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ABSTRACT
Aiming at exploiting the speech correlation across consecutive time-
frames in the short-time Fourier transform domain, the multi-frame
minimum variance distortionless response (MFMVDR) filter for
single-microphone speech enhancement has been proposed. This
filter is designed to avoid speech distortion while minimizing the
total signal output power. To compute the MFMVDR filter, an
estimate of the highly time-varying normalized speech correlation
vector is required. In this paper, we propose a subspace-based
estimator for the normalized speech correlation vector based on the
Q largest eigenvalues and their corresponding eigenvectors of the
prewhitened noisy speech correlation matrix. Experimental results
for different speech signals, noise types and signal-to-noise ratios
show that the proposed subspace-based estimator yields the best
results in terms of speech quality and noise reduction compared
to a state-of-the-art maximum-likelihood estimator.

Index Terms— MVDR, subspace estimation, interframe speech
correlation, speech enhancement

1. INTRODUCTION

Speech enhancement algorithms for communication devices (e.g.,
hearing aids, mobile phones) are crucial to improve speech quality
and speech intelligibility in noisy acoustic environments. Single-
microphone speech enhancement algorithms are often implemented
in the short-time Fourier transform (STFT) domain [1, 2].

To estimate the desired speech signal, on the one hand single-
frame approaches such as the Wiener gain (WG) can be used, where
a (real-valued) gain is applied to each noisy STFT coefficient [2].
On the other hand, multi-frame approaches such as the multi-frame
minimum variance distortionless response (MFMVDR) filter [3],
aim at exploiting speech correlation across consecutive time-frames
by applying a (complex-valued) finite impulse response (FIR) filter
to the noisy STFT coefficients [3, 4, 5, 6, 7].

The MFMVDR filter aims at minimizing the total signal output
power while not distorting correlated speech components [3]. It
requires estimates of the noisy speech correlation matrix and
the highly time-varying normalized speech correlation vector,
which contains the speech correlation between the current and
previous time-frames. In [8] it was shown that the MFMVDR
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filter is more sensitive to estimation errors in the normalized speech
correlation vector compared to estimation errors in the noisy speech
correlation matrix. In [5], a maximum-likelihood (ML) estimator
for the normalized speech correlation vector was proposed using
a fixed (i.e., time-frequency-independent) mean normalized noise
correlation vector. In [6], it was proposed to estimate the normalized
speech correlation vector based on the noisy speech and speech
periodograms in a high frequency-resolution filterbank and applying
the Wiener-Khinchin theorem. In this paper, we propose a subspace-
based estimator for the normalized speech correlation vector based
on theQ largest eigenvalues and their corresponding eigenvectors of
the prewhitened noisy speech correlation matrix. The prewhitening
transform is performed using a (frequency-dependent) pretrained
normalized noise correlation matrix. The dimension of the subspace
Q is estimated per time-frequency point.

Experimental results for different speech signals, noise types,
and signal-to-noise ratios (SNRs) show that the proposed subspace-
based estimator keeps speech distortion as low as the ML estimator
but improves the amount of noise reduction, leading to an increased
speech quality. Moreover, the MFMVDR filter using the proposed
subspace-based estimator yields a better speech quality than the
traditional WG.

2. PROBLEM FORMULATION

Consider a single-microphone system, where a speech signal is
degraded by additive noise. In the STFT domain, the (complex-
valued) noisy speech STFT coefficient Y (k,m) at frequency-bin
k and time-framem is given by

Y (k,m)=X(k,m)+N(k,m), (1)

withX(k,m) the speech STFT coefficient andN(k,m) the noise
STFT coefficient. The L-dimensional multi-frame noisy speech
vector y(k,m) is defined as

y(k,m)=
[
Y (k,m),Y (k,m−1),...,Y (k,m−L+1)

]T
, (2)

where [·]T denotes the transpose operator. Using (1), the noisy
speech vector y(k,m) can be written as

y(k,m)=x(k,m)+n(k,m), (3)

where the speech vector x(k,m) and the noise vector n(k,m) are
defined similarly as in (2).
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The speech STFT coefficientX(k,m) is estimated by applying a
(complex-valued) FIR filter h(k,m) to the noisy speech vector, i.e,

X̂(k,m)=hH(k,m)y(k,m), (4)

where H denotes the Hermitian operator and h(k, m) con-
tains the L time-varying filter coefficients, i.e., h(k, m) =[
H0(k,m),H1(k,m),...,HL−1(k,m)

