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ABSTRACT

Multi-frame algorithms for single-microphone speech enhancement,
e.g., the multi-frame minimum variance distortionless response
(MFMVDR) filter, are able to exploit speech correlation across adja-
cent time frames in the short-time Fourier transform (STFT) domain.
Provided that accurate estimates of the required speech interframe
correlation vector and the noise correlation matrix are available, it
has been shown that the MFMVDR filter yields a substantial noise
reduction while hardly introducing any speech distortion. Aiming at
merging the speech enhancement potential of the MFMVDR filter
and the estimation capability of temporal convolutional networks
(TCNs), in this paper we propose to embed the MFMVDR filter
within a deep learning framework. The TCNs are trained to map the
noisy speech STFT coefficients to the required quantities by min-
imizing the scale-invariant signal-to-distortion ratio loss function
at the MFMVDR filter output. Experimental results show that the
proposed deep MFMVDR filter achieves a competitive speech en-
hancement performance on the Deep Noise Suppression Challenge
dataset. In particular, the results show that estimating the parame-
ters of an MFMVDR filter yields a higher performance in terms of
PESQ and STOI than directly estimating the multi-frame filter or
single-frame masks and than Conv-TasNet.

Index Terms— Single-Microphone Speech Enhancement,
Multi-Frame Filtering, Temporal Convolutional Networks

1. INTRODUCTION

In many hands-free speech communication systems such as hearing
aids, mobile phones and smart speakers, ambient noise may degrade
the speech quality and intelligibility of the recorded microphone
signals. To alleviate this issue, several single- and multi-microphone
speech enhancement algorithms have been proposed [1–5]. Single-
microphone speech enhancement algorithms typically 1) transform
the noisy time-domain signal to a domain that is better suited for
speech enhancement, e.g., the short-time Fourier transform (STFT)
domain, 2) apply a (real- or complex-valued) gain/mask to the
transform-domain coefficients to obtain an estimate of the clean
speech, and 3) transform the modified coefficients back to the
time-domain. For such single-frame algorithms, many traditional
model-based approaches [1, 2, 6, 7] as well as supervised learning-
based approaches [8–12] have been proposed. A disadvantage of
single-frame algorithms is that attenuation of the noise component
may be accompanied by some distortion of the speech component in
the enhanced signal.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project ID 390895286 – EXC 2177/1.

In contrast to single-frame algorithms, multi-frame algorithms
have been proposed which apply a complex-valued filter to the noisy
speech STFT coefficients [3]. Also for multi-frame algorithms both
model-based approaches such as the multi-frame minimum variance
distortionless response (MFMVDR) filter [13–16] as well as super-
vised learning-based approaches [17, 18] have been proposed. The
MFMVDR filter has been derived to explicitly take speech correla-
tions across adjacent time frames into account and requires an esti-
mate of the noise correlation matrix and the so-called speech inter-
frame correlation (IFC) vector in each time-frequency bin. Although
it has been shown that the MFMVDR filter can yield a good noise
reduction performance and little speech distortion [13, 15], its per-
formance is very sensitive to estimation errors of the required quan-
tities, in particular the speech IFC vector [15].

To estimate the speech IFC vector from the noisy speech STFT
coefficients, several model-based approaches have been proposed.
In [14] a maximum likelihood approach has been derived, assum-
ing that the speech and noise IFC vectors follow multi-variate Gaus-
sian distributions. This approach requires an estimate of the a-priori
signal-to-noise ratio (SNR), which can be estimated, e.g., using the
decision-directed approach [6] or using a supervised learning-based
approach [19]. In [16] a subspace estimator has been proposed,
which is based on a low-rank speech model. However, simulation
results have shown that estimating the required quantities from the
noisy speech STFT coefficients using these model-based approaches
typically results in a large performance degradation compared to the
oracle MFMVDR filter.

