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ABSTRACT

Many deep learning techniques are available to perform source
separation and reduce background noise. However, designing an end-
to-end multi-channel source separation method using deep learning
and conventional acoustic signal processing techniques still remains
challenging. In this paper we propose a direction-of-arrival-driven
beamforming network (DBnet) consisting of direction-of-arrival (DOA)
estimation and beamforming layers for end-to-end source separation.
We propose to train DBnet using loss functions that are solely based
on the distances between the separated speech signals and the target
speech signals, without a need for the ground-truth DOAs of speakers. To
improve the source separation performance, we also propose end-to-end
extensions of DBnet which incorporate post masking networks. We
evaluate the proposed DBnet and its extensions on a very challenging
dataset, targeting realistic far-field sound source separation in reverberant
and noisy environments. The experimental results show that the proposed
extended DBnet using a convolutional-recurrent post masking network
outperforms state-of-the-art source separation methods.

Index Terms— sound source separation, deep learning, beamform-
ing, direction of arrival estimation

1. INTRODUCTION

Environmental noise, reverberation and interfering sound sources nega-
tively affect the quality of the speech signals received at the microphones
and therefore degrade the performance of many speech communication
systems including automatic speech recognition systems, hearing assis-
tive devices and mobile devices. In recent years several deep learning
techniques have been proposed to separate out the speakers from the
microphone signals and reduce background noise based on, e.g., the
frequency domain transformation [1, 2, 3, 4] or a learned latent domain
transformation [4, 5, 6, 7]. The frequency-domain-based techniques
perform sound source separation typically by estimating time-frequency
masks corresponding to each source, while the latent-domain-based
techniques aim at learning a latent space from the time-domain signals to
perform source separation. Although most of these techniques are able to
separate out speakers from single-channel microphone signals, designing
a multi-channel source separation method that properly leverages all
inter-channel information remains to be solved.

When multi-channel inputs are available or a physical interpretation
of a signal is possible conventional acoustic signal processing, e.g.,
beamforming and direction-of-arrival estimators (DOA), have analytical
solutions and reasonably good performace in many cases. This motivates
to integrate conventional acoustic signal processing techniques and deep
learning techniques to profit from both worlds, as has been proposed
by several works [8, 9, 10]. However, the integration of techniques is

Fig. 1. Block diagram of the proposed DBnet structure

typically performed in a modular way where each module is optimized
individually, which may lead to non-optimal solution. More recently, a
filter-and-sum network with an end-to-end training has been proposed
using time-domain filtering, which does not benefit from computationally
efficient filtering in the frequency domain [11]. In this paper we propose
a DOA-driven beamforming network (DBnet) operating in the frequency
domain, aiming at end-to-end sound source separation where the gradient
is propagated in an end-to-end optimization way through the time domain.
As opposed to most existing techniques in literature, we evaluate the
proposed DBnet on a very challenging and realistic large-scale dataset,
targeting realistic far-field sound source separation in reverberant and
noisy environments.

The proposed DBnet is depicted in Fig. 1. DBnet consists of layers
for short-time Fourier transform (STFT), DOA estimation, beamforming
and inverse STFT (iSTFT). We train DBnet using loss functions that
are solely based on the distances between the separated speech signals
and the target speech signals. In this way, the network is trained to
inherently estimate the DOAs of speakers leading to the best possible
separated speech signals while the need of the ground truth DOAs for
training the network is eliminated. Although DBnet is able to separate the
sources and suppress noise, the output signals may still contain residual
noise. Therefore, we also propose end-to-end extensions of DBnet which
incorporate a post masking network (pMnet). For pMnet we consider
a convolutional-recurrent network with an encoder-decoder architecture
which combines frequency and latent-domain based techniques. We
train the networks using several loss functions based on complex spectra
distances, magnitude distances or a combination of both distances. In
addition, aiming at developing the networks to be well-generalized for
unseen acoustic conditions, we generate a large-scale training dataset
using several augmentation steps.

We experimentally compare the proposed DBnet and DBnet exten-
sions with the state-of-the-art source separation methods for challenging
noisy and reverberant conditions. The results show that the proposed
extended DBnet outperforms state-of-the-art source separation methods.
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2. END-TO-END SOUND SOURCE SEPARATION

2.1. Problem formulation

We consider an acoustic scenario comprising two competing speakers
and background noise in a reverberant environment. We consider an
array withM microphones. The sound captured at them-th microphone
signal can be decomposed as

ym[n]=

2∑
i=1

xi,m[n]+vm[n], (1)

where xi,m [n] denotes the direct speech component in the m-th mi-
crophone signal corresponding to speaker i, vm [n] denotes the noise
component representing reverberation, background noise and any remain-
ing components and n denotes the discrete time index.