]T
. For conciseness, in the

remainder of the paper the indices k andm will be omitted.
Assuming that the speech and noise signals are uncorrelated,

i.e., E
[
xnH

]
=0, with E[·] the expectation operator, the L×L-

dimensional noisy speech correlation matrix Ry = E
[
yyH

]
is

given by
Ry=Rx+Rn, (5)

whereRx=E
[
xxH

]
andRn=E

[
nnH

]
denote the speech and

noise correlation matrices, respectively.
To exploit the speech correlation across time-frames, it has

been proposed in [3] to decompose the speech vector x into the
temporally correlated speech component s and the temporally
uncorrelated speech component x′ with respect to the speech STFT
coefficientX, i.e.,

x=s+x′=γxX+x′. (6)

The normalized speech correlation vector γx is defined as

γx=
E[xX∗]
E[|X|2]

=
Rxe

eTRxe
=Γxe (7)

where ∗ denotes the complex-conjugate operator ande=
[
1, 0, ..., 0

]T
is an L-dimensional selection vector. Due to the normalization
term eTRxe, which corresponds to the speech power spectral
density (PSD) φX=E

[
|X|2

]
, the first element of γx is equal to 1.

Substituting (6) into (3) we obtain the multi-frame signal model

y=γxX+x′+n (8)

where we consider the uncorrelated speech component x′ as an
interference.

The normalized speech correlation matrix Γx in (7) is defined as

Γx=
Rx

eTRxe
. (9)

Using (5) and (6), the speech correlation matrixRx can be decom-
posed as the rank-1 correlation matrix Rs = φXγxγ

H
x and the

correlation matrixRx′ =E
[
x′x′

H
]
, whose first row and column

are equal to 0. Hence, the normalized speech correlation matrix
Γx is equal to

Γx=
Rs

eTRxe
+

Rx′

eTRxe
=γxγ

H
x +Γx′. (10)

Similarly to (7), the normalized noisy speech correlation vector
γy and the normalized noise correlation vector γn are defined as

γy=
Rye

eTRye
=Γye, γn=

Rne

eTRne
=Γne (11)

where eTRye and eTRne correspond to the noisy speech PSD
φY =E

[
|Y |2

]
and the noise PSDφN =E

[
|N |2

]
, respectively. The

normalized noisy speech correlation matrix Γy and the normalized
noise correlation matrix Γn are defined similarly as in (9), i.e.,

Γy=
Ry

eTRye
, Γn=

Rn

eTRne
. (12)

The MFMVDR filter [3] is designed to minimize the total signal
output power while not distorting the correlated speech component,
i.e.,

min
h

hHRyh, s.t. hHγx=1. (13)

Solving this optimization problem yields the MFMVDR filter [3]

hMFMVDR=
R−1y γx

γH
x R

−1
y γx

(14)

To compute the MFMVDR filter, estimates of the noisy speech
correlation matrixRy and the normalized speech correlation vector
γx are required. While Ry can be directly estimated from the
noisy speech signal, e.g., using recursive smoothing, the highly
time-varying γx is typically difficult to estimate accurately [8]. In
this paper, we propose a new subspace-based method to estimate
this vector.

3. NORMALIZED
SPEECH CORRELATION VECTOR ESTIMATION

In this section, we describe two methods to estimate the normalized
speech correlation vector. In Section 3.1, we review the state-of-the-
art ML estimator [5] that uses a fixed (time-frequency-independent)
mean normalized noise correlation vector. In Section 3.2, we pro-
pose a subspace-based estimator that uses a pretrained (frequency-
dependent) estimate of the normalized noise correlation matrix.

3.1. Maximum-likelihood Estimator [5]

Using (5), (7) and (11) it can be easily shown that

γy=
ξ

ξ+1
γx+

1

ξ+1
γn, (15)

with ξ=φX/φN the a-priori SNR.
Using (15), a ML estimator for the normalized speech correlation

vector γx has been proposed in [5] by replacing the normalized
noise correlation vector γn with its (time-frequency-independent)
mean vector γmean

n , i.e.,

γ̂ML
x =

ξ̂+1

ξ̂
γ̂y−

1

ξ̂
γmean
n (16)

with ξ̂ an estimate of the a-priori SNR and γ̂y an estimate of the
normalized noisy speech correlation vector in (11). The constant
vector γmean

n is determined by the frame overlap and the STFT
analysis window [5].
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3.2. Proposed Subspace-based Estimator

In this section, we propose a subspace-based method to estimate
the normalized speech correlation vector based on the eigenvalue
decomposition (EVD) of the prewhitened noisy speech correlation
matrix. The prewhitening transform is performed using a time-
independent but frequency-dependent pretrained normalized noise
correlation matrix.

