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Abstract
Speech playback (e.g., TV, radio, public address) becomes

harder to understand in the presence of noise and reverber-
ation. NELE (Near End Listening Enhancement) algorithms
can improve intelligibility by modifying the signal before it is
played back. Substantial intelligibility improvements have been
achieved in the lab for both natural and synthetic speech. How-
ever, evidence is still scarce on how these algorithms work un-
der conditions of realistic noise and reverberation.

We present a realistic test platform, featuring two represen-
tative everyday scenarios in which speech playback may occur
(in the presence of both noise and reverberation): a domestic
space (living room) and a public space (cafeteria). The gener-
ated stimuli are evaluated by measuring keyword accuracy rates
in a listening test with normal hearing subjects.

We use the new platform to compare three state-of-the-
art NELE algorithms, employing either noise-adaptive or non-
adaptive strategies, and with or without compensation for rever-
beration.
Index Terms: NELE, Near End Listening Enhancement, real-
istic noise, reverberation, speech modifications

1. Introduction
Speech playback is very common in everyday life: from tele-
vision to public announcements in train stations, from laptops
to car audio systems. Background noise and reverberation pose
an obstacle to the intelligibility of speech. In the case of speech
playback, there is a unique opportunity to deploy strategies to
reduce this problem: NELE (Near End Listening Enhancement)
algorithms can be used to modify the signal before it is played
by a loudspeaker, in a way that makes it more intelligible for
the listener when heard in the presence of noise and reverbera-
tion. NELE should not be confused with speech enhancement,
which instead attempts to extract the speech signal from a noisy
mixture.

Different NELE algorithms have been developed for both
natural and synthetic speech in recent years [1, 2, 3, 4, 5, 6],
achieving varied degrees of improvement over plain speech. It
is common to test these technologies only against additive arti-
ficial noise [7, 8]. NELE algorithms are seldom tested against
reverberation, except for those which are specifically designed
to tackle this problem [9, 10, 11]. It is reasonable to assume that
both additive noise and reverberation will be present in most sit-
uations in real life, and reverberation alone can hinder commu-
nication even in the absence of noise.

In the current study, we start from the conjecture that typi-
cal laboratory evaluations of NELE algorithms – which rely on
additive artificial noise – might not be a faithful representation

of everyday situations, and therefore may yield inaccurate pre-
dictions of the performance of NELE algorithms. We propose a
realistic test platform with two environments that are represen-
tative of everyday scenarios for speech playback: a domestic
space (living room) and a public space (cafeteria).

1.1. Previous work

In 2013, a large-scale evaluation study with normal hearing lis-
teners was performed at the University of Edinburgh. The study,
known as the Hurricane Challenge [8], compared several NELE
algorithms on both natural and synthetic speech. The challenge
was an extension of the evaluation described in [7], in which
the same noise stimuli and methodologies were used. Intelligi-
bility was scored in terms of WAR (Word Accuracy Rate), i.e.,
the percentage of correct keywords a subject can recall after lis-
tening to a sentence in noise. Intelligibility gains obtained with
NELE algorithms were computed in terms of EIC (Equivalent
Intensity Change), which is the amount in dB that plain unmod-
ified speech would have to be boosted (or attenuated) in order
to achieve the same intelligibility level as the modified speech.
A complete description is available in [7].

Two types of additive noise were used in these previous
evaluations: SSN (Speech Shaped Noise, which is artificially
generated) and CS (Competing Speaker, which is naturally-
produced speech from another speaker). These choices rep-
resent one steady and one fluctuating noise. The competing
speaker of choice was a voice actress speaking sentences in a
news-reading style, recorded in a sound studio. SSN was ob-
tained by filtering white noise with the spectral profile of the
speech recordings. SSN is meant to represent a situation in
which many speakers are present, such as a noisy restaurant.
This type of noise is widely used to test algorithms as it is
easy to generate and measure, while having some of the spectral
properties of more realistic stimuli.

2. Materials and methods
2.1. Design of the realistic environments

Our goal is to create a more realistic test platform, in which the
additive noise is more realistic than those above, and in which
reverberation is present. We designed two acoustic environ-
ments: a small domestic space (the living room) and a large
public space (the cafeteria), illustrated in Figure 1. The motiva-
tion for this choice is to depict a minimal set of possible scenar-
ios in which speech playback is typically experienced. Since de-
scribing the whole spectrum of possibilities would be too broad
in scope, these two environments were chosen as representa-
tive of opposite characteristics: fluctuating vs steady noise, and
short vs long reverberation time.
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Figure 1: Schematic representation of the simulated environ-
ments; dotted line around the cafeteria represents open bound-
aries. Drawings are adapted from [12].

