
DNN-BASED SPEECH PRESENCE PROBABILITY ESTIMATION
FOR MULTI-FRAME SINGLE-MICROPHONE SPEECH ENHANCEMENT

Marvin Tammen, Dörte Fischer, Bernd T. Meyer, Simon Doclo

Department of Medical Physics and Acoustics
and Cluster of Excellence Hearing4all

University of Oldenburg, Germany

ABSTRACT

Multi-frame approaches for single-microphone speech enhancement, e.g.,
the multi-frame minimum-power-distortionless-response (MFMPDR) filter,
are able to exploit speech correlations across neighboring time frames. In
contrast to single-frame approaches such as the Wiener gain, it has been
shown that multi-frame approaches achieve a substantial noise reduction
with hardly any speech distortion, provided that an accurate estimate of the
correlation matrices and especially the speech interframe correlation (IFC)
vector is available. Typical estimation procedures of the IFC vector require
an estimate of the speech presence probability (SPP) in each time-frequency
(TF) bin. In this paper, we propose to use a bi-directional long short-term
memory deep neural network (DNN) to estimate the SPP for each TF bin.
Aiming at achieving a robust performance, the DNN is trained for various
noise types and within a large signal-to-noise-ratio range. Experimental
results show that the MFMPDR in combination with the proposed data-
driven SPP estimator yields an increased speech quality compared to a
state-of-the-art model-based SPP estimator. Furthermore, it is confirmed
that exploiting interframe correlations in the MFMPDR is beneficial when
compared to the Wiener gain especially in adverse scenarios.

Index Terms— Speech Presence Probability, Deep Neural Network,
Single-Microphone Speech Enhancement, Multi-Frame Filtering

1. INTRODUCTION

In many hands-free speech communication systems such as hearing aids,
mobile phones and smart speakers, ambient noise may degrade the speech
quality and intelligibility of the recorded microphone signals. Hence,
several single- and multi-microphone speech enhancement approaches
have been proposed [1, 2, 3, 4, 5]. Typical single-microphone speech
enhancement approaches apply a real-valued spectro-temporal gain, e.g.,
the Wiener gain (WG) [1], to the noisy short-time Fourier transform
(STFT) coefficients to obtain an estimate of the clean speech signal. A
disadvantage of these methods is that stronger noise reduction typically
goes hand-in-hand with increased speech distortion.

In contrast to these single-frame approaches, multi-frame ap-
proaches [6, 7, 8, 9, 10] apply a complex-valued filter to the noisy
STFT coefficients and are able to take into account the speech correlation
across consecutive time frames. Similarly to the minimum-variance-
distortionless-response (MVDR) beamformer and the minimum-power-
distortionless-response beamformer (MPDR) for multi-microphone speech
enhancement [4, 11], a multi-frame MPDR (MFMPDR) filter has been
proposed for single-microphone speech enhancement [6, 7, 10]. This
multi-frame filter requires an estimate of the noisy correlation matrix and
the speech interframe correlation (IFC) vector in each time-frequency (TF)
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bin. When oracle estimates of these quantities are available, it has been
shown in [6, 12] that the MFMPDR filter achieves a good noise reduction
and hardly any speech distortion in contrast to the WG. However, it has
also been shown that the speech enhancement performance is very sensitive
to estimation errors of the highly time-varying speech IFC vector [12].

In [7] a maximum likelihood (ML)-based approach has been proposed
to estimate the speech IFC vector from the noisy microphone signals.
The ML estimator typically requires an estimate of the speech presence
probability (SPP) in each TF bin. Several model-based SPP estimators
have been proposed [13, 14, 15, 16] based on the assumption that the
speech and noise STFT coefficients are uncorrelated, complex Gaussian
distributed random variables. These estimators, however, have difficulties
with accurately estimating the SPP in the short STFT frames that are
required to capture the highly time-varying speech IFC vector.

In recent years, data-driven supervised learning-based approaches have
gained a lot of attention in a multitude of applications, including single-
microphone speech enhancement [17, 18, 19, 20, 21, 22]. A common
approach is to estimate real-valued TF masks, which are applied to the
noisy STFT coefficients. Furthermore, mask-based approaches have been
recently proposed to estimate the speech and noise correlation matrices that
are required by multi-microphone speech enhancement approaches such as
the MVDR beamformer or the generalized eigenvalue beamformer [23, 24].

