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Abstract—The objective of binaural multi-microphone speech
enhancement algorithms can be viewed as a multi-criteria design
problem as there are several requirements to be met. The objective
is not only to extract the target speaker without distortion, but
also to suppress interfering sources (e.g., competing speakers) and
ambient background noise, while preserving the auditory impres-
sion of the complete acoustic scene. Such a multi-objective prob-
lem (MOP) can be solved using a Pareto frontier, which provides
a useful trade-off between the different criteria. In this paper,
we propose a unified Pareto optimization framework, which is
achieved by defining a generalized mean squared error (MSE) cost
function, derived from a MOP. The solution to the multi-criteria
problem is grounded on a solid mathematical foundation. The
MSE cost function consists of a weighted sum of speech distor-
tion (SD), partial interference reduction (IR), and partial noise
reduction (NR) terms with scaling parameters that control the
amount of IR and NR. The filter minimizing this generalized cost
function, denoted Pareto optimal binaural multichannel Wiener
filter (Pareto-BMWF), constitutes a generalization of various bin-
aural MWF-based and binaural MVDR-based beamformers. This
solution is optimal for any set of parameters. The improved speech
enhancement capabilities are experimentally demonstrated using
real-signal recordings when estimation errors are present and the
binaural cue preservation capabilities are analyzed.

Index Terms—Beamforming, binaural cue preservation, hearing
aids, LCMV, multi-microphone noise reduction, MVDR, MWF,
Pareto optimization.

I. INTRODUCTION

THE objective of binaural noise reduction algorithms is
not only to selectively extract the target speaker and to

suppress interfering sources and ambient background noise, but
also to preserve the auditory impression for the hearing aid
user. This can be achieved by preserving the binaural cues of
all sound sources, i.e., the interaural level difference (ILD) and
the interaural time difference (ITD) for coherent sources (target
and interfering sources) and the interaural coherence (IC) for
incoherent sound fields (background noise) [1]. These binaural
cues play a major role in spatial perception, i.e., the ability to
localize sound sources and to determine the spatial width or
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diffuseness of a sound field [2], and are very important for speech
intelligibility because of the so-called, binaural unmasking ef-
fect [3], [4].

Unlike monaural noise reduction algorithms, binaural noise
reduction algorithms need to generate two output signals (i.e.,
one for each ear), hence typically processing all available micro-
phone signals from both devices by using two different spatial
filters [5]–[27]. In [8], [14] the binaural minimum variance
distortionless response (MVDR) beamformer was proposed,
which extracts the target speech component in both hearing aids
without distortion while minimizing the overall noise power.
In [8], [11], the binaural multichannel Wiener filtering (MWF)
was proposed, which provides a minimum MSE estimate of
the target speech component in both hearing aids, providing a
trade-off between SD and NR. It was also shown that by setting
the trade-off parameter to zero, the obtained binaural MWF is
equivalent to the binaural MVDR beamformer.

In [28], it was shown that the (monaural) MWF problem
can be viewed as a multi-objective problem (MOP), as two
competing requirements need to be met, i.e., the minimization
of the residual noise power and the SD power [29]. Hence,
only non-inferior solutions can be obtained, which are known
as Pareto optimal solutions [30].

It was shown that both the binaural MVDR and the binaural
MWF preserve the binaural cues of the target speech source
but typically distort the binaural cues of the overall noise (i.e.,
interfering sources and background noise), since all sources are
perceived as arriving from the target direction. To preserve the
spatial perception for the hearing aid user, several extensions
of these binaural beamformers were proposed. In [7], [24],
the binaural MWF with partial noise estimation was proposed,
which is aimed to preserve the binaural cues of the overall noise
while sacrificing noise reduction. Other extensions proposed
in [12]–[17], [21] focus on the interfering sources by adding
a (hard) interference reduction constraint to the cost function of
the binaural MVDR and the binaural MWF, thereby preserving
the binaural cues of the interfering sources.

In this paper, we propose a unified Pareto optimization
framework for multi-microphone speech enhancement, which is
achieved by defining a MOP that consists of SD, partial IR, and
NR objective terms. This solution is optimal for any set of pa-
rameters. The solution to the multi-criteria problem is grounded
on a solid mathematical foundation. Using the scalarization
method, we unify the MOP into one single scalar function, i.e.,
a generalized cost function that consists of a weighted sum of
SD, partial IR, and partial NR MSE cost function terms. The
filter that minimizes the generalized cost function, denoted as
the Pareto-BMWF, defines a Pareto solution to the problem. The
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proposed binaural beamformer constitutes a generalization of
several binaural MWF-based and binaural MVDR-based beam-
formers. We show that several known binaural beamformers are
special cases for specific settings of the trade-off parameters
such that the filters are part of the respective Pareto solution set.