The living room is a small space with a short reverberation
time (T60 = 300 ms), and the noise associated with it can be
described as fluctuating in nature (it features children playing,
house appliances, cars passing by, etc.). For this reason, we
assume it is comparable to the CS noise in principle.

The cafeteria, on the other hand, is a wide space with a rel-
atively long reverberation time (T60 = 1250 ms), and it is occu-
pied by a large number of individuals speaking at the same time;
this ensemble results in fairly steady-state noise, compared to a
single speaker. It is comparable to SSN by definition, yet it con-
tains some variability that SSN fails to capture, such as sources
moving around in space and suddenly changing their vocal ef-
fort – as well as other types of noise which can be found in a real
situation, such as the clinking of cutlery, chairs being moved or
doors being shut.

In order to provide a realistic sensation of space and ac-
count for sound quality, we selected binaural live noise record-
ings from The University of Oldenburg’s HRIR (Head-Related
Impulse Response) database [12] for the cafeteria and from
The University of Sheffield’s CHiME corpus [13] for the liv-
ing room. Stimuli were analyzed and recording artifacts were
removed, while leaving intact the original spectral characteris-
tics and dynamic range of the HATS (Head and Torso Simu-
lator) recordings. Binaural impulse responses were also taken
from the HRIR database (“Office II” for the living room and
“Cafeteria” for that scenario) in order to create the reverberant
speech stimuli. The position of the speech source in respect to
the listener can be seen in Figure 1.

All signals were sampled at 48 kHz with a bit depth of
24 bits.

2.2. Selecting the NELE algorithms

Two state-of-the-art NELE algorithms, SSDRC [4] and Adapt-
DRC [5, 6], were chosen based on the results they achieved
in the Hurricane Challenge [8], where both were among the
most effective algorithms for natural speech. Both SSDRC
and AdaptDRC operate under an equal-power constraint, i.e.,
signal power before and after processing must be the same.
While SSDRC is only speech-dependent, AdaptDRC performs
speech- and noise-dependent processing. Specifically, SSDRC
(which was presented in the uwSSDRC variant in [8]) performs
speech energy reallocation over both frequency and time. The
algorithm performs formant enhancement, boosts the energy

in the 1-4 KHz range (spectral shaping) and subsequently the
speech energy is reallocated in time via fixed broadband dy-
namic range compression. Perceptually, SSDRC substantially
reduces speech naturalness, although this variable was not mea-
sured in the Hurricane Challenge – nor in the current study.

AdaptDRC performs time- and frequency-dependent am-
plification and dynamic range compression. In contrast to SS-
DRC, the algorithm is designed to preserve speech naturalness
as far possible, whilst at the same time applying modifications
whenever intelligibility is not guaranteed, aiming at a fine bal-
ance between intelligibility and sound quality. The time- and
frequency-dependent amplification is controlled by an estimate
of the SII (Speech Intelligibility Index) and applies a uniform
distribution of speech power across frequency bands when pre-
dicted SII is low, but no processing when predicted SII is high.
The time- and frequency-dependent dynamic range compres-
sion stage is controlled by the SNR (Signal-to-Noise Ratio), ap-
plying maximum compression in situations of low SNR and no
compression at high SNRs.

In addition to these two algorithms, the OE (Overlap Mask-
ing Reduction and Onset Enhancement) algorithm [11] was
chosen as a representative method aimed solely at tackling re-
verberation. OE is designed to increase the consonant-vowel
power ratio to reduce the amount of self-masking of speech. To
this end the impulse response of the reverberant environment
is assumed to be known, and a frequency-dependent direct-to-
reverberant ratio of continuous speech (DRRs) is computed and
limited to a maximum value of 25 dB. This DRRs controls the
amount of amplification: periods with high DRR are assumed
to be consonants and are therefore enhanced, whilst parts with
low DRRs are assumed to be vowels and are reduced. In order
to fulfill the equal-power constraint, the speech is rescaled after
processing. The algorithm was applied to the output of Adapt-
DRC; the combination of AdaptDRC + OE will be denoted by
ADOE in the rest of the paper.

2.3. Listening test design

In order to make the results of this study comparable with
those from the Hurricane Challenge, the same corpus for
the target speaker and same presentation method were used.
Speech stimuli were taken from a recording of the Harvard
sentences [14] (as used in [7] and [8]; data are available at
https://doi.org/10.7488/ds/2482), which are meant to be phone-
mically balanced, and are characterized by a relatively low se-
mantic predictability. Sentences were trimmed to have 0.5 s of
silence before and after, and were convolved with the impulse
responses to simulate reverberation.