Inspired by the approach in [23], in this paper we propose to use a data-
driven SPP to estimate the required speech IFC vector for the MFMPDR
filter. More in particular, we use a bidirectional long short-term memory
(BLSTM) [25] deep neural network (DNN) to estimate the SPP in each TF
bin given the noisy STFT coefficients. Aiming at achieving a robust perfor-
mance, the DNN is trained on the WSJ0 [26] and NOISEX92 [27] datasets
using a signal-to-noise ratio (SNR) range from 0 to 20 dB. Experimental
results for non-matched noise types and partially non-matched SNRs show
that using the proposed DNN-based SPP estimate yields a larger speech
quality improvement compared to the model-based SPP estimate [16]. Fur-
thermore, when utilizing either of the SPP estimates to implement an MFM-
PDR or a WG, the benefit of exploiting speech IFCs is confirmed [7, 9].

2. SIGNAL MODEL

We consider an acoustic scenario with one speech source and ambient
noise, recorded using a single microphone. In the STFT domain, the noisy
microphone signal is given by

Y (k, l)=X(k, l)+N(k, l), (1)

where X(k, l) denotes the speech component and N(k, l) denotes
the noise component at the k-th frequency bin and the l-th time frame.
Multi-frame speech enhancement approaches [6, 7, 8, 10] estimate the
speech component by applying a finite impulse response filter withN taps
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to the noisy STFT coefficients, i.e.,

X̂(k, l)=

N−1∑
n=0

H∗n(k, l)Y (k, l−n), (2)

where ◦̂ denotes an estimate of ◦,Hn(k, l) denotes the n-th filter coeffi-
cient, and ∗ denotes the complex-conjugate operator. Using vector notation,
(1) and (2) can be written as

y(k, l)=x(k, l)+n(k, l) (3)

X̂(k, l)=hH(k, l)y(k, l), (4)

where H denotes the Hermitian operator and theN-dimensional vectors
h(k,l) and y(k,l) contain the filter coefficients andN consecutive STFT
coefficients, i.e.,

h(k, l)=[H0(k, l), H1(k, l), ..., HN−1(k, l)]
T , (5)

y(k,l)=[Y (k, l), Y (k, l−1), ..., Y (k, l−N+1)]T . (6)

This is analogous to multi-microphone beamforming approaches [4, 5, 11]
by considering the FIR filter as a spatial filter and frames as microphone
inputs. Since all frequency bins are treated individually, in the remainder
of this paper we omit the frequency index k.

Assuming that the speech and noise components are uncorrelated,
the noisy correlation matrix Φy(l) = E

{
y(l)yH(l)

}
, with E{◦} the

expectation operator, can be written as

Φy(l)=Φx(l)+Φn(l), (7)

with the speech and noise correlation matrices Φx(l)=E
{
x(l)xH(l)

}
and Φn(l)=E

{
n(l)nH(l)

}
. In [6], it has been proposed to exploit the

speech correlation across consecutive time frames by separating the speech
component into a correlated and an uncorrelated part, i.e.,

x(l)=γx(l)X(l)︸ ︷︷ ︸
correlated

+ x′(l)︸︷︷︸
uncorrelated

, (8)

where the (highly time-varying) normalized speech IFC vector γx(l)
describes the correlation between the current and previous time frames w.r.t.
the speech STFT coefficientX(l), i.e.,

γx(l)=
E{x(l)X∗(l)}
E
{
|X(l)|2

} =
Φx(l)e

eTΦx(l)e
, (9)

with the vector e selecting the first column of Φx(l) and eTΦx(l)e=
φX(l)=E

{
|X(l)|2

}
the speech power spectral density (PSD). Note that

since X(l) is fully correlated with itself, the first element of the speech
IFC vector γx(l) in (9) is equal to 1, such that the first element of the
uncorrelated speech vector x′(l) is equal to 0. Substituting (8) in (3), we
obtain the multi-frame signal model

y(l)=γx(l)X(l)+x′(l)+n(l), (10)

where the uncorrelated speech component x′ is treated as an interference.
Similarly to the speech IFC vector in (9), the noisy IFC vector and

the noise IFC vector can be defined as

γy(l)=
Φy(l)e

eTΦy(l)e
, γn(l)=

Φn(l)e

eTΦn(l)e
, (11)

with eTΦy(l)e= E
{
|Y (l)|2

}
and eTΦn(l)e=φN(l)= E

{
|N(l)|2

}
denoting the noisy and noise PSDs, respectively. Using (11) in (7), the
speech IFC vector γx(l) can be obtained as

γx(l)=
1+ξ(l)

ξ(l)
γy(l)−

1

ξ(l)
γn(l), (12)

with the a-priori SNR ξ(l)= φX(l)
φN(l)

.
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Fig. 1: Diagram of parameter estimation and multi-frame filtering.