A well-known procedure in the literature (cf. [8]) states that
setting the trade-off parameter (between SD and NR) to zero, the
binaural MWF reduces to the binaural MVDR beamformer. We
claim that such a procedure is not mathematically founded, since
the cost function of the binaural MWF becomes ill-posed. The
formulated Pareto-BMWF beamformer circumvents these prob-
lems by showing that both the binaural MWF and the binaural
MVDR beamformer lie on a Pareto frontier of the same MOP.

Our contribution is five-fold. First, we introduce a new formu-
lation for the binaural noise reduction problem that is based on
a MOP. Under this new formulation, a set of equally acceptable
Pareto optimal solutions is provided, rather than a single solution
that optimizes a specific objective. We can distinguish between
two tasks, namely, i) finding a set of Pareto optimal solutions,
and ii) choosing the most preferred solution out of this set in
a decision-making procedure. Second, we provide two types of
trade-off parameters, namely, scaling and weighting parameters.
The scaling parameters define a family of MOPs (i.e., Pareto-
2(SD,ONR) and Pareto-3(SD,IR,NR) MOPs). These parameters
determine the respective MOP to be optimized. The weighting
parameters are used to select a preferred solution out of a set
of Pareto solutions in a decision-making procedure. Third, we
provide a list of considerations for the designer to control the
binaural cue preservation, the speech distortion (SD), and the
noise reduction (NR). Fourth, we show that a wide range of
well-known binaural beamformers are all sub-sets of the pro-
posed framework, namely, they all lie on the respective Pareto
frontier. Fifth, we establish a link between two well-known
beamforming families, namely, the binaural MVDR-based and
the MWF-based beamformers, as an example of the usage of the
Pareto formulation.

The paper structure follows. In Section II, we define the con-
sidered signal model, the interaural criteria, the MSE cost func-
tions, and the performance measures. In Section III, the Pareto
MOP formulation is introduced, a multi-criteria is proposed for
the binaural problem, and the binaural beamformer satisfying
the MOP, referred to as the Pareto-BMWF beamformer, is de-
rived. The binaural cue preservation properties of the proposed
Pareto-BMWF are analyzed in Section IV. In Section V, several
known binaural MWF-based and MVDR-based beamformers
are shown to be special cases of the proposed beamformer,
and insights into the relation between the binaural MWF and
the binaural MVDR beamformer are given. In Section VI, ex-
periments with real signals that demonstrate the performance
of the proposed Pareto-BMWF beamformer when estimation
errors are present are described. In Section VII, a discussion is
provided and we conclude the paper.

II. PROBLEM FORMULATION

In this section, we introduce the considered signal model
(Section II-A), define the binaural cues (Section II-B), present

the MSE cost functions (Section II-C) and the performance
measures (Section II-D).

A. Microphone and Output Signals

1) General Case: Consider an acoustic scenario consisting
of target and interfering sources in a noisy and reverberant
environment. The sources are received by two fully connected
hearing aid devices consisting of a microphone array
with ML microphones on the left hearing aid and MR

microphones on the right hearing aid, where M = ML +MR

denotes the total number of microphones. The received
signal in the short-time Fourier transform (STFT) domain
can be formulated as an M -dimensional vector y(t, k) =
[yL,1(t, k), . . . , yL,ML

(t, k), yR,1(t, k), . . . , yR,MR
(t, k)]T ,

which can be written as

y(t, k) = x(t, k) + u(t, k) + n(t, k)

= x(t, k) + v(t, k), (1)

where k denotes the frequency index and t the frame index,
and x(t, k), u(t, k), and n(t, k) denote the received target
source component, the received directional interfering (unde-
sired) source component, and the received background noise
component, respectively. v(t, k) = u(t, k) + n(t, k) is defined
as the overall noise component as received by the microphones,
i.e., the directional interfering source component plus the back-
ground noise component. The spatial correlation matrices of the
target source, interfering source, and background noise compo-
nents’ RX , RU and RN , are defined as

RX(t, k) = E{x(t, k)xH(t, k)},
RU (t, k) = E {u(t, k)uH(t, k)},
RN (t, k) = E {n(t, k)nH(t, k)}, (2)

where E{·} denotes the expectation operator. Assuming statis-
tical independence between the components in (1), the spatial
correlation matrix of the microphone signals RY can be written
as

RY (t, k) = E {y(t, k)yH(t, k)}
= RX(t, k) +RU (t, k) +RN (t, k)︸ ︷︷ ︸

RV (t,k)

, (3)

with RV the spatial correlation matrix of the overall noise
component.

