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Abstract 

Understanding speech played back in noisy and reverberant 

conditions remains a challenging task. This paper describes the 

Hurricane Challenge 2.0, the second large-scale evaluation of 

algorithms aiming to solve the near-end listening enhancement 
problem. The challenge consisted of modifying German, 
English, and Spanish speech, which was then evaluated by a 

total of 187 listeners at three sites. Nine algorithms participated 
in the challenge. Results indicate a large variability in 

performance between the algorithms, and that some entries 
achieved large speech intelligibility benefits. The largest 
observed benefits corresponded to intensity changes of about 

7 dB, which exceeded the results obtained in the previous 
challenge despite more complex listening conditions. A priori 

information about the acoustic conditions did not provide a 
general advantage. 

Index Terms: intelligibility, speech enhancement 

1. Introduction 

In many everyday situations speech is played back to convey 
information (e.g., public address systems, mobile phones, smart 

speakers). However, the intended speech signal is often joined 
by competing sounds in the listening environment or degraded 

by properties of the transmission channel (e.g. reverberation). 
One way to maintain high intelligibility under adverse 
conditions is to increase the intensity of the playback signal to 

improve the signal-to-noise ratio (SNR). However, this is only 
possible to a limited degree in practice since output levels that 

are too high may result in discomfort or overload the playback 
equipment. Consequently, alternatives are needed to modify the 

speech signal with the aim of maintaining intelligibility under 
an equal-level constraint. Various approaches have been 
proposed to tackle the so-called near-end listening 

enhancement (NELE) problem. These include modifications of 

spectral properties (e.g., [1-6]), non-linear amplification such as 

dynamic range compression (e.g., [7-10]), selective 
enhancement of certain signal components (e.g., [11-13]) or 
speech modulations (e.g., [14]), and time-scale modification 

(e.g., [15-17). Because these algorithms are typically explored 
and validated in isolation or compared against different 

baselines, a large-scale evaluation was initiated in 2012 with a 
goal of comparing the performance of NELE algorithms using 

shared data and metrics. This evaluation took place within the 

Hurricane Challenge [18]. The focus of the Hurricane 
Challenge was interfering sounds, and two types of maskers 

were used (stationary speech-shaped noise and a single 
competing talker). One main result was that large performance 

differences were observed between algorithms, and that only a 

few algorithms could provide intelligibility benefits for both 
types of maskers. Most of the successful algorithms employed 

dynamic range compression indicating that level-dependent 

amplification is a powerful approach to this challenging 
problem. Another important observation was that algorithms 

that employed a priori knowledge of the maskers did not 
necessarily perform better than noise-independent algorithms. 

While the Hurricane Challenge was the first open large-scale 
NELE algorithm comparison and, as such, provided a number 
of qualitative and quantitative insights into the effectiveness of 

speech modification techniques, it was limited in its scope. For 

example, the interferers employed represented two highly 

artificial masking environments, while more realistic acoustic 
conditions such as multitalker environments [19] and 
reverberation [20] have been shown to be challenging for NELE 

algorithms [21].  

This paper presents the results of the second Hurricane 
Challenge, in which some of these limitations were addressed. 
A major extension, in addition to the use of more realistic 

masking noise, was the inclusion of different degrees of 
reverberation, allowing for a more general assessment of 

algorithmic benefit in real rooms. In addition, subjective 
evaluations were carried out in three different languages, 

permitting a multilingual comparison of algorithms. Finally, 

knowledge of the listening conditions was limited in a more 
realistic way by not providing the exact waveforms of the 

masking noise, but only a waveform and room impulse 
responses recorded in the same room. The new challenge 
therefore tests NELE algorithms in a more realistic way, and 

allows for more representative assessment of recent techniques 
in real applications.  

2. The Challenge problem 

Entrants were provided with a corpus of waveforms including 

the target speech as well as noise and room impulse responses 
(RIRs) recorded in the proximity of the listener position. 

Entrants returned algorithmically-modified target speech 
signals for each of the three speech corpora. These were then 

subjected to evaluation by listeners. Entrants had around two 
months to prepare their modified signals, and made a financial 
contribution to the cost of listening tests. 