3. MULTI-FRAME MPDR FILTER

In [6], the MFMPDR filter for single-microphone speech enhancement was
proposed, which aims at minimizing the output PSD while preserving the
correlated speech component. The corresponding constrained optimization
problem is given by

min
h(l)∈CN

hH(l)Φy(l)h(l), s.t. hH(l)γx(l)=1. (13)

Solving this problem, the filter vector is equal to [6]

hMFMPDR=
Φ−1

y (l)γx(l)

γHx (l)Φ−1
y (l)γx(l)

(14)

4. PARAMETER ESTIMATION

In practice, the performance of the MFMPDR filter depends on how
well the time-varying correlation matrix Φy(l) as well as the highly
time-varying speech IFC vector γx(l) can be estimated from the noisy
microphone signals. In [12] it has been shown that the performance of the
MFMPDR filter is very sensitive to estimation errors of the speech IFC
vector. Whereas estimating the noisy correlation matrix Φy(l) is rather
straightforward, accurately estimating the speech IFC vector γx(l) is not
so trivial [7, 8, 10, 12]. Typically, this vector requires an estimate of the
a-priori SNR ξ(l) and the noise correlation matrix Φn(l), which in turn
require an estimate of the SPP in each TF bin [7]. The following subsec-
tions discuss the estimation of the noisy and noise correlation matrices, the
speech IFC vector, as well as the a-priori SNR using either a state-of-the-art
model-based SPP estimator or the proposed DNN-based SPP estimator.
Fig. 1 depicts the parameter estimation and multi-frame filtering process.

4.1. Correlation Matrices Estimation

The noisy correlation matrix Φy(l) is estimated using recursive smoothing
with smoothing constant λy, i.e.,

Φ̂y(l)=λyΦ̂y(l−1)+(1−λy)y(l)yH(l). (15)

To estimate the noise correlation matrix Φn(l), similarly to [28] we apply
a recursive smoothing procedure to the noisy microphone signals, where
the smoothing factor for each TF bin depends on a time-varying SPP
estimate ŜPP(l) and a smoothing constant αn, i.e.,

Φ̂n(l)=λn(l)Φ̂n(l−1)+(1−λn(l))y(l)yH(l)

λn(l)=αn+(1−αn)ŜPP(l).

(16)

(17)

In the limiting cases, we have{
ŜPP(l)=0⇒λn(l)=αn

ŜPP(l)=1⇒λn(l)=1⇒Φ̂n(l)=Φ̂n(l−1).

(18)

(19)
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We consider two approaches to estimate the SPP for each TF bin required in
(17). As the reference, denoted with subscript ◦R, we use the model-based
approach from [16], which assumes that the speech and noise STFT
coefficients are complex Gaussian distributed. Using this assumption,
likelihood functions for speech presence and speech absence can be derived,
yielding the SPP estimate

ŜPPR(l)=

(
1+

P(H0)

P(H1)
(1+ξH1)e

− |Y (l)|2

φ̂N (l−1)

ξH1
1+ξH1

)−1

(20)

where P(H1) and P(H0) denote the prior probability of speech presence
and absence, respectively, and the parameter ξH1 denotes a typical a-priori
SNR encountered during speech presence. Note that this method relies on
the noise PSD estimate of the previous frame φ̂N(l−1)=eT Φ̂n(l−1)e.

Alternatively, in this paper we propose to exploit the capabilities of
a BLSTM DNN to capture temporal and spectral structures in order to
estimate the SPP. The DNN is trained to perform a mapping between the
noisy STFT coefficient magnitudes and the SPP, i.e.,

ŜPPDNN(l)=fΘ{|Y|}(l) (21)

with |Y|∈RK×L containing allK frequency bins and L time frames of
the noisy STFT coefficient magnitudes of the considered signal, fΘ the
trained DNN with parameters Θ, and ŜPPDNN(l) the DNN-based SPP
estimate. The training process is detailed in Sec. 5.

4.2. Speech IFC Vector Estimation

Similarly to (12), the ML-based approach in [7] estimates the speech IFC
vector as

γ̂µx(l)=
1+ξ̂(l)

ξ̂(l)
γ̂y(l)−

1

ξ̂(l)
µγn (22)

where ξ̂(l) is an estimate of the a-priori SNR and γ̂y(l) is an estimate
of the noisy IFC vector obtained similarly as in (11) using Φ̂y(l) from
(15). The fixed mean noise IFC vector µγn can be computed based on
the analysis window and overlap settings [7].