Let mL and mR be the indices of the left and right reference
microphones, respectively (usually selected as the microphones
closest to the ears in order to best reflect the binaural cues). The
respective reference microphone signals at the left and the right
hearing aids are given by

yL(t, k) = eHL y(t, k), yR(t, k) = eHRy(t, k), (4)

where eL and eR are M -dimensional vectors with ‘1’ in the
mLth and mRth component, respectively, and ‘0’ elsewhere.
The output signals on the left and the right hearing aids, zL and
zR respectively, are obtained by applying the left and the right

 



2614 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

beamformers to all microphone signals from both hearing aids,
i.e.,

zL(t, k) = wH
L (t, k)y(t, k), zR(t, k) = wH

R (t, k)y(t, k), (5)

where wL(t, k) and wR(t, k) are M -dimensional complex-
valued weight vectors for the left and the right hearing
aid, respectively. Furthermore, we define the 2M -dimensional
complex-valued stacked weight vector w(t, k) as

w(t, k) =

[
wL(t, k)
wR(t, k)

]
. (6)

Henceforth, t and k are omitted for the sake of brevity.
2) Special Case: Dual Source Scenario: In this section, we

consider a common scenario consisting of one target source, one
interfering source (e.g., competing speakers), and background
noise, which can be directional, non-directional, or a combina-
tion thereof (although commonly a diffuse noise).

We assume a deterministic characterization of acoustic im-
pulse responses (AIRs). The M -dimensional vectors a and b
denote the acoustic transfer function (ATF) vectors from the
(point) sources to the microphones. We note that the AIRs vary
in time due to the movements of the sources, the microphones,
or other objects in the environment. Nevertheless, we assume
such movements are small, and hence, the ATFs a and b can be
approximated as deterministic time-invariant.

Under the above assumptions, the target and the interfering
source components can be modeled as

x = sXa, u = sUb, (7)

where sX and sU denote the target and interfering source signals,
respectively. In this case, the correlation matrices RX and RU

are rank-1 matrices, i.e.,

RX = PXaaH , RU = PUbb
H . (8)

with PX = E{|sX |2} and PU = E{|sU |2} denoting the power
spectral density (PSD) of the target and interfering source com-
ponents, respectively.

The relative transfer functions (RTFs) of the target source and
the interfering source between the reference microphones on the
left and the right hearing aids are defined as the ratio of the ATFs,
i.e.,

RTFX,IN =
aL
aR

, RTFU,IN =
bL
bR

. (9)

B. Binaural Cues

1) General Case: The input and output interaural transfer
function (ITF) of the target and interfering source components
are defined as the ratio of the components at the left and right
hearing aids [11], i.e.,

ITFX,IN =
xL

xR
=

eHL x

eHRx
, ITFX,OUT =

wH
L x

wH
Rx

,

ITFU,IN =
uL

uR
=

eHL u

eHRu
, ITFU,OUT =

wH
L u

wH
Ru

. (10)

The ITF is a complex-valued frequency-dependent scalar, from
which the ILD and the ITD binaural cues can be computed

as [11]1

ILD = 20 log10(|ITF|), ITD =
∠(ITF)

ω
, (11)

with ∠ denoting the unwrapped phase and ω the radian fre-
quency. The interaural phase difference (IPD) is defined as the
phase of the ITF, i.e.,

IPD = ∠(ITF). (12)

In the following, because of the relation in (11), we consider
that the ITF preservation capabilities of the examined filters are
equivalent to their binaural cue preservation capabilities for the
sake of brevity.