In this paper we propose to embed the MFMVDR filter within
a deep learning framework as shown in Fig. 1. More in particu-
lar, we propose to train temporal convolutional networks [11, 20]
to map the noisy speech STFT coefficients to the required quan-
tities, i.e., the noise correlation matrix and the a-priori SNR, by
minimizing the scale-invariant signal-to-distortion ratio loss func-
tion [21] at the MFMVDR filter output. Experimental results us-
ing the INTERSPEECH 2020 Deep Noise Suppression (DNS) Chal-
lenge dataset [22] show that the proposed deep MFMVDR filter out-
performs complex-valued masking as well as directly estimating the
multi-frame filter without exploiting the MFMVDR structure and
Conv-TasNet [11].

2. SIGNAL MODEL

We consider an acoustic scenario with a single microphone recording
one speech source and additive ambient noise. In the STFT-domain,
the noisy microphone signal is given by

Yk,l = Xk,l +Nk,l, (1)
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Fig. 1. Block diagram of the training process of the proposed deep MFMVDR filter. The speech enhancement-related loss function is used to
update the weights of the temporal convolutional networks estimating the noisy speech and noise correlation matrices Φy,l and Φn,l as well
as the a-priori SNR ξl.

where Yk,l, Xk,l, and Nk,l denote the noisy speech component, the
speech component, and the noise component, respectively, at the k-
th frequency bin and the l-th time frame. Since all frequency bins
are assumed to be independent, the index k will be omitted in the
remainder of this paper.

In single-frame speech enhancement algorithms [1,2,6,7,9–12],
the speech component Xl is typically estimated by applying a (real-
or complex-valued) gain/mask Wl to the noisy speech STFT coeffi-
cients, i.e.,

X̂l = WlYl. (2)

In multi-frame speech enhancement algorithms [3], theN -dimensional
noisy speech vector yl is defined as

yl = [Yl, Yl−1, . . . , Yl−N+1]T , (3)

where ◦T denotes the transpose operator. Using (1), the noisy speech
vector yl can be written as yl = xl + nl, where the speech vector
xl and the noise vector nl are defined similarly as yl in (3). The
speech component Xl is then estimated by applying a (complex-
valued) finite impulse response filter wl with N taps to the noisy
speech STFT coefficients, i.e.,

X̂l = wH
l yl, (4)

where ◦H denotes the Hermitian operator.
Assuming that the speech and noise components are uncor-

related, the N × N -dimensional noisy speech correlation matrix
Φy,l = E

{
yly

H
l

}
, with E{◦} the expectation operator, can be

written as
Φy,l = Φx,l + Φn,l, (5)

with the speech and noise correlation matrices Φx,l = E
{
xlx

H
l

}
and Φn,l = E

{
nln

H
l

}
. In [13], it has been proposed to exploit the

speech correlation across adjacent time frames by decomposing the
speech vector into a temporally correlated and a temporally uncorre-
lated part, i.e.,

xl = γx,lXl︸ ︷︷ ︸
correlated

+ x′l︸︷︷︸
uncorrelated

, (6)

where the (highly time-varying) speech IFC vector γx,l describes
the correlation between the current and previous time frames w.r.t.
the speech STFT coefficient Xl, i.e.,

γx,l =
E {xlX∗l }
E
{
|Xl|2

} =
Φx,le

eTΦx,le
, (7)

where ◦∗ denotes the complex-conjugate operator, e = [1, 0, . . . , 0]T

is an N -dimensional selection vector, and eTΦx,le = E
{
|Xl|2

}
=

φX,l corresponds to the speech power spectral density (PSD). Using
(5) and (7), the speech IFC vector γx,l can be written as

γx,l =
1 + ξl
ξl

Φy,le

eTΦy,le
− 1

ξl

Φn,le

eTΦn,le︸ ︷︷ ︸
γn,l

(8)

where ξl =
φX,l

φN,l
denotes the a-priori SNR, with φN,l = E

{
|Nl|2

}
=

eTΦn,le the noise PSD, and γn,l denotes the noise IFC vector.