Alternatively, by replacing the fixed mean noise IFC vector by a
TF-varying noise IFC vector estimate γ̂n(l), the speech IFC vector can
be computed as

γ̂γx(l)=
1+ξ̂(l)

ξ̂(l)
γ̂y(l)−

1

ξ̂(l)
γ̂n(l) (23)

where γ̂n(l) is obtained similarly to (11) using Φ̂n(l) from (16).
To estimate the a-priori SNR ξ(l), we apply the well-known decision-

directed approach (DDA) [29], i.e.,

ξ̂(l)=λDDA
X̂(l−1)
φ̂N(l−1)

+(1−λDDA)
|Y (l)|2

φ̂N(l−1)
, (24)

with weighting constant λDDA and X̂(l−1) denoting the speech estimate
of the previous frame.

5. DNN TRAINING PROCESS

As described in (21), the DNN is trained to map the input features, i.e.,
the noisy STFT coefficient magnitudes, to the SPP. More specifically, we
train the DNN with the target defined as

SPPDNN(l)=

(
1+

P(H0)

P(H1)
(1+ξH1)e

− |Y (l)|2
φN (l)

ξH1
1+ξH1

)−1

. (25)

For this target, we compute the noise PSD φN(l) via recursive averaging
of the noise component, which is available during training, i.e.,

φN(l)=αnφN(l−1)+(1−αn)|N(l)|2. (26)

As loss function, we use the mean-squared difference between the target
SPP defined in (25) and the estimated SPP S̃PPDNN(k, l), i.e.,

1

LK

L−1∑
l=0

K−1∑
k=0

(
S̃PPDNN(k, l)−SPPDNN(k, l)

)2
, (27)

where S̃PPDNN(k, l)=fΘ̃{|Y|}(k, l) uses the current set of parameters
Θ̃. The DNN is composed of an input layer with 33 input nodes, a
hidden BLSTM layer with 256 nodes for each direction, two hidden
fully-connected layers with 513 nodes each, and an output layer with 33
nodes. The corresponding activation functions of the hidden and output
layers are tanh, rectifying linear unit (ReLU), ReLU, and sigmoid,
respectively, inherently restricting the SPP estimates to ]0, 1[. This network
architecture is inspired by the DNN used in [23] and has been tested for
various sets of hyperparameters.

The network weights are initialized using a uniform distribution
U(−a, a), with a=

√
6/(nin+nout), and nin and nout the number of

input and output neurons of the layer, respectively [30]. All bias values are
initialized with 0. To decrease the dynamic range of the input data and to
stabilize the training process, we apply batch normalization to the input and
before the activations of the hidden layers [31]. To optimize the network
parameters, the Adam optimizer is utilized with parameters as proposed
in [32], with the learning rate set to 10−3 and the smoothing parameters for
the gradient and the squared gradient set to 0.9 and 0.999, respectively. If the
l2-norm of a gradient is larger than 1, the gradient is divided by this norm.

To evaluate the model performance, we make use of a separate
validation set as described in Sec. 6.1. The training is stopped either
after 100 epochs or after the validation loss as measured by (27) has not
decreased for 5 epochs. The DNN is implemented in PyTorch 1.2.0 [33],
and training and evaluation are performed on a multi-GPU system utilizing
3 NVIDIA GeForce R© GTX 1080 Ti graphics cards.

6. EXPERIMENTAL RESULTS

In this section, we compare the speech enhancement performance of the
MFMPDR filter in (14) using

1. to estimate the SPP required in (17): either the model-based SPP
estimator ŜPPR in (20) or the proposed DNN-based estimator
ŜPPDNN in (21).

2. to estimate the speech IFC vector: either the fixed mean noise IFC
vector µγn in (22) or the estimated time-varying noise IFC vector
γ̂n(l) in (23).

In addition, to investigate the impact of exploiting speech IFCs, we also
use the SPP estimators in (20) and (21) in a (single-frame) Wiener gain
(WG), resulting in a total of 6 compared methods.
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SNR / dB -5 0 5 10 15 20

MFMPDRR,µ 0.09 0.27 0.31 0.31 0.27 0.24
MFMPDRDNN,µ 0.22 0.33 0.41 0.35 0.33 0.22
MFMPDRR,γ -0.01 0.15 0.24 0.29 0.29 0.24
MFMPDRDNN,γ 0.04 0.21 0.29 0.32 0.29 0.21
WGR 0.04 0.13 0.18 0.23 0.26 0.28
WGDNN 0.06 0.16 0.20 0.24 0.27 0.23

Table 1: PESQ / MOS improvements vs. input SNR / dB, averaged over
all evaluation set utterances and noise types.