In the short-time Fourier transform (STFT) domain, the M-
dimensional stacked vector of all microphone signals can be given by

y(k,f)=
2∑
i=1

ai(k,f)Xi,0(k,f)+v(k,f), (2)

where ai(k,f) denotes the direct relative transfer function vector (DRTF)
corresponding to source i,Xi,0 denotes the STFT coefficient of xi,0[n],
v(k,f) denotes the noise component, and k and f are the frame index
and the frequency index. Assuming the sources are in the far field of
omnidirectional microphones, the DRTF ai(k,f) can be given as

ai(k,f)=ejκ(k)Rmicri , (3)

where Rmic denote theM×3 Cartesian microphone array coordinates,
ri is the Cartesian i-th source position, normalized to unit distance, and
κ(k)= 2πkfs

cNFFT
is the wavenumber with c denoting the speed of sound, fs

denoting the sampling rate, andNFFT denoting the fast Fourier transform
(FFT) size. With the far-field assumption, the position of i-th source
ri in the far field in (3) can be assumed as distance-independent, and
therefore only depends on elevation and azimuth angles, θel,i and θaz,i,
corresponding to the i-th source.

Our goal is to separate out the direct speech signal components of
the speakers from the microphone signals in the time domain using a
network h with linear and non-linear layers operating in the frequency
and latent domains, i.e.,

x̄i,0[n]=h(ym[n]). (4)

2.2. DBnet

The DBnet accepts microphone signals ym [n] as input signals and
computes their corresponding STFTs using the first layer (see Fig. 1).
The DOA estimation layer with learnable parameters then estimates the
DOAs of both sources from the phase spectrograms of input signals.
Based on the estimated DOAs, the DRTFs of sources are estimated
using (3) to steer two parallel beamforming layers separating out the
speech sources. The output signals of the beamformers are finally
transformed to the time domain using the iSTFT layer. We explore
either convolutional-recurrent (DBnet(CR)), or fully recurrent structures
(DBnet(R)) for DOA estimation, described in the following.

The first DOA estimation architecture is a convolutional-recurrent
structure (DBnet(CR)), to learn the relevant features from phase spec-
trograms and to model the sequence of the learned features as shown
in Fig. 2a. We use M − 1 2D-convolutional layers with 64 filters of
size m× f = 2× 1 to learn the phase correlations between adjacent
microphones at each frequency sub-band separately as proposed in [12].

(a) convolutional-recurrent structure (b) recurrent structure

Fig. 2. Structure of the DOA estimators

Fig. 3. Structure of the convolutional-recurrent pMnet

These learned features are then pooled using a 2D max pooling layer
to increase the robustness of features against background noise. The
sequence of these features is modeled using a BLSTM layer [13] with
1200 units. The outputs of the BLSTM layer then go through two parallel
fully connected layers with Sigmoid functions followed by two mapping
blocks to estimate the azimuth and elevation angles of the DOAs of both
sources. The azimuth and elevation mapping blocks map the output of
the fully connected layers to azimuth angle θel,i ∈ [−175◦,185◦] and
elevation angle θaz,i∈ [−175◦,185◦] ranges, respectively.

The second DOA estimation architecture is a fully recurrent (DB-
net(R)) structure, consisting only of the BLSTM, 2D max pooling, fully
connected layers, and mapping blocks as shown in Fig. 2b. For both
DOA estimation architectures, all 2D-convolutional layers use strides
of k×f =1×1 and the 2D max pooling layer uses strides of 32×32,
downsampling across time and frequency dimensions. The BLSTM
layers is an aggregation step returning only the last hidden state, resulting
in time-and-frequency-invariant outputs.

For beamforming, we use the linearly-constrained-minimum-
variance (LCMV) beamformer [14], minimizing spatially diffuse
noise, while preserving the target source signal and spatially nulling
the interfering source. The LCMV beamformer is computed from the
DRTFs corresponding to the estimated source angles {θel,i,θaz,i} using
(3), and the isotropic noise field covariance matrix [15].