2.1. Target speech 

The target speech consisted of recordings of matrix sentences 

uttered by one male speaker without foreign accent in each 
language (German, American English and European Spanish) 
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[22]. Matrix sentences have fixed five-word structure (e.g., 

‘Peter bought eight big chairs’). For each word, ten alternatives 
are available which allows constructing syntactically correct, 
but semantically unpredictable sentences. While there are 

language specific differences (e.g., with respect to the order of 
object and adjective in Spanish vs. German/English), the 

general concept as well as the design criteria are highly 
comparable across tests in different languages [23]. One major 

advantage of matrix sentences compared to context-rich 

everyday sentences is that they cannot be easily memorized 
and, hence, multiple repetitions of the test are possible without 

being restricted by the number of available test lists. A practical 
disadvantage is that listeners have to be made familiar with 

speech material to limit the effect of training.  

2.2. Acoustic conditions 

For each language, nine conditions were defined including 
three different reverberation conditions (RIRs) and three 
different SNRs for each RIR. The acoustic conditions were 

created from recordings of masking noise and impulse 
responses. These were used to simulate the speech transmission 

path in a room with variable room acoustics (Figure 1). In the 
configuration used for the Challenge, the room had a broadband 

reverberation time of about 0.8s. 
  

 

Figure 1: Schematic diagram of the recording setup. 

Target speech was presented from the frontal loudspeaker 

(labelled ‘T’) and reverberation was varied by changing the 

distance of the listener (dummy heads in the figure) to the target 

speaker from 1m (‘near’) to 2.5m (‘mid’), and 4m (‘far’), 
resulting in different direct-to-reverberant ratios. For each 
position, two sets of impulse responses were recorded: binaural 

head-related impulse response (BHRIRs) at the listener 
position, recorded with a head-and-torso simulator, and two 

single-channel RIRs recorded at positions approximately 1.5m 
to the left and the right of the listener using omnidirectional 
microphones (Figure 1). The BHRIRs were used in the listening 

tests while the single-channel RIRs were provided to Challenge 
participants. The masking noise (labelled ‘M’) was cafeteria 

babble [24] played back from four loudspeakers oriented 
towards the corners of the room (uncorrelated noise tokens per 
speaker). Similar to the impulse responses, binaural noise 

recordings at the listener position were used in the listening 
tests, while the single-channel recordings at the lateral 

microphones were provided to the participants. Therefore, the 

noise signals and RIRs available to the participants were not 

sample-by-sample equivalents to those used for the subjective 
listening tests. However, they were recorded in the same 
acoustic scene. 

To create the stimuli used for the evaluation, speech signals 
were convolved with the binaural RIRs and centrally embedded 

in segments of the cafeteria noise recordings made for each of 

the reverberant conditions. Each masker was 2s longer than the 

corresponding sentence, yielding 1s leading and 1s lagging 
masker noise, and speech signals were padded with 1s leading 
and 1s lagging zeros. This allowed a comparison between 

modifications which produced speech of different lengths, 
permitting temporal elongation of each sentence by up to 2s. 

SNRs were set independently for each language and reverberant 
condition based on pilot experiments, and were selected to 

correspond to approximately 25% (‘low’), 50% (‘mid’), and 

75% (‘high’) correctly understood words. SNR was defined as 
the intensity ratio between the reverberant speech (measured as 

active speech level [25]) and the masking noise associated with 
the corresponding sentence (measured as root-mean-square 

(rms) level). Table 1 summarizes the SNRs used in the 
Challenge. To create listening test stimuli, speech signals were 
first convolved with the respective BHRIRs and then rescaled 

to produce the desired SNR values. To achieve a sufficient 
degree of reverberation across the whole sentence, prior to 

convolution three sentences were concatenated of which only 
the last one was retained for the listening test.  

Table 1: SNRs (in dB) employed in the challenge.  

 

3. Challenge entries 

The following algorithms were submitted to the Challenge. 
Whether or not they are noise- and reverberation-dependent is 
indicated in Table 2. 

ACO [26]: Sequential combination of modified versions of 
the algorithms AdaptDRC [19] and Onset-Enhancement [27]. 

AdaptDRC aims at enhancing high-frequency and low-energy 
regions of speech when intelligibility is predicted to be low due 

to additional noise by an estimate of the Speech Intelligibility 
Index (SII). Onset-Enhancement aims at reducing overlap-

masking of speech as well as enhancing its onsets to improve 
intelligibility in reverberant environments. 

