled
and pseudo-labeled segments, without consuming the labeling budget.

4.2.3. Stage II: re-training the classifier

The classifier is re-trained on labeled segments in SL and pseudo-labeled
segments in SP by minimizing the cross-entropy loss. Segments are sam-
pled into minibatches such that a minibatch contains the same numberB
of segments for each class. It is well known that unconstrained training on
pseudo-labeled data degrades model performance due to self-amplifying
classification errors in the training dataset [30]. Hence, to reduce the
impact of pseudo-labeled segments, for each class c we draw BL,c

labeled andBP,c pseudo-labeled segments into a minibatch such that

BP,c=

⌊
αB

|SP,c|
|SL,c|+α|SP,c|

⌋
, (8)

BL,c=B−BP,c, (9)

where |SL,c| and |SP,c| denote the number of labeled and pseudo-labeled
segments belonging to class c, and α is a parameter of DAL. This
effectively makes the chance of a pseudo-labeled segment to be drawn into
the minibatch α−1 times smaller than the chance of a labeled segment.
Setting α=0 prevents pseudo-labeled segments to be used for training,
whereas for α=1 pseudo-labeled and labeled segments attain the same
weight. Minibatch sampling and gradient descent are repeated a fixed
number of times.

5. EVALUATION

In this section we evaluate the performance of the proposed DAL method
and compare it with the baseline methods (MAL, MAL-PANN).

After presenting the used dataset and the performance metrics in
Section 5.1, the default parameter values for DAL are discussed in
Section 5.2. The experimental results are presented in Section 5.3.

5.1. Dataset and performance metrics

The performance of the considered AL methods is evaluated on the
UrbanSound8K dataset [25], an environmental dataset containing 8732
short sound segments (up to 4 seconds). Each segment is weakly labeled
with one of the following 10 classes: air conditioner, car horn, children
playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren,
and street music.

In the experiments, DAL is initialized with a labeled set SL (see
Section 4.2.1) which contains 3 randomly chosen segments for every

class, i.e. 30 labeled segments in total. Manual labeling is simulated by
revealing the ground truth label to an AL algorithm.

We assess the performance of an AL algorithm by means of the
classification accuracy for different labeling budgets evaluated on the test
split via 10-fold cross-validation. The accuracy is evaluated as the macro-
averaged recall [31], which computes the percentage of correctly predicted
ground-truth labels for each class, and averages these percentages over
all classes. Depending on the computational cost of an experiment, we
either conducted one or 10 experimental trials, i.e. repeated the experiment
10 times. For each experiment, 80% confidence intervals for the macro-
averaged recall were computed using the bootstrap method. For the case of
one experimental trial we treated each fold in the 10-fold cross-validation
as an individual experiment when computing confidence intervals.

5.2. Default parameters

Table 1 summarizes default parameter values of the DAL method that
were used in the experiments described in Section 5.3.

parameter value
pseudo-labeling

confidence threshold Θ in (4) 0.5
sampling weight α in (8)
of pseudo-labeled segments 0.01

number T0 of initial iterations
without new acquisition 3

Monte Carlo dropout
number of sampled dropout
masks |D| in (2) and (5) 128

optimization
per-class minibatch sizeB in (8) 256
number of gradient
descents per iteration 40 (1600 at initialization)

optimizer Adam
learning rate 1e−3
weight decay 1e−3

Table 1: Parameter values for the DAL method.

5.3. Results

In Sections 5.3.1 and 5.3.2 we investigate the performance of the proposed
DAL method while variating two important parameters: the confidence
threshold Θ and the sampling weight α. It is worth noting that whenever
one parameter was variated, the other was set to its default value (cf. Ta-
ble 1). For the default values of all parameters as in Table 1, we then com-
pare the performance of DAL with the baseline methods in Section 5.3.3.

5.3.1. DAL performance sensitivity to Θ

As discussed in Section 4.2, using pseudo-labels to train the classifier is an
important aspect of DAL. Since the assignment of an unlabeled segment
in the pseudo-labeled set SP depends on the confidence threshold Θ
in (4), it is important to understand the impact of this parameter on the
overall performance.