2.3. DBnet extensions with post masking

Since the suppression capability of linear spatial filters such as the LCMV
beamformers used in DBnet is limited, the output signals of the DBnet
may still contain residual noise. Therefore, we propose an extension of
DBnet, which incorporates a post masking-based network (pMnet) to
suppress the residual noise. pMnet takes the log magnitude spectrum of
the beamformer output signals and generates real-valued time-frequency
masks corresponding to each source. Motivated by the results in [1, 4]
where a masking-based network with recurrent layers was used for speech
separation, we consider a recurrent pMnet consisting of four BLSTM lay-
ers followed by one fully connected layer to estimate the stacked masks
corresponding to the sources. As an alternative to the recurrent pMnet, we
also consider a convolutional-recurrent pMnet with an encoder-decoder
network architecture (see Fig. 3), similarly as used in [16] but for speech
enhancement. The 2D-convolutional layers encode the input magnitude
spectrums into a higher-dimensional latent features and two BLSTM
layers model the sequence of latent features. The outputs of the BLSTM
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Table 1. Loss functions
Loss function Complex (Lcomplex) Magnitude (Lmagnitude)

MSE log10

∑
k,f

∣∣Xi,0(k,f)−Xi,0(k,f)
∣∣2 (3) log10

∑
k,f

∣∣|Xi,0(k,f)|−
∣∣Xi,0(k,f)

∣∣∣∣2 (4)

cMSE log10

∑
k,f

∣∣|Xi,0(k,f)|cejϕX−
∣∣Xi,0(k,f)

∣∣cejϕX

∣∣2 (5) log10

∑
k,f

∣∣|Xi,0(k,f)|c−
∣∣Xi,0(k,f)

∣∣c∣∣2 (6)

MAE log10

∑
k,f

∣∣Xi,0(k,f)−Xi,0(k,f)
∣∣ (7) log10

∑
k,f

∣∣|Xi,0(k,f)|−
∣∣Xi,0(k,f)

∣∣∣∣ (8)

SDR −log10

∑
k,f
|Xi,0(k,f)|2∑

k,f
|Xi,0(k,f)−Xi,0(k,f)|2

(9)

layers are converted back to the original input dimension using mirrored
transposed 2D-convolutional layers. The output of the encoder-decoder
layers go then through a feed forward layer to estimate the masks of
both sources. For both recurrent and convolutional-recurrent pMnets, the
BLSTM layers have 1200 units and the fully connected layers have 514
units with Sigmoid functions. For the convolutional-recurrent pMnet,
the sequence of 2D-convolutional layers has 16, 16, 32, 32, 64 filters
with kernel sizes of k×f=6×6 and strides of 1×2. The sequence of
transposed 2D-convolutional layers correspondingly has 32, 32, 16, 16,
2 filters. All convolutional layers are followed by leaky ReLU functions.

To investigate the impact of the post masking on the source separation
performance, we consider the following end-to-end DBnet extensions:
• DBnet(R)-pMnet(R): recurrent DBnet followed by the recurrent

Mnet
• DBnet(R)-pMnet(CR): recurrent DBnet followed by the

convolutional-recurrent pMnet
• DBnet(CR)-pMnet(R): convolutional-recurrent DBnet followed

by the recurrent pMnet
• DBnet(CR)-pMnet(CR): convolutional-recurrent DBnet fol-

lowed by the convolutional-recurrent Mnet

2.4. Baseline method: masking-based source separation

As baseline methods we consider a recurrent masking-based net-
work (Mnet(R)) and a convolutional-recurrent masking-based network
(Mnet(CR)). The Mnet(R) has a similar structure as used for pMnet(R)
with only one difference that the log magnitude spectrum of a reference
microphone signal is used as input. The Mnet(CR) uses the same input
and has a similar structure as used for pMnet(CR). The baseline methods
use only the reference microphone from the array.

3. LOSS FUNCTIONS

For training the networks we consider several loss functions using either
complex spectral distance or magnitude distance between the STFT
of the separated speech signals Xi,0(k,f) and the STFT of the target
speech signalsXi,0(k,f), given in Table 1. We consider four different
loss functions in the following: i) the mean squared error (MSE) given
by (3) and (4) [17]; ii) the compressed MSE (cMSE) given by (5) and
(6), which is computed based on the magnitudes compressed with an
exponent c=0.3 [18, 19], in order to deal with the large dynamic ranges
of audio signals; iii) the mean absolute error (MAE) loss functions given
by (7) and (8), promoting speech sparsity [17]; iv) the commonly used
scale-variant signal-to-distortion ratio (SDR) (9) [20, 10].

