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ABSTRACT

While many algorithms deal with direction of arrival (DOA) estima-
tion and voice activity detection (VAD) as two separate tasks, only a
small number of data-driven methods have addressed these two tasks
jointly. In this paper, a multi-input single-output convolutional neural
network (CNN) is proposed which exploits a novel feature combination
for joint DOA estimation and VAD in the context of binaural hearing aids.
In addition to the well-known generalized cross correlation with phase
transform (GCC-PHAT) feature, the network uses an auditory-inspired
feature called periodicity degree (PD), which provides a broadband
representation of the periodic structure of the signal. The proposed CNN
has been trained in a multi-conditional training scheme across different
signal-to-noise ratios. Experimental results for a single-talker scenario in
reverberant environments show that by exploiting the PD feature, the pro-
posed CNN is able to distinguish speech from non-speech signal blocks,
thereby outperforming the baseline CNN in terms of DOA estimation
accuracy. In addition, the results show that the proposed method is able
to adapt to different unseen acoustic conditions and background noises.

Index Terms— convolutional neural networks, binaural DOA esti-
mation, voice activity detection, periodicity

1. INTRODUCTION

In many applications, such as assistive listening devices, hands-free
speech communication systems and robot audition, reliable DOA esti-
mates of sound sources are required [1-4]. While the human auditory
system has the remarkable ability to localize a speech source in noisy and
reverberant environments, this remains a challenging task for machine
listening systems such as hearing aids (HAs) [5].

A set of classical DOA estimation approaches is based on GCC-PHAT
[6] or its generalization, called steered response power with phase
transform (SRP-PHAT) [7]. Other state-of-the-art approaches apply
model-based techniques such as maximum likelihood (ML) estima-
tion [8], subspace-based techniques such as multiple signal classifica-
tion (MUSIC) [9], or machine learning techniques such as deep neural
networks (DNNs) [4,10-13]. However, the performance of all methods
degrades in noisy and reverberant environments.

Most of the aforementioned methods estimate the DOA of the sound
sources without detecting of speech activity. Vecchiotti et al. [14, 15]
proposed a CNN which was trained using logarithmic mel spectro-
gram (LogMel) and GCC-PHAT features to simultaneously estimate
the activity and location of a single talker. This method estimates the
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coordinates of a single talker. To the best of our knowledge, there is no
data-driven DNN-based approach which jointly addresses both problems
of DOA estimation and VAD.

Many features have been used for VAD [16]. Among them, period-
icity information is an important cue to discriminate between different
talkers [17], and it has been shown to be useful for VAD at low signal-
to-noise ratios (SNRs) [18]. In [18], an auditory-inspired feature called
PD has been proposed for fundamental period detection and estimation.

In this paper, we propose to train a hybrid CNN in a single-label
multi-class classification scheme using a combination of GCC-PHAT and
PD features for joint binaural DOA estimation and VAD. In the proposed
CNN, the DOA is estimated at block-level, i.e., feature vectors of multiple
consecutive time frames are used as the input feature map of the CNN.
This eliminates the necessity of an accurate VAD to remove silent frames
of a speech signal in the training. By training with speech and non-speech
signals, the network learns the harmonic structure of the signal from
the PD features over consecutive frames, thereby detecting speech and
non-speech signal blocks, and at the same time estimating the DOA of the
detected speech signal blocks using GCC-PHAT features. It should be
noted that the proposed method only needs feature maps of a block con-
taining current and past frames, i.e., can be used in an online fashion. The
trained CNN is evaluated for the task of joint DOA estimation and VAD
for several single-talker scenarios in different reverberant environments
with unseen background noises. Experimental results in various acoustic
conditions show that the proposed CNN outperforms the baseline system
which only uses GCC-PHAT features for DOA estimation.