Similarly to the vector formulation in (15), the normalized noisy
speech correlation matrix Γy can be written as

Γy=
ξ

ξ+1
Γx+

1

ξ+1
Γn. (17)

Let us first decompose the normalized noise correlation matrix Γn

using the Cholesky decomposition, i.e.,

Γn=CCH, (18)

withC an L×L-dimensional lower triangular matrix. Using (18),
the prewhitened normalized noisy speech correlation matrix Γw

y

is defined as
Γw
y =C−1ΓyC

−H. (19)

By substituting (17) in (19), we obtain

Γw
y =

ξ

ξ+1
Γw
x+

1

ξ+1
I, (20)

with Γw
x the prewhitened normalized speech correlation matrix and

I the L×L-dimensional identity matrix. Let the EVD of Γw
y be

given by

Γw
y =VΛw

yV
H=

L∑
q=1

λwy,qvqv
H
q , (21)

where the columns of V contain the orthogonal eigenvectors
v1,v2,...,vL, and the diagonal elements of Λw

y are the correspond-
ing noisy speech eigenvalues λwy,1≥λwy,2≥ ...≥λwy,L. Due to (20),
the EVD of Γw

x is given by

Γw
x =VΛw

xV
H=

L∑
q=1

λwx,qvqv
H
q , (22)

with the diagonal elements of Λw
x are equal to the speech eigen-

values λwx,1≥λwx,2≥ ...≥λwx,L. The speech eigenvalues are hence
related to the noisy speech eigenvalues as

λwx,q=
ξ+1

ξ
λwy,q−

1

ξ
, q=1,...,L. (23)

Hence, using (22) the normalized speech correlation matrix Γw
x can

be written using the eigenvalues and eigenvectors of Γw
y as

Γx=C

(
L∑

q=1

(
ξ+1

ξ
λwy,q−

1

ξ

)
vqv

H
q

)
CH (24)

Assuming that speech signals can be described by a low-rank
model [9, 10, 11, 12] of rank-Q, we propose to estimate Γx as

Γ̂Q
x=Ĉ

 Q̂∑
q=1

λ̂wx,qv̂qv̂
H
q

ĈH (25)

where Q̂≤L is the estimated dimension of the speech subspace
and λ̂wx,q is an estimate of the q-th speech eigenvalue according to
(23), i.e.,

λ̂wx,q=
ξ̂+1

ξ̂
λ̂wy,q−

1

ξ̂
, q=1,...,Q̂, (26)

where λ̂wy,q and v̂q denote the q-th eigenvalue and eigenvector
of the estimated prewhitened noisy speech correlation matrix
Γ̂w
y =Ĉ−1Γ̂yĈ

−H , with Ĉ the Cholesky factor of the estimated
noise correlation matrix. The normalized speech correlation vector
can then be estimated from Γ̂Q

x as

γ̂Q
x=

Γ̂Q
xe

eT Γ̂Q
xe

(27)

Assuming that Γx′ =0 in (10), which is of course not the case
in practice, Γx becomes a rank-1 matrix, i.e. Q=1, such that (27)
with (25) can be simplified to

γ̂1
x=

Ĉv̂1

eT Ĉv̂1
(28)

Note that (28) is similar to the so-called covariance whitening
method proposed in [13] for estimating the relative transfer function
vector of the desired speaker in multi-channel speech enhancement.

To implement the proposed subspace-based estimator, estimates
of the normalized noise correlation matrix Γn (cf. (18)) and the
dimension of the speech subspaceQ (cf. (25)) are required. Since in
practice it is rather difficult to accurately estimate Γn, we propose to
use a pretrained (frequency-dependent) Γn. During training, perfect
knowledge of the noise signal is available and the noise correlation
matrixRn can easily be obtained using recursive smoothing. The
pretrained normalized noise correlation matrix Γtr

n is subsequently
obtained by averagingRn over all training data and normalizing the
resulting matrix to its first element, similarly as in (12). To estimate
the dimension of the speech subspaceQ, there are several estimators
in the literature, e.g., see [14]. Since most estimators have a larger
variance inQ [10] when using a limited amount of data, we used
an estimator similar to the one proposed in [10]. Given a threshold

δ̂=−
1

ξ̂+1
log(Pf) [15], with Pf the false alarm rate, the estimated

noisy speech eigenvalue λ̂wy,l is assigned to the speech subspace
when λ̂wy,l≥ δ̂, where Q̂ is the number that satisfies this criterion.
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Fig. 1. Average PESQ improvement, segmental speech SNR (SD) and segmental noise reduction (NR) results of the MFMVDR filters
using the state-of-the-art ML estimator γ̂ML

x and using the proposed subspace-based estimators γ̂1
x and γ̂Q

x and of the WG (L=1).