In addition, we consider loss functions which combine the complex
spectral distance and the magnitude distance per row of Table 1, i.e.,
L=αLcomplex+(1−α)Lmagnitude where 0≤α≤1 denotes the loss
combining factor. The source-to-output mapping problem is solved by
using utterance permutation invariant training (uPIT) as proposed in [1]
is employed.

4. DATASETS

Since the performance of neural networks are highly data dependent, we
put large effort in building realistic and large enough training and test
sets to draw valid conclusions. We separate training, validation and test
data as much as possible using different datasets where possible. Since
room impulse responses (RIRs) for our targeted microphone array are
unfeasible to obtain from measurements in large quantity, we simulate
RIRs for training, while we use measured RIRs for validation and testing
to ensure generalization of the networks to real-world acoustic conditions.

4.1. Training, validation and test data

For training, validation and testing, we use three different speech
databases, i.e. 540 h of speech data from audiobooks rated with high
quality published in the Deep Noise Suppression Challenge [21], 18 h
from VCTK [22], and 5 h from DAPS [23], respectively.

We consider a 7-channel microphone array with 6 microphones on a
circle of 4 cm radius and one center microphone. The center micm=0
is defined as reference microphone. For training, the array geometry is
simulated as free-field omnidirectional microphones, while for validation
and testing we use measured RIRs using an actual device. For training,
we simulate RIR sets of random positions in 1000 differently sized
rooms using the image method [24], while for validation and testing we
use measured RIRs using the actual device in 6 different rooms. The
rooms were office, meeting, living rooms, and a large entrance hall with
reverberation times between 0.3 to 1.3 s. In each room, several source
positions were measured at challenging distances between 2 to 10 m,
resulting in direct-to-reverberation ratios (DRRs) between -10 to 0 dB.

To generate spatially realistic noise, we use an internal database
of recordings made with a third-order Ambisonics array, which were
rendered to the 7-channel microphone array using a full spherical set
of DRTFs from all source positions to the microphone positions. For
training, we use a subset of 39 h of the noise, rendered accordingly to
DRTFs simulated with the image method, while for validation and testing
data we use two unseen 2.5 h noise subsets, which were rendered to
measured DRTFs of the actual device in an anechoic chamber.

4.2. Data generation

For data generation we use the same processing pipeline for all datasets:
We create mixtures of two overlapping speech signals of 30 s length. Each
source signal is generated by concatenation of recordings from the same
speaker, convolved with a RIR from a randomly chosen position in the
same room. The reverberant multichannel speech signals are mixed with
energy ratios drawn from a normal distribution with 0 dB mean and 1 dB
variance. Noise is added to the mixtures with SNRs drawn from a normal
distribution with mean and variance of 8 dB and 10 dB, respectively. The
microphone signals are then generated by scaling the reverberant-noisy
mixtures with levels from a normal distribution with mean and variance of
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-28 dB and 10 dB. The target speech signals are generated using windowed
versions of reverberant RIRs, enforcing a maximum reverberation time of
200 ms, preserving the early reflections which are beneficial for speech
intelligibility and naturalness. These target speech signals are also scaled
jointly with the microphone signals. Using this pipeline, we generate
training, validation and test sets of 1000 h, 2.5 h and 4 h, respectively. All
datasets were generated at a sampling rate of fs=16 kHz.

5. NETWORK TRAINING AND STFT SETUP

All DOA estimation and beamforming layers were implemented using
a weighted overlap-add framework with an STFT frame length of 512
samples, an overlap of 50% between successive frames, a Hann window
and an FFT sizeNFFT =512.

All networks were trained using Adam optimizer [25]. The initial
learning rate was set to an appropriate value and then decreased by a factor
of 2 if the SDR validation loss does not improve for 2 consecutive epochs.
In each epoch, 500 batches of 10 audio sequences were randomly selected
from the training set. Each sequence was a random 10 s sub-portion from
the 30 s signals. To improve the network generalization, we use gradient
clipping technique with a maximumL2 norm of 5, similarly as used in [4].

6. EXPERIMENTAL RESULTS

In this section, we evaluate the speech separation performance of the
proposed networks in terms of the scale-invariant SDR and SIR of
BSSEval [26] and PESQ [27]. In Section 6.1, we investigate the impact
of loss functions and network structures on the performance of the
masking-based networks. In Section 5.2, we investigate the impact of
using post masking on the performance of DBnets.