2. INPUT FEATURES

We consider a binaural HA setup with M = 4 microphones (2 micro-
phones on each HA), recording a single sound source at DOA 6 in the
azimuthal plane and background noise in a reverberant environment.
The m-th microphone signal in the short-time Fourier transform (STFT)
domain at time frame n and frequency bin k is given by

Yo (n,k) = X (n,k)+Vin (k)  m=1,-M, (1)

where X, and V;,, denote the mutually uncorrelated source signal and
background noise signal, respectively. The sound source can be either a
speech or a non-speech signal. In this paper, all signals were analyzed
using a Hann window at a sampling frequency of 16 kHz with an STFT
frame length of 10 ms and 50% overlap.

2.1. Generalized Cross Correlation With Phase Transform

GCC-PHAT has been sucessfully used as a robust feature for sev-
eral data-driven DOA estimation methods in reverberant environ-
ments [4, 13,19, 20]. The GCC-PHAT vector between the r-th and
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the g-th microphone at frame n is defined as the inverse Fourier trans-
form (IFFT) of the cross-power spectrum phase [21], i.e.,

Y'T_(’"-) @Y;(n) >

P =TFFT < ®)

where (-)*, |-| and ® denote complex conjugate, absolute value and

element-wise multiplication, respectively. Y;(") and YZ,(") represent
STFT vectors of the -th and g-th microphone signals for all frequency
bins, i.e.,

Y, ™ =Y, (n,1),, Yo (0 kmax)] €)
Yzl(n) = [Yq(nJ)v'”qu(n7kmaX)]T7 (C)]

where kmax and (-)T denote the maximum frequency bin and the vector

transpose, respectively. From the vector pSZ), we only consider qb(rz) =

T
[pﬁ’;') (=Trg)ypd) (T»,-q):| , where 7,4 corresponds to the maximum

possible delay between the 7-th and the g-th microphone, depending on
their distance. The GCC-PHAT feature vector at frame n is constructed
by concatenating the vectors ¢4’ for all possible microphone pairs [20],
ie.,

¢ ={s%} : )

r=1,---,M;q=r+1,---,M

For our considered binaural HA setup, we obtain a GCC-PHAT feature
vector ¢ of size 678 delay bins for each frame.

2.2. Periodicity Degree

The PD feature PD(n,p) [18] at frame n is defined as the ratio of the
harmonic signal power for a given period p and the total signal power. If
there is no periodic content with period p in the signal, then PD(n,p)=0.
If a signal is fully harmonic with period p at frame n, then PD(n,p)=1.
The PD feature vector for N possible candidate periods can be written
as " =[PD(n,1),-,PD(n,N)]".

The PD feature vector can be computed for each of the M mi-
crophones. Without loss of generality, in this paper we will consider
the front microphone of the left HA as the reference microphone. To
compute the PD feature, the time-domain reference microphone signal
is first decomposed into 60 frequency subbands by a gammatone filter
bank (GTFB) with minimum and maximum center frequency (CF) of
70 Hz and 7200 Hz. Each subband signal is passed through a haircell
processing stage encompassing half-wave rectification followed by a
low-pass filter, which extracts the fine structure information (up to 1.5
kHz) and the envelope information of the signal. The subband-averaged
PDs are eventually estimated with the same temporal resolution as the
time-domain signal. The details of this method can be found in [18]. By
choosing N =180, the range of fundamental period candidates for PD
feature extraction lies between 3.1 ms and 14.3 ms, corresponding to
fundamental frequencies in the range from 320 Hz to 70 Hz.

Figure 1 depicts an exemplary representation of PD feature vectors
for 1 s clean and noisy speech and non-speech (engine sound) signals.
While for the clean and noisy speech signals, the fundamental period and
its multiple harmonics are clearly identifiable as a two-dimensional (2D)
structure over time, no such harmonic structure exists for the engine
sound. This 2D structure for speech signals motivates the usage of 2D
convolutional filters in the CNN (see Section 3).

2.3. Input Feature Maps

As input features for joint VAD and DOA estimation, we propose to use
both GCC-PHAT and PD feature vectors (¢o™ and t»™), after scaling
to unit variance and zero mean. To capture relevant information over time,
we propose to use feature vectors of a block of L consecutive frames
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Fig. 1: An exemplary visualization of PD feature vectors for clean and
noisy female speech and engine sound signals.