6.1. Dataset

As clean speech material, we have used the training, development, and test
sets of the WSJ0 corpus [26] for training, model validation, and evaluation,
respectively. The noisy microphone signals have been generated by adding
scaled (randomly chosen) noise segments to the clean speech signals
at a sampling frequency of 16 kHz. Regarding noise, we have used the
NOISEX92 database [27] for training and the Aurora database [34] for
evaluation, resulting in a strong mismatch between training and evaluation
conditions in order to evaluate the generalization capability of the pro-
posed method. For each training utterance, the corresponding broadband
SNR has been uniformly sampled from [0,20]dB. For evaluation, 4
random utterances from the WSJ0 test set have been used at broadband
SNRs ∈ {−5, 0, 5, 10, 15, 20}dB for each of the 8 noise types in
the Aurora database [34]. In total, this results in 12776, 2348, and 192
utterances for training, validation, and evaluation, respectively.

6.2. Simulation Settings

Since the speech IFC vector is highly time-varying, we employ an STFT
with a high temporal resolution, i.e., a frame length of 4 ms and a frame
shift of 1 ms, similarly as in [6, 7, 9, 10]. A Hann window is used for both
STFT analysis and synthesis. The parameters of both the model-based
SPP estimator ŜPPR in (20) and the DNN-based SPP estimator ŜPPDNN

in (21) are set as proposed in [16], i.e., P(H1) = P(H0) = 0.5 and
ξH1 = 15dB. As recursive smoothing constants, we use αn = 0.98,
λy=0.92, and λDDA=0.97. The MFMPDR filters use a filter length of
N=18, such that correlations within a window of 21 ms can be exploited.
To be more comparable to the MFMPDR filters, the WG methods are used
with the same settings, except forN=1. To improve numerical stability
when inverting a matrix, we perform regularization using diagonal loading
as in [6, 7] with regularization parameter δ=10−3. Finally, all compared
methods use a minimum gain of -17 dB.

6.3. Results

For the 6 considered methods, Tab. 1 depicts the improvements in terms of
the perceptual evaluation of speech quality (PESQ) [35] measure w.r.t. the
noisy microphone signals as a function of the input SNR. The clean speech
signal has been used as the reference signal. Subscripts denote which SPP
estimator was used and, in the case of the MFMPDR filters, whether the
mean IFC noise vector µγn or the time-varying noise IFC vector γn(l)
was utilized. The presented values are averaged over all utterances and
noise types included in the evaluation set.

First, it can be observed that the MFMPDR filter utilizing the proposed
DNN-based SPP estimate ŜPPDNN(l) and the fixed mean noise IFC vector
µγn (MFMPDRDNN,µ), yields the highest PESQ improvements for all
input SNRs except 20 dB. Second, comparing the methods utilizing either
the model-based SPP estimate ŜPPR(l) or the DNN-based SPP estimate

ŜPPDNN(l), the advantages of using the DNN-based estimator are evident.
This may be explained by the fact that, in contrast to the model-based
estimator, the DNN can exploit spectral structures of speech and noise.
Third, contrasting the MFMPDR filters and the WG, it can be confirmed
that exploiting speech IFCs may yield higher speech quality improvements
than directly using the SPP estimate in a WG approach [7, 9] (except for an
input SNR of 20 dB). The difference between the MFMPDR-based methods
and the WG-based methods increases for lower input SNRs, suggesting that
exploiting the speech IFCs is especially helpful in adverse scenarios. Fourth,
using the fixed mean noise IFC vector in the MFMPDR filters consistently
leads to larger PESQ improvements than using the estimated time-varying
noise IFC vector. Considering the results in [7, 36], this suggests that a filter
bank with higher frequency resolution is required to effectively incorporate
an estimate of the time-varying noise IFC vector into the MFMPDR filter.

7. CONCLUSION

In this paper we considered a DNN-based SPP estimator for multi-frame
approaches in single-microphone speech enhancement. Since the MFM-
PDR filter requires accurate estimates of the time-varying noisy correlation
matrix and especially the speech IFC vector, in this paper we propose to use
a DNN to improve the estimation of the speech IFC vector. The DNN is
trained to map noisy STFT coefficient magnitudes to an SPP on a database
comprising multiple noise types within a large SNR range to improve the
generalization capability of the DNN. We demonstrate a higher objective
speech quality improvement when using the proposed DNN-based SPP
estimator instead of a state-of-the-art model-based estimator. Furthermore,
by comparing the MFMPDR filters with Wiener gains based on equal
SPP estimates, we confirm that utilizing interframe correlations can be
beneficial especially in adverse scenarios.
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