6.1. Loss functions and source separation performance

Figure 4 depicts the SDR improvement of the masking-based networks ei-
ther using the recurrent structure (Mnet(R)) or the convolutional-recurrent
structure (Mnet(CR)) for all considered loss functions. We observe
for all loss functions that the lowest SDR improvement is obtained
when training the networks based on only the magnitude distance, i.e.,
α = 0, and the largest SDR improvement is obtained when training
based on the complex spectral distance, i.e., α=1. In addition, training
the networks based on the cMSE loss function yields the highest SDR
performance, showing the importance of dynamic range compression
for network training. Therefore, from now on we focus only on the
results obtained based on the cMSE loss function. In Table 2 the SDR,
the SIR and the PESQ improvement of the masking-based networks
are compared. We observe that the Mnet(R) tends to degrade the SIR
improvement, while the Mnet(CR) yields a significant improvement in
terms of all considered performance measures, showing the effectiveness
of convolutional-recurrent structure for masking based source separation.

6.2. DBnet source separation performance

In Table 3 the source separation performance of DBnets and their ex-
tensions are compared. We observe that the DBnets either using the
recurrent structure (DBnet(R)) or the convolutional-recurrent structure
(DBnet(CR)) provide an SDR and an SIR improvement, however the
SDR improvement is lower than the Mnets (Table 2). The lower SDR im-
provement of DBnets can be mainly attributed to the limited suppression
capability of beamformers, resulting in output signals with residual noise.
Nevertheless, both DBnet(R) and DBnet(CR) are still able to yield a larger
SIR improvement of about 0.82−1.26 dB compared to the Mnet(R) (Ta-
ble 2). The SIR improvement implies that DBnet(R) and DBnet(CR) are

Fig. 4. SDR improvement for different loss functions when using Mnet(R)
and Mnet(CR)

Table 2. Comparison of Mnet with recurrent and convolutional-recurrent
structures

Method 4SDR 4SIR 4PESQ
Mnet(R) 24.36 −0.21 0.14

Mnet(CR) 26.15 2.54 0.20

Table 3. Comparison of DBnet and DBnet extensions with recurrent and
convolutional-recurrent structures

Method 4SDR 4SIR 4PESQ
DBnet(R) 4.26 1.25 0.00

DBnet(CR) 4.29 1.26 0.00
DBnet(CR)-pMnet(R) 25.22 3.02 0.14

DBnet(CR)-pMnet(CR) 24.11 6.86 0.21
DBnet(R)-pMnet(R) 22.31 1.34 0.09

DBnet(R)-pMnet(CR) 23.53 0.29 0.03

able to estimate the DOAs of the sources to appropriately steer beamform-
ers, although both networks were trained without using the ground-truth
DOAs of sources. This confirms the possibility of training beamforming
networks without having ground-truth DOAs for source separation.

When using the extensions of DBnets using post masking, it can
be observed that all considered performance measures are significantly
improved compared to the DBnets, showing the importance of post
masking. When using the convolutional-recurrent DBnets followed by
post masking, a considerably larger SIR improvement of 3.02 dB for
DBnet(CR)-Mnet(R) and 6.86 dB for DBnet(CR)-Mnet(CR) is obtained
compared to the Mnet(CR). However, when using the recurrent DBnets
followed by post masking (DBnet(R)-Mnet(R) and DBnet(R)-Mnet(CR)),
the improvement for all measures decreases. In general, among all con-
sidered networks the Mnet(CR) yields the highest SDR improvement but
low SIR improvement and DBnet(CR)-Mnet(CR) yields the highest SIR
and PESQ improvement with a considerably high SDR improvement.

7. CONCLUSION

In this paper, we proposed end-to-end source separation networks com-
bining DOA estimation, beamforming and post masking. For DOA es-
timation and post masking we used recurrent and convolutional-recurrent
network structures. We showed the superiority of the compressed spectral
loss for source separation, and showed that this solely signal-based loss is
enough to train DOA driven beamformers, without training with ground
truth DOAs. Experiments in extremely challenging and realistic acoustic
conditions with source distances up to 10 m in heavily reverberant and
noisy environments showed that DBnet using the convolutional-recurrent
structure for both DOA estimation and post masking is able to improve the
SDR, SIR, and PESQ. However, further work is required to improve the
separation performance even more in such adverse acoustic conditions.
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