(with length 10 ms and 50% overlap). The GCC-PHAT and PD feature
maps at frame n can be defined as &™) = [qf)("), . ¢<"’L+1)] and
g — [¢(n)’..,’¢(n*L+1>].

3. PROPOSED NETWORK ARCHITECTURE

The proposed hybrid network architecture is depicted in Figure 2. It
consists of two parallel and independent branches of cascaded CNN
layers which receive the PD and GCC-PHAT feature maps as inputl
and input2, respectively. Each CNN layer (ConvI to Conv4) embodies
a cascade of 2D convolutional, activation and 2D max pooling layer. The
outputs of both branches are concatenated after a flattening layer. The
resulting output can be seen as a heterogeneous feature vector of PD
and GCC-PHAT. The concatenated output is then used as an input for
a cascade of fully connected layers (FCI to FC3), each representing a
fully connected dense layer followed by batch normalization, activation
and dropout layers. The classification in the output layer of the network
is achieved by using a softmax layer as the activation function.

The main motivation to use the proposed combination of PD and
GCC-PHAT features is to allow the network to capture the most rele-
vant information required for joint VAD and DOA estimation. More
in particular, the proposed CNN is expected to learn the harmonic
structure and continuity of the sound source from the PD feature map,
thereby discriminating between speech and non-speech blocks, and at
the same time capture the spatial information of the sound source from
the GCC-PHAT feature map, thereby finding the DOA. The advantage
of using task-specific features instead of using the magnitude and phase
spectrogram as generic input features [10, 12] is to realize the CNN
layers with a small number of filters, and hence less trainable network
parameters. As a baseline system we consider a CNN which only uses
the GCC-PHAT feature map as input (see Section 6.2).

All implementations for training and evaluating the CNN networks
were realized using Keras [22]. For all 2D convolutional layers of both
branches 4-channel filters with filter size of 3 x 3 and with stride size of
1x 1 were used. The max pooling size was 2 x 2 with strides of the same
size. The rectified linear unit (ReLU) activation function was used for all
fully connected and convolutional layers. All trainable network weights
were initialized using the Glorot uniform initializer. Adam optimizer was
used as the optimization algorithm for CNN training with categorical
cross-entropy as loss function and a learning rate of 0.002. The dropout
rate was set to 0.5. In addition, overfitting was prevented using early
stopping, i.e., the training was stopped if no improvement in validation



loss was observed for 10 epochs. A variable learning rate schedule was
implemented to halve the learning rate if no validation loss improvement
was seen for 3 epochs.
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Fig. 2: Proposed hybrid CNN architecture. An exemplary visualization
of the GCC-PHAT and PD feature maps of a speech signal is shown as
inputl and input2, respectively.

4. JOINT DOA ESTIMATION AND SPEECH DETECTION

The task of joint VAD and DOA estimation is realized by training the
CNN using oracle DOA and speech/non-speech detection labels. Each
label is one-hot encoded, which means that each training example belongs
to only one output class. The joint task can be formulated as a C'+-1-class
classification task, where the first C classes (called DOA classes) refer
to all possible discrete DOA values {61,--,0c }, and the last class refers
to the speech/non-speech activity (called detection class). In this work,
we consider C'= 72 for the full 360° azimuth range, which corresponds
to a 5-degree resolution DOA map in the horizontal plane.

On the one hand, for a training feature map of a speech source
coming from a certain direction, the DOA class corresponding to that
direction is labeled by one, whereas all other classes (including the
detection class) are labeled by zero. On the other hand, for a training
feature map of a non-speech source the detection class is labeled by one,
whereas all DOA classes are labeled by zero no matter which direction the
non-speech source is coming from. In doing so, the network is expected
to learn to map the PD and GCC-PHAT features to a posterior probability
map P=[Py,,Pc,Pc+1] for given number of directions C'.