3. DEEP MULTI-FRAME MVDR FILTER

In [3, 13] the MFMVDR filter for single-microphone speech en-
hancement has been proposed, which aims at minimizing the out-
put noise PSD while not distorting the correlated speech component
γx,lXl, i.e.,

min
wl ∈CN

wH
l Φn,lwl, s.t. wH

l γx,l = 1. (9)

Solving this constrained optimization problem yields the MFMVDR
filter vector:

wMFMVDR,l =
Φ−1

n,lγx,l

γH
x,lΦ

−1
n,lγx,l

(10)

To implement the MFMVDR filter, estimates of the noise corre-
lation matrix Φn,l as well as the speech IFC vector γx,l are required.
In [14, 15] it has been shown that the speech enhancement perfor-
mance of the MFMVDR filter strongly depends on how well these
quantities can be estimated from the noisy speech STFT coefficients.
Previously proposed model-based approaches [14,16] simply use an
estimate of the noisy speech correlation matrix Φy,l instead of the
noise correlation matrix Φn,l (leading to the multi-frame minimum
power distortionless response filter) and estimate the speech IFC
vector γx,l based on (8) by using the decision-directed approach [6]
to estimate the a-priori SNR ξl and assuming the noise IFC vector
γn,l to be constant for all time-frequency points.

In this paper we propose to estimate the required quantities for
the MFMVDR filter in (10) from the noisy speech STFT coefficients
using a supervised learning-based approach by minimizing a speech
enhancement-related loss function at the MFMVDR filter output.

3.1. Speech IFC Vector

Due to its highly time-varying nature, the speech IFC vector γx,l is
difficult to estimate accurately. Since preliminary experiments have
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shown that using (8) instead of directly estimating γx,l with a DNN
yields a higher speech enhancement performance, we propose to es-
timate γx,l using the estimated correlation matrices Φ̂y,l and Φ̂n,l

as well as the estimated a-priori SNR ξ̂l, i.e.,

γ̂x,l =
1 + ξ̂l

ξ̂l

Φ̂y,le

eTΦ̂y,le
− 1

ξ̂l

Φ̂n,le

eTΦ̂n,le
(11)

3.2. Correlation Matrices

Since the N × N -dimensional correlation matrices Φy,l and Φn,l

can be assumed to be Hermitian positive semidefinite (PSD), each
matrix consists of a total of N2 real-valued coefficients, denoted by
hy,l and hn,l. As illustrated in Fig. 1, we propose to estimate these
coefficients using separate DNNs f ly and f ln in state l, i.e.,

ĥy,l = f ly (yc,l)

ĥn,l = f ln (yc,l) ,
(12)

where ◦̂ denotes an estimate of ◦, and yc,l = [<Yl,=Yl]T denotes
the vector of the real and imaginary parts of the noisy speech STFT
coefficient Yl. Since the coefficients hy,l and hn,l are unbounded, a
linear activation is used for f ly and f ln. The Hermitian PSD correla-
tion matrix estimates are obtained as

Φ̂y,l = Ĥy,lĤ
H
y,l, Ĥy,l = Hermitian

{
ĥy,l

}
Φ̂n,l = Ĥn,lĤ

H
n,l, Ĥn,l = Hermitian

{
ĥn,l

} (13)

where Hermitian {h} assembles an N × N -dimensional Hermitian
matrix from the (real-valued) N2-dimensional vector h, and the
matrix multiplication ensures that the correlation matrix estimates
are Hermitian PSD. It should be noted that no correlation matrix
labels are used in the training process — instead, the DNNs are
trained to minimize the speech enhancement-related loss function at
the MFMVDR filter output (see Section 4.4).

3.3. A-Priori SNR

Similarly to the approach described in the previous section, we pro-
pose to use a DNN f lξ to map noisy speech features to an a-priori
SNR estimate ξ̂l, i.e.,

ξ̂l = f lξ (log10 |Yl|) (14)

Since ξl ≥ 0, a softmax activation is used for f lξ. Similarly as for the
correlation matrices, the DNN is trained to output an a-priori SNR
estimate ξ̂l such that the speech enhancement-related loss function
at the MFMVDR filter output is minimized (see Section 4.4).