ASE [28]: Aims to apply sound engineering knowledge to 
maximize speech intelligibility while achieving high sound 

quality without the need for any input parameter besides the 

target signal itself. ASE divides the signal in six frequency 
bands. Each band is compressed individually using ad-hoc 

parameters, with a non-conventional compressor. The signal is 
then equalized to maximize intelligibility while considering 

human loudness perception. After the signal is reconstructed, 
an additional stage of broadband compression is performed. In 
the (beta) version entered for the Challenge, parameters for 

compression and equalization were based on expert knowledge, 
and were fixed for all processed signals. 

exactMaxSII: Filters speech signals to maximize the SII. 
The algorithm is based on an exact solution of the optimization 

problem, while previous work aimed to maximize 

approximations of the SII. From a given long-term noise 
spectrum and SNR, the algorithm computes the optimal speech 

Language Rev. Low SNR Mid SNR High SNR

English Near -13.0 -8.5 -4.0
Mid -11.0 -5.0 1.0
Far -10.0 -4.0 2.0

German Near -15.0 -12.5 -10.0
Mid -13.0 -10.0 -7.0

Far -13.0 -9.0 -5.0

Spanish Near -17.5 -14.5 -11.5
Mid -17.0 -14.0 -11.0
Far -18.0 -14.0 -10.0
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spectrum that maximizes SII in the given conditions. Mean 

equalization coefficients are then computed to design a stable 
fixed equalizer to apply to the speech signal. 

DeepSSC-Lomb: Parametric Speaking Style Conversion 
(SSC) approach based on the training of deep Recurrent Neural 

Networks on the Lombard-GRID dataset. In addition to 

standard SSC speech features (fundamental frequency and 
energy in log scales, Mel-Frequency Cepstral Coefficients) a 

Continuous Wavelet Transform is used to describe the pitch and 
energy features at different time scales.  

DSSC-L/eMSII: Sequential combination of the two 
algorithms DeepSSC-Lomb and exactMaxSII. 

iMetricGAN [29]: A generator (G) and a discriminator (D) 
are designed. D tries to accurately predict instrumental 

intelligibility scores (SIIB [30] and ESTOI [31]) of modified 
speech, and then guides G to modify input speech in such a way 

to maximize the predicted intelligibility scores. G receives 
unmodified speech and noise, and outputs scale factors, which 
are point-wise multiplied with the unmodified spectrogram to 

produce the modified one. Modified speech is then re-
synthesized by ISTFT. Reverberation is not explicitly 

accounted for in this approach. 

MS500: Speech remains intelligible if its modulation 

spectrum (MS) resists smearing by the modulation transfer 
function (MTF) of the environment. If the smeared MS is 
obtained by multiplying the MTF with the MS of original 

speech (MSo), then multiplying MSo by the inverse MTF yields 
an optimally resistant MS. However, obtaining the inverse MTF 

directly is difficult. MS500 modifies MSo on significant 
acoustic and modulation frequencies from relations between the 

smeared and resistant MS and the MTF for intelligibility. 

IISPA [32]: The intelligibility-improving signal processing 

approach (IISPA) was optimized with an automatic-speech-
recognition-based model of speech perception using the 
provided natural speech material. The optimized IISPA 

parameters were band-pass edge frequencies, spectral slope and 
curvature, and spectral modulation compression or expansion. 

Signal analysis was performed based on a log-scaled Mel-

spectrogram and applied with an overlap-add method (free 
source code is available). 

SSDRC [9]: Applies noise-independent spectral shaping 

and dynamic range compression. It was included as an 

additional baseline because it was shown to provide very good 
results in the first Hurricane Challenge.  

4. Listening tests 

Evaluations took place at three sites (Oldenburg, DE; 
Edinburgh, UK; Vitoria, ES). At each site, listeners native in 
the respective country’s language (German [N=62], English 

[N=63], or Spanish [N=62]) were recruited and had to pass 
audiological screening for normal hearing prior to participation. 