For the joint classification task, we formulate two hypotheses

Hs: speech is detected, 6)
Hns: mnon-speech is detected, @

and define the decision rule as
decide Hns if argmaxH |[P=C+1 8)

decide Hs otherwise.

The DOA class number corresponding to the estimated DOA 1is obtained
as
I =argmax P;|H, )

and the estimated DOA is given by 6 = 0;. The joint classification
task can be described as follows. At time frame n, given the posterior
probability map P predicted from a block of L consecutive time frames,
and under the single-source assumption, we take the largest value of the
probability map. If the last class is detected, i.e., Pcy1 is found as the
maximum, our estimate at that frame is predicted as non-speech, and
hence, we do not estimate the DOA. Otherwise, speech is detected, and
the detected class determines the estimated DOA.
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5. TRAINING AND VALIDATION DATA

For training and validation, corpora of 462 and 168 unique speakers from
the TIMIT dataset [23] (including both male and female speakers) were
used. The silences in the beginning and the end of the files were removed.
For non-speech signals three categories (natural soundscapes and water
sounds, interior and domestic sounds, and exterior and urban noises) of
the ESC50 dataset [24] were used. A total number of 960 and 240 distinct
sound files were used for training and validation, respectively. The clean
binaural microphone signals used during training were generated for both
speech and non-speech sources by convolving them with anechoic binau-
ral room impulse responses (BRIRs) [25]. The front and rear microphones
in both left and right HAs were used as the 4-channel microphone array.
Multi-conditional training was performed in different SNRs ranging from
—10dB to +20 dB in 5 dB steps. The noisy binaural microphone signals
were generated by mixing the clean binaural microphone signals with
simulated binaural diffuse noise. This noise was generated by summing
uncorrelated white Gaussian noise (WGN) sources from all 72 directions,
using the same anechoic BRIRs as for the clean data generation.
Training feature maps were extracted for both speech and non-speech
signals at different SNRs and for all 72 directions. By taking 300 and
100 unique speakers and sounds from the training and validation corpora,
in total we have 86.4 million time frames as fraining set and 28.8 million
time frames as validation set. The maximum epoch number was set
to 100. In each epoch, 100 mini-batches of 720 blocks were randomly
selected from the training set such that network did not see the same block
twice. The block length L was set as an hyperparameter for training the
network. Each mini-batch included all SNR conditions and DOA classes
for both speech and non-speech signals in a uniform way. To calculate
the validation loss at the end of each epoch, 21600 blocks were randomly
selected from the validation set, and kept fixed throughout the training.
The validation data were not seen by the network during the training.

6. EXPERIMENTAL EVALUATION

6.1. Experiment Design

To evaluate the generalizability of the trained network to unmatched
acoustic conditions and unseen background noises, we evaluated the
performance in two reverberant environments. The binaural microphone
signals used for the evaluation were simulated by convolving the clean
source signals from the validation TIMIT corpus with BRIRs [25] of
two real environments (cafeteria and courtyard) with reverberation times
of approximately 1300 ms and 900 ms, respectively. The room con-
figurations are depicted in Figure 3, where in each room four source
positions (specified with dashed boxes) and for each source position two
head orientations were considered. Recorded cafeteria babble noise and
courtyard ambient noise were used to generate noisy binaural microphone
signals at SNRs ranging from —5 dB to +10 dB. A total number of 150
unique speakers (each with length 1 s) were selected from the validation
TIMIT corpus. For each environment and room configuration, we ex-
tracted the feature maps of consecutive blocks. For each SNR condition
and environment, we evaluated the CNNSs trained for two different block
lengths (L = 20 and L = 50, corresponding to 100 ms and 250 ms,
respectively). A simple broadband energy-based VAD was used as oracle
VAD to discard signal blocks with low speech energy from the evaluation
data.