4. EXPERIMENTAL RESULTS

In this section, the speech enhancement performance of the proposed
deep MFMVDR filter is compared to several baseline deep learning-
based speech enhancement algorithms (see Section 4.1). In Sections
4.2 - 4.4 we discuss the used dataset, DNN architecture, and algo-
rithm settings. In Section 4.5 we present the results in terms of the
perceptual evaluation of speech quality (PESQ) [23] and short-time
objective intelligibility (STOI) [24] improvement.

4.1. Baseline Algorithms

As baseline single-microphone speech enhancement algorithms, we
consider three deep learning-based algorithms:

1. Masking: in order to investigate the possible benefit of multi-
frame filtering, i.e., N > 1, we also consider the complex-
valued gain/mask in (2), i.e., N = 1:

WM,l = f lM (yc,l) ∈ C; <WM,l,=WM,l ∈ [−2, 2], (15)

where the bounds for the real and imaginary parts are moti-
vated by [25].

2. Direct filtering: in order to investigate the possible benefit of
using the MFMVDR filter structure in (10), we also consider
directly estimating the complex-valued coefficients of the N -
dimensional multi-frame filter wl in (4), similarly to [17]:

wF,l = f lF (yc,l) ∈ CN ; <wF,l,=wF,l ∈ [−1, 1], (16)

where the bounds for the real and imaginary parts are moti-
vated by [17].

3. Conv-TasNet [11]: instead of considering the STFT-domain
as the transform-domain for speech enhancement, Conv-
TasNet uses learnable transformations and applies a real-
valued mask in the transform-domain. For a fair comparison
with the other considered algorithms, we considered the
causal version of Conv-TasNet [11].

4.2. Dataset

All considered algorithms were trained and evaluated on the DNS
Challenge dataset [22]. In total, this dataset contains more than 500 h
of speech from 2150 speakers and 180 h of noise from 150 different
noise classes at a sampling frequency of 16 kHz. For training and
validation, we randomly selected a subset of 45000 utterances of
length 4 s, with SNRs uniformly sampled from [0, 20] dB. Using a
validation split of 20 %, this resulted in 40 h for training and 10 h
for validation, respectively. Evaluation was performed on the DNS
Challenge synthetic test set without reverberation. This test set is
disjoint from the training and validation set and includes 20 speakers,
12 VoIP-relevant noise sources, and SNRs uniformly sampled from
[0, 25] dB, in total consisting of 150 utterances of length 10 s.

4.3. DNN Architecture

As the DNN architecture for all estimators, we used temporal con-
volutional networks (TCNs) [20]1, which have been demonstrated
to exhibit strong temporal and spectral modeling capabilities [11].
Without performing extensive hyperparameter optimization, we
fixed the hyperparameters of all TCN modules (except for the Conv-
TasNet baseline, for which we used the hyperparameters proposed
in [11]) to 2 stacks of 4 layers each, with a kernel size of 3, resulting
in a temporal receptive field of 128 ms. Aiming at a fair comparison,
the number of hidden dimensions was varied to obtain a similar
total number of trainable weights for all considered algorithms (cf.
Table 1). Note that this hyperparameter was varied as opposed to
the number of stacks/layers or the kernel size, since increasing the
temporal receptive field might give an unfair advantage.

1We used the implementation provided by the authors of [11], available
at https://github.com/naplab/Conv-TasNet.
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algorithm hidden dimension trainable weights

masking 226 5.0 M
direct filtering 225 5.1 M
Conv-TasNet 128 5.0 M

deep MFMVDR 128 5.3 M

Table 1. TCN module hyperparameters.