Figure 2 depicts the performance of DAL for different values of the
confidence threshold Θ for labeling budgets between 30 and 130. Studying
and optimizing the performance for low labeling budgets is especially
relevant for real-world applications. Results suggest that the best perfor-
mance is achieved for a moderate value around Θ=0.5. As discussed
in Section 4.2.2, setting Θ = 1 corresponds to effectively turning off
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Figure 2: Macro-recall R over labeling budget N for different values
of the confidence threshold Θ for assigning pseudo-labels in DAL.
Confidence intervals are computed from 10 experimental trials.

Figure 3: Macro-recallR over labeling budgetN for different values of
the sampling weight α of pseudo-labeled segments in DAL. Confidence
intervals are computed from 10 experimental trials.

pseudo-labeling, resulting in worse performance, since DAL cannot benefit
from unlabeled segments in this case. On the other hand, pseudo-labeling
all unlabeled segments (Θ = 0) also yields suboptimal performance,
because segments are more likely to be assigned an incorrect pseudo-label.

5.3.2. DAL performance sensitivity to α

The impact of pseudo-labeled segments on the training depends on the
value of α in (8), which regulates the amount of pseudo-labeled segments
in a minibatch. Figure 3 depicts the performance of DAL for different
values of α for labeling budget is between 30 and 130. It is evident that
setting α= 0 results in a suboptimal performance, since this prevents
pseudo-labeled segments from appearing in a minibatch, as discussed
in Section 4.2.3. In the case α= 1 pseudo-labeled segments attain the
same weight as labeled segments, which is known to degrade model
accuracy due to mislabeled segments in the training dataset [23, 30].
In our experiments the value α= 0.01 seemed to perform well, i.e. a
pseudo-labeled segment is 100 times less likely to be drawn into a
minibatch than a labeled segment with the same label. Given the large
imbalance of data in favor of unlabeled segments it is reasonable that the
sampling weight α of pseudo-labeled segments should be chosen small.

Figure 4: Macro-recallR over labeling budgetN for baseline methods
(MAL, MAL-PANN) and the proposed method (DAL). The confidence
intervals for DAL are computed from 1 experimental trial whereby each
cross-validation split is treated as an individual experiment. MAL and
MAL-PANN are deterministic algorithms and their performance can be
computed exactly.

5.3.3. Performance of DAL vs baseline methods

Using Θ = 0.5 and α= 0.01 determined in the previous experiments,
Figure 4 depicts the performance of DAL against the labeling budget,
now ranging from 30 to 7000. This figure also depicts the performance
of the baseline methods (MAL, MAL-PANN).

First, it can be observed that simply switching from MFCC-based fea-
tures as originally proposed in [14] to PANN embeddings greatly improves
MAL performance, increasing the macro-recall forN=7000 labels from
about 65% (MAL) to about 85% (MAL-PANN). Second, we see that
the proposed DAL method outperforms MAL for all considered labeling
budgets and outperforms MAL-PANN (using the same features as DAL)
for low labeling budgets (below 300), which is most relevant in practice.

6. CONCLUSION

In this paper, we proposed an active learning method for classifying sound
segments that makes an efficient use of manual labels. The label-efficiency
is established by a combination of active learning, self-training on pseudo-
labels and transfer learning by means of using pre-trained embeddings.

The self-training aspect of DAL has a considerable influence on the
classifier’s accuracy. This is reflected in the performance sensitivity of
DAL to the parameters controlling the pseudo-labeling policy and the
pseudo-label weighting.

We have shown that the performance of the benchmark method, MAL,
considerably improves when employing the same pre-trained PANN
embeddings as in DAL, leading to a similar classification accuracy for
larger labeling budgets. This indicates the importance of transfer learning
that was applied in DAL.

In the experiments, the proposed method, DAL, outperforms
benchmark methods especially for low labeling budgets.

In principle, DAL could be extended to the problem of multi-tagging,
where a sound segment may have multiple class labels; this is a potential
subject of future research. Furhtermore, a more complex strategy for
assigning pseudo-labels could use adaptive confidence thresholds for each
class to account for class imbalance.

The ability to perform approximate Bayesian inference via Monte Carlo
dropout enables us to leverage model uncertainty and incorporate it into
the AL process. Whether or not the employed acquisition function, vote
entropy, is the best way of doing so, remains yet another open question.
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