4. SIMULATION RESULTS

In this section, we compare the performance of the normalized
speech correlation vector estimators for the MFMVDR filter
either, using the ML estimator in (16) [5] or using the proposed
subspace-based estimators γ̂1

x in (28) and γ̂Q
x in (27). As reference

single-microphone speech enhancement algorithm, we use the
traditional Wiener gain (WG) [2].

We used speech material from the TIMIT database [16] sampled
at 16 kHz. The average performance is evaluated over 250 s of
speech material (131 s female, 129 s male) under four different
noise conditions (babble, modulated white Gaussian noise (WGN),
traffic and speech-shaped noise) [17, 18], at input SNRs ranging
from -5 dB to 20 dB. To train the normalized noise correlation
matrix Γtr

n we used 5 noise types (WGN, 2 babble and 2 traffic
noises) [17, 18], resulting in 230 s of noise material. We made sure
that the training data differs from the evaluation data.

Similarly as in [5, 7], we used a STFT frame length of 4 ms
and a frame shift of 1 ms to achieve a high speech correlation. As
analysis and synthesis window we used a square-root Hann window.
The number of consecutive time-frames is experimentally set to
L=6, resulting in 9 ms of analysis data. To estimate the noisy
speech correlation matrix Ry, we applied recursive smoothing
with a smoothing factor experimentally set to 0.92. To estimate
the a-priori SNR ξ, we used the decision-directed approach (DDA)
[19], where the weighting parameter is set to 0.97 and the noise
PSD is estimated using the speech presence probability-based
estimator in [20] with the same smoothing factor of 0.90 as for
Rn in the training. To reduce fluctuations in the estimation of the
a-priori SNR, we only updated the estimate every 4 ms. For the
WG, we used a frame length of 4 ms (L=1) and an overlap of
50 %. The estimation of the a-priori SNR is also performed by
the DDA with a weighting parameter of 0.97 and the noise PSD
estimator in [20]. To reduce the amount of speech distortion and
to mask artifacts in the background noise, we apply a lower limit
of -8 dB to all a-priori SNR estimates. To estimate the dimension
of the speech subspaceQ, we set the false-alarm rate Pf =0.05.

The performance of all considered algorithms is evaluated in
terms of the perceptual evaluation of speech quality (PESQ) [21]
improvement compared to the noisy speech signal, using the clean
speech signal as the reference signal. Furthermore, the performance
is evaluated in terms of speech distortion and noise reduction using

the segmental speech SNR (SD) and the segmental noise reduction
(NR) [22], where both measures have been computed only during
time-frames where speech is active.

Fig. 1 depicts the results averaged over all speech and noise files.
First, it can be observed that the performance of the MFMVDR
filter using γ̂1

x results in the worst performance in terms of all
performance measures and SNRs. This confirms the results in
[8], where it has been shown that the influence of the uncorrelated
speech component is crucial, especially at high SNRs. By assuming
that Γx′ =0 in (10), i.e., using a fixed Q̂=1, the amount of speech
distortion increases for higher SNRs such that the speech quality is
reduced. Considering the PESQ improvement, the MFMVDR filter
using the proposed subspace-based estimator γ̂Q

x outperforms all
other filter for SNRs up to 15 dB. Regarding SD, it can be observed
that the MFMVDR filter using γ̂Q

x leads to a similar performance
as the MFMVDR filter using γ̂ML

x , and for SNRs larger than 0 dB
it achieves less speech distortion than the WG. In terms of NR, it
can be observed that the MFMVDR filter using γ̂Q

x achieves clearly
better results than the MFMVDR filter using γ̂ML

x , but for SNRs
larger than 0 dB it is worse than the WG. These results indicate
that determining the normalized speech correlation vector based
on theQ largest speech eigenvalues keeps the speech distortion as
low as the ML estimator but clearly leads to more noise reduction,
overall resulting in an increased objective speech quality. Moreover,
the MFMVDR filter using the proposed subspace-based estimator
yields less noise reduction and speech distortion than the traditional
WG, resulting in a better speech quality for SNRs up to 15 dB.

5. CONCLUSIONS
In this paper, we proposed a subspace-based normalized speech cor-
relation estimator for the single-microphone multi-frame minimum
variance distortionless response (MFMVDR) filter. We proposed
to estimate the normalized speech correlation vector based on the
Q largest eigenvalues and their corresponding eigenvectors of the
prewhitened noisy speech correlation matrix. Simulation results
show that the MFMVDR filter using the proposed subspace-based
estimator leads to a better speech quality and more noise reduction
than the state-of-the-art ML approach, while speech distortion
are kept low. Compared to the traditional Wiener gain (WG), the
MFMVDR filter using the proposed estimator leads to less speech
distortion and noise reduction, resulting in a slightly better speech
quality.
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