Noise stimuli were kept at a fixed level, while the reverber-
ant speech was scaled to achieved the desired SNR. SNR was
calculated as 10 times the logarithm of the ratio between the
sum of the squared samples of reverberant speech and the sum
of the squared samples of noise, taken over the interval where
speech is active. The noise snippets were extracted from the
noise recordings at random in order to match the length of each
sentence. Headphone output was calibrated to 75 dBA for the
cafeteria noise and 65 dBA for the living room noise (based on
average ambient noise data found in literature). Signal mixtures
were presented via Beyerdynamic DT 770 headphones in sound
treated booths; listeners had to type onto a keyboard what they
had heard.

All participants in the listening tests were normal-hearing
native speakers of British English (mean age = 23 years). Sub-
jects were mainly recruited via the University career website
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Figure 2: Comparison between the psychometric curves for
plain speech in [7] and present study. 95 % confidence inter-
vals are shown for Matlab’s glmfit on SNR data points.

and all were paid for participation. Prior to the listening test,
subjects were screened for hearing loss by means of a Pure Tone
Audiometry. Criteria for exclusion were compliant with the def-
inition of hearing impairment of the World Health Organization,
i.e. 26 dB or greater hearing threshold (in dB HL) averaged at
frequencies 0.5, 1, 2, 4 kHz - in one or both ears.

3. Results
3.1. Psychometric curves

Two calibration studies with respectively N=24 and N=30 lis-
teners were run in order to find the psychometric curves for
plain (i.e., unmodified by a NELE algorithm) speech in the two
realistic scenarios (Figure 2). For a detailed description of the
procedure, the reader can refer to [7], as the methodology is the
same (but with different stimuli and SNRs).

A comparison with the data reported in [7] for CS and SSN
noise can be seen in Figure 2. The psychometric curves found in
the calibration tests suggest the need for higher SNRs, in respect
to artificial noise, in order to yield the same intelligibility levels
for plain speech in the realistic scenarios. This is true for both
the fluctuating noise and the stationary noise condition.

3.2. Comparing NELE algorithms

N=34 listeners participated in the main listening experiment.
Sentences were processed with the three algorithms in both re-
alistic noise types, yielding therefore 24 different conditions: 2
types of noise x 4 speech types (3 modified + 1 plain) x 3 SNRs.
Stimuli were scaled and added to the appropriate binaurally-
recorded noise at three different SNRs, in order to yield close
to 25, 50 and 75 % WAR (for plain speech). The SNRs were
determined using the psychometric curves from above.

Results from the main experiment are reported in Figure
3. Speech intelligibility is reported in terms of WAR and the
corresponding EIC. All algorithms provided intelligibility gains
across all conditions. In the cafeteria, larger gains were found
in lower SNR conditions, in line with the data reported in [7]
and [8]. An opposite trend can instead be observed in the living
room for AdaptDRC and ADOE, while SSDRC performed the
best at the medium SNR. SSDRC globally obtained the highest

scores, with AdaptDRC and ADOE achieving a higher EIC only
in the living room at the high SNR. The largest inter-algorithm
differences can be observed in the cafeteria/stationary scenario.

As opposed to the findings in [7] and [8], all the algorithms
provided more benefit in the fluctuating noise condition, with
SSDRC achieving a 5.1 dB EIC gain at Mid SNR, boosting in-
telligibility from 53.8% to 75.4%. It must be noted that the
relationship between WAR and EIC is non linear - it is defined
by the psychometric curves in Figure 2.

The addition of OE to AdaptDRC did not appear to change
significantly the performance of the latter. ADOE scores were
slightly higher in the living room than in the cafeteria, where
AdaptDRC performed better in stand-alone mode.

4. Discussion
The SNR differences in the psychometric curves for plain
speech between artificial and realistic noise conditions might
be explained by the more complex nature of the latter. Both the
living room and the cafeteria present stationary and fluctuating
noise, besides reverberation. In particular, the living room –
where the biggest difference can be seen at a low SNR – there
are elements of stationary noise (e.g. home appliances), which
fill in the glimpses between voice events from the competing
speakers. A difference in the spectral profile of the noise stim-
uli should also be accounted for. A qualitative analysis shows
a concentration of energy in the lower frequencies (< 2 kHz)
for the CS used in [8] and [7], which might be explained by
the proximity effect deriving from a studio recording (with the
speaker being close to the microphone in a sound treated room),
as opposed to a more natural setting where speakers and noise
sources are more distant and affected by the IR of the environ-
ment. The IR of the living room, in fact, acts like a high-pass
filter. In both the Hurricane Challenge and the present study,
SNRs were computed on the raw signals, whereas the differ-
ences found in the psychometric curves suggest that it might
be worth considering A-weighting (or another perceptually-
motivated weighting) before that computation.