Signals were delivered via headphones (Oldenburg: Sennheiser 
HD650, Edinburgh: Beyerdynamic DT770, Vitoria: Sennheiser 

HD380pro). The headphone transfer functions were equalized 

for a flat response at a dummy head’s ear to minimize 
differences between sites. All measurements took place in a 

sound-attenuating booth. Each listener heard 2 sentences of 
each combination of entry (plain speech + 9 entries), SNR and 

reverberation in a repeated-measures design (180 sentences in 
total), and entered the recognized words by marking them on a 
screen which displayed the entire 5x10 word matrix.  

 

Figure 1: SRT differences relative to plain speech. 

Prior to the experiments listeners received two lists of 20 

sentences as training (not scored). All measurements (including 
instructions, hearing screening, and training) took place in a 

single session of approximately 60 min.  

Data of one, three, and two listeners for German, English, 

and Spanish, respectively, were removed based on standard 
outlier criteria. The mean data of the remaining listeners are 
summarized in Table 2. To provide an estimate of the effect 

sizes required for statistical significance, Fisher’s least 
significant difference (LSD) is reported, derived from repeated-

measures ANOVAs with factor processing condition, 
conducted separately for each reverberation and SNR 
condition. White cells mark a significant change in speech 

intelligibility in percentage points relative to the plain speech 
baseline (black font: increase, gray font: decrease). Light gray 

cells show differences smaller than the LSDs. The best entry 
for each condition is highlighted in bold face. As additional 

measure to assess algorithm benefit, the differences in speech 
recognition threshold (SRT, i.e., the SNR at 50% speech 

intelligibility) between plain speech and modified speech were 

derived from psychometric functions fitted to the three data 
points for each entry, language and reverberation condition 

(Figure 1). 
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Table 2: Differences re. plain baseline scores (given in italics) in percentage points for all sites, entries and conditions. 

 

5. Discussion 

One main result was that entries showed markedly different 
performance, with four entries providing speech intelligibility 

benefit in all conditions (ASE, exactMaxSII, iMetricGAN, 

SSDRC). In some cases, benefits of up to about 60 percentage 

points (or 7 dB SRT difference) were observed. This is a 
notable finding because it was shown that cafeteria-like babble 
can be more challenging for NELE algorithms than less 

complex stationary maskers even on algorithms that had 
performed well in the first Hurricane Challenge [18, 21]. Other 

entries showed significant benefits in some conditions only 
(ACO, DSSC-L/eMSII, MS500, IISPA) while one had a 

consistently detrimental effect on intelligibility (DeepSSC-

Lomb), which was likely due to clearly audible artefacts. The 
best entry in all but two of the 27 conditions was ASE, 

sometimes outperforming the other entries by significant 
margins and possibly approaching ceiling performance in some 

cases. 

The SSDRC approach, which had been one of the best 

entries in the previous Challenge, again performed very well, 
although it had not been developed for speech enhancement in 

reverberant conditions. Since SSDRC is also noise-
independent, this was a striking example of robust speech 
modification without employing knowledge about the acoustic 

environment. This is also true in part for iMetricGAN, which 

made use of the masking noise estimates, but not of the 

provided RIRs, and still showed good performance in all 
reverberation conditions. In contrast, ACO (both noise- and 
reverberation-dependent) performed best in the more 

reverberant conditions, illustrating that RIR estimates can 
benefit algorithms aiming to reduce self-masking of speech. 

The only entries that increased the duration of the target 

sentences were DSSC-L/eMSII and DeepSSC-Lomb. Their 
relatively poor performance suggests that time-expansion is not 

automatically sufficient to obtain good intelligibility if audible 
artefacts counteract the positive effects expansion may have 

with respect to robustness in reverberation. The effectiveness 
of the different entries also appeared to vary with language. 

While most entries showed smaller benefits for English, ACO 

showed significantly larger gains. The reasons underlying these 
language-specific differences are unclear, but it is likely that 

both language- as well as talker-specific effects played a role 
[33]. It would be interesting to investigate a larger set of 
different talkers in each language to learn more about talker-

dependency in NELE benefit. Further possible extensions 
include considering alternative outcome measures. While 

intelligibility is very important, its measurement often requires 

employing highly adverse SNRs to avoid ceiling performance 
already in the baseline condition (like in the present challenge). 

This may not be representative for many practical applications. 
For this reason, recent studies have started exploring the effect 

of NELE processing on listening effort (e.g., [34]), but not yet 
on a larger scale. 
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