4.4. Algorithm Settings

In order to be able to exploit speech correlation, an STFT with
high temporal resolution, i.e., a frame length of 8 ms and a frame
shift of 2 ms, was employed for all STFT-based algorithms, sim-
ilarly as in [13]. A Hann window was used both as analysis and
synthesis window. The multi-frame algorithms (i.e., the proposed
deep MFMVDR filter and direct filtering) use a filter length of
N = 5, such that speech correlation within 16 ms can be exploited.
To improve the numerical stability of the matrix inversion in (10),
Tikhonov regularization with a regularization constant δ = 10−3

was used [13, 14]. Finally, a minimum gain of -17 dB was included
in all algorithms except Conv-TasNet.

The TCNs were trained for 50 epochs using the Adam opti-
mizer [26] with an initial learning rate of 3 ∗ 10−4. The learning
rate was halved after the validation loss did not decrease for 3 con-
secutive epochs, and training was stopped early in case the validation
loss did not decrease for 10 consecutive epochs. The gradient norms
were clipped to 5, and the batch size was set to 6 to maximize the us-
age of graphics card memory. As loss function, we used the negative
scale-invariant signal-to-distortion ratio (SI-SDR) [21], i.e.,

SI-SDR = 10 log10

(
|αx̃|2

|αx̃− ̂̃x|2
)
, α =

̂̃xT
x̃

||x̃||2 , (17)

where x̃ and ̂̃x denote the speech signal and the estimated speech
signal in the time-domain. All algorithms were implemented in
PyTorch 1.6.0, and training and evaluation were performed on an
NVIDIA GeForce R© RTX 2080 Ti graphics card.

4.5. Results

For all considered algorithms, Table 2 shows the average improve-
ment in terms of PESQ and STOI w.r.t. the noisy microphone sig-
nals using the speech signal as reference signal. As can be observed,
all considered algorithms yield a significant PESQ and STOI im-
provement, where the proposed deep MFMVDR filter outperforms
all other algorithms. A minor performance improvement can be ob-
served between direct filtering (N = 5) and masking (N = 1), hinting
at the potential of exploiting multiple frames. A much larger im-
provement can be observed between deep MFMVDR filtering and
direct filtering, showing that exploiting the MFMVDR filter struc-
ture and guiding the TCN training to estimate the required quantities
(correlation matrices and a-priori SNR) instead of directly estimat-
ing the filter coefficients is advantageous. Exemplary audio exam-
ples for all considered algorithms are available online2.

As a measure for computational complexity, Table 2 also shows
the average real-time factor (RTF) for all considered algorithms, de-
fined as RTF = (processing time)/(signal length), processed using
4 cores of an Intel R© Xeon R© CPU clocked at 2.6 GHz. Although
the proposed deep MFMVDR filter results in a larger computational

2https://uol.de/en/mediphysics-acoustics/sigproc/research/audio-demos

algorithm ∆PESQ / MOS ∆STOI real-time factor

masking 0.65 0.037 0.068
direct filtering 0.67 0.038 0.070
Conv-TasNet 0.67 0.041 0.194

deep MFMVDR 0.76 0.042 0.176

Table 2. PESQ and STOI improvement as well as real-time factors
obtained on the DNS Challenge synthetic test set without reverbera-
tion, averaged over all utterances.

complexity than directly estimating the filter coefficients, its com-
putational complexity is similar to that of Conv-TasNet. A PyTorch
implementation of the deep MFMVDR filter is available online3.

5. CONCLUSION

In this paper we proposed a supervised learning-based approach to
estimate the required parameters of an MFMVDR filter for single-
microphone speech enhancement. Because the MFMVDR filter re-
quires accurate estimates of the noisy speech and noise correlation
matrices as well as the speech IFC vector, we proposed to utilize the
temporal and spectral modeling capabilities of TCNs for this esti-
mation task. The TCNs are trained to map the noisy speech STFT
coefficients to the required parameters by minimizing the SI-SDR
loss function at the output of the MFMVDR filter. Experiments on
the DNS Challenge dataset demonstrate the benefits of (i) using a
multi-frame algorithm as compared to a single-frame algorithm, and
(ii) guiding the TCN training by using the MFMVDR filter structure
instead of directly estimating the filter coefficients.
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