In the main listening test, all algorithms provided intelli-
gibility gains, showing that both SSDRC and AdaptDRC have
potential in real applications where reverberation is present. It
should be noted that our results in terms of EIC are not directly
comparable to [8] nor [7], as the psychometric curves (on which
the calculation of EIC is based) are inherently different; only
trends in the data can be compared, with due considerations on
the differences among the studies (with the presence of rever-
beration being an important factor). The performance of SS-
DRC and AdaptDRC do not follow the same trends across con-
ditions, yielding unexpected results in the living room, where
the highest gains were achieved at the highest SNRs. The reason
for this might be found in the complexity of fluctuating noise
and reverberation, but informational masking should also be ac-
counted for (especially at a low SNR) as the living room noise
features intelligible voices of children.

The ADOE combination gave mixed results, providing
most benefit in the living room. This might be explained by the
different DRR in the two simulated environments; the source of
the speech is closer to the listener in the cafeteria, even though
the reverberation time is longer and the speech source is posi-
tioned at an unfavourable azimuth. SSDRC provided the largest
EIC gains, suggesting that a noise-independent approach can
be successful across different scenarios. However, the natural-
ness of speech is compromised by the modification, which may
render it unsuited for long listening periods [15]. The Adapt-
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Figure 3: WAR and EIC for the different algorithms, at each SNR, in the two different noise scenarios. ADOE = AdaptDRC + OE; LSD
= Fisher’s Least Significant Difference.

DRC algorithm aims at a compromise between intelligibility
and speech naturalness; notwithstanding smaller EIC gains, this
strategy might be better suited for long listening periods. A
valuable extension to the present study would be a subjective
evaluation of perceived quality / naturalness / listening comfort,
as well as a subjective and objective measurement of the cog-
nitive load caused by listening to modified speech in realistic
noise [16].

Another interesting aspect is the computational load and the
intrusiveness of the algorithms. While SSDRC depends only
on the speech signal – and therefore can operate in a “blind”
manner against any type of noise – AdaptDRC and OE require
the noise and the impulse response (or estimates of these) re-
spectively. It is clear that SSDRC can be used in real time, as
the stimuli can be processed beforehand; in order to use Adapt-
DRC or OE in real time, additional resources are needed – not
just computational, but also additional hardware to capture the
noise or measure the impulse response, such as a microphone in
the environment.

5. Conclusions
In this study we tested three state-of-the-art NELE algorithms
applied to natural speech, which was then presented in realistic
noise and reverberation. We used binaural live noise recordings
and impulse responses to create two representative acoustic sce-
narios: a large crowded space (the cafeteria: stationary noise
and long reverberation time) and a small domestic place (the
living room: fluctuating noise and short reverberation time).

We ran two calibration listening tests with normal-hearing
listeners in order to find the psychometric curves for plain
speech in these noise scenarios. This revealed the need for
higher SNRs in comparison to synthetic noise [7] in order to
achieve the same speech intelligibility levels. We used the data
obtained from these tests in order to define the SNRs for the
main test, which featured a noise-independent algorithm (SS-
DRC), a noise-dependent one (AdaptDRC) and ADOE, a com-
bination of AdaptDRC with OE in order to tackle reverberation.

All algorithms improved intelligibility in all conditions;
higher gains in EIC were found at lower SNRs in the cafeteria

and at higher SNRs in the living room. The noise-independent
SSDRC method provided the larger gains overall; the noise-
dependent AdaptDRC strategy has a more conservative ap-
proach, providing less EIC gain but trying to preserve the natu-
ralness of speech. ADOE performed unexpectedly better in the
domestic scenario with a short reverberation time, suggesting
the algorithm is quite sensitive to different impulse responses.

Given the higher scores of the non-adaptive, low-
computational cost strategy, it is tempting to conclude this as
the best solution in all scenarios; however, as already mentioned
above, an evaluation of listener preference is crucial before this
conclusion can be drawn. A useful extension to our study would
be to evaluate perceived sound quality and listening comfort, as
well as to measure the cognitive load associated with listening
to modified speech in noise.

Realistic noise scenarios are difficult to reproduce and con-
trol; however, we suggest that their use can provide a critical
insight into the expected performance of NELE algorithms –
and possibly other technologies – in real applications, as the
complexity of real acoustic scenes cannot be captured by lab-
controlled noise.
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