6.2. Baseline System

The performance of the proposed hybrid network using both GCC-PHAT
as well as PD feature maps is compared with a CNN using only
GCC-PHAT feature maps. The baseline CNN architecture is depicted in
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Fig. 3: Evaluation setup in two reverberant environments. In the cafeteria
source positions A, B, D, E were considered, while in the courtyard
source positions A, B, C, and D were considered.

Figure 4, which looks very similar to the upper branch of the proposed
network in Figure 2. Since the baseline system only aims at DOA esti-
mation and no speech detection, the baseline network was only trained
with speech signals. In addition, instead of 73 output units in the hybrid
network, the output layer of the baseline network consists of 72 units,
which only predicts the DOA posterior probability map. Apart from
these differences, the training parameters and network hyperparameters
of the proposed and baseline networks are the same (see Section 3).
During the evaluation, given the predicted posterior probability map
P =[P, Pc], the estimated DOA is determined by the DOA class
given by argmax; P;| P. If a signal block is mostly dominated by silent
frames, the resulting estimated DOA may lead to a large DOA estimation
error (see Section 6.3).
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Fig. 4: Baseline CNN architecture using only the GCC-PHAT feature
map as input.

6.3. Performance Measures

The DOA estimation performance of both CNNs is evaluated in terms of
mean absolute error (MAE) and accuracy (Acc.) [10,26]. An estimate in
block d is considered accurate if the absolute error between the estimated
DOA 04 and the oracle DOA 6 is smaller than 5 degrees. The accuracy
and the MAE (in degrees) are defined as

D
Acc.:%ge(Sf‘GdedD %100, (10)

1<
MAE= Bglad—ed‘, an

where D is the total number of blocks used for the evaluation in all room
configurations, and © is the Heaviside step function. It should be realized

that since the baseline system is merely designed for the DOA estimation
task and there is no VAD integrated in the evaluation of this system, D
includes all signal blocks of the evaluation data. On the other hand, the
proposed system is only evaluated for blocks where it detects speech
activity, i.e., the DOA estimation errors are only calculated when speech
is detected to be present.
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6.4. Results

Figure 5 depicts the accuracy and the mean absolute error of the pro-
posed and the baseline system for different SNRs in two reverberant
environments (cafeteria and courtyard). Both systems were trained and
evaluated for two different block lengths.
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Fig. 5: Accuracy and MAE of the proposed and the baseline method
for different SNRs in two reverberant environments. Coloured bars show
the performance measures of the proposed method, whereas white bars
show the performance of the baseline method.

For both environments, it can be clearly observed that the proposed
method outperforms the baseline method in terms of accuracy and MAE.
‘While both methods yield a better performance when using a larger block
length, the benefit of joint VAD and DOA estimation appears to be more
prominent for smaller block length. This can be explained by the fact
that when using a smaller block length the proposed network correctly
classifies more blocks with little or no speech activity and blocks that are
dominated by noise as non-speech blocks. Since the DOA estimates of
these blocks are often inaccurate, discarding them from the evaluation
leads to a higher accuracy and a smaller MAE, compared to the baseline
method which estimates the DOA in all blocks. This also explains why
the benefit is larger at low SNRs, particularly at —5 dB.

It can also be observed that when the accuracy is close to 100%,
the MAE is below 5°, which is to be expected. This mainly occurs
for the larger block length at higher SNRs, where the speech energy
is dominant in the most of the blocks and thus a smaller number of
non-speech blocks are discarded by the proposed method. Although the
cafeteria with 1300 ms reverberation time and babble noise is the most
challenging acoustic condition, the proposed method is able to achieve a
smaller MAE compared to the baseline method.

7. CONCLUSION

In this paper, we proposed a hybrid CNN architecture for joint DOA
estimation and VAD in a single-talker scenario by exploiting both
GCC-PHAT features as well as an auditory-inspired periodicity degree
feature. The joint task was realized as a multi-class classification
task, where each input feature map was assigned to only one output
class. Experimental results in unseen reverberant environments with
unseen background noises clearly show that the proposed hybrid CNN
outperforms the baseline CNN which only uses GCC-PHAT features.
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