2) Special Case: Dual Source Scenario: For a specific single
source, the input ITF of either the target or the interfering source
is independent of the actual input signal and equals the RTF
between the reference microphones at the left and the right
hearing aids as defined in (9), i.e.,

ITFX,IN =
aL
aR

, ITFU,IN =
bL
bR

. (13)

Similarly, the output ITFs of the target and the interfering sources
are equal to the output RTFs of the target and the interfering
sources, which are defined as the ratio of the filtered components
at the left and the right hearing aids, i.e.,

ITFX,OUT =
wH

L a

wH
Ra

, ITFU,OUT =
wH

L b

wH
R b

. (14)

For practical implementations, for a single source, the input and
output ITFs of the target and interfering sources can be estimated
from the spatial correlation matrix [11], i.e.,2

ITFX,IN =
eHLRXeL
eHRRXeL

, ITFX,OUT =
wH

LRXwL

wH
RRXwL

,

ITFU,IN =
eHLRUeL
eHRRUeL

, ITFU,OUT =
wH

LRUwL

wH
RRUwL

. (15)

For example, using (15), and since the spatial correlation ma-
trices are rank-1, the input ITFs of the target and interfering
sources are equal to the respective input RTFs, i.e.,

ITFX,IN =
eHL PXaaHeL
eHRPXaaHeL

=
aLa

∗
L

aRa∗L
=

aL
aR

,

ITFU,IN =
eHL PUbb

HeL

eHRPUbb
HeL

=
bLb

∗
L

bRb∗L
=

bL
bR

. (16)

Hence, the ITF is equivalent to the RTF. Henceforth, the ITF is
referred to as the RTF for the sake of clarity.

C. Mean Square Error Objectives

In this study, we aim at minimizing three criteria: the target
SD, (partial) IR, and (partial) NR terms. In this section, useful
definitions related to these criteria are provided.

1Please note that in some publications the ITD is defined as derived from
the phase of the ITF [31], i.e., ITD = − d

dω∠(ITF). We use the ITD as defined
in [11].

2Note that (15) is also used in this study in the general case where the rank
of correlation matrices is larger than one.
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We define the signal-based cost function Jx(w) for the target
SD term as the MSE between the target source component in the
reference microphone signals and the output signals, i.e.,

Jx(w) = E
{∥∥∥∥

[
xL −wH

L x
xR −wH

Rx

]∥∥∥∥2
}
. (17)

In addition, we define an equivalent transfer function (TF)-based
cost function Tx(w) for the SD term using the ATF vector of
the target source, i.e.,

Tx(w) =

{∥∥∥∥
[
aL −wH

L a
aR −wH

Ra

]∥∥∥∥2
}
. (18)

Note that, while MWF-based beamformers require signal-based
cost functions for the SD term, distortionless beamformers re-
quire a TF-based cost function of the target source for the SD
term (Section V).

For a single source case, the target source is modeled in (7)
as x = sXa, and hence, the correlation matrix RX in (8) is
a rank-1 matrix. Substituting (7) in (17), the signal-based cost
function Jx(w) can be written as

Jx(w) = E
{∥∥∥∥

[
sXaL −wH

L sXa
sXaR −wH

R sXa

]∥∥∥∥2
}

= E
{
‖sX‖2

}{∥∥∥∥
[
aL −wH

L a
aR −wH

Ra

]∥∥∥∥2
}
. (19)

Since PX = E{|sX |2}, the signal-based cost function Jx(w) is
equivalent to the TF-based cost function Tx(w), except for a
scaling factor, which is equal to the PSD of the signal source,
i.e.,

Jx(w) = PXTx(w). (20)

We define the signal-based cost function Ju,ηu
(w) for the IR

term as

Ju,ηu
(w) = E

{∥∥∥∥
[
ηuuL −wH

L u
ηuuR −wH

Ru

]∥∥∥∥2
}
, (21)

where 0 ≤ ηu ≤ 1 denotes the interference scaling parameter,
which controls the amount of IR. Further, we define an equivalent
TF-based cost function Tu,ηu

(w) for the IR term using the ATF
vector of the interfering source, i.e.,

Tu,ηu
(w) =

{∥∥∥∥
[
ηubL −wH

L b
ηubR −wH

R b

]∥∥∥∥2
}
. (22)

For the single source case, the relation between the signal-
based cost function Ju,ηu

(w) and the TF-based cost function
Tu,ηu

(w) for the interfering source is, similar to the above
relation for the target source, given by,

Ju,ηu
(w) = PUTu,ηu

(w), (23)

such that the signal-based cost function Ju,ηu
(w) is equivalent

to the TF-based cost function Tu,ηu
(w), up to a scaling factor,

which is equal to the PSD of the interfering source.

We define the signal-based cost function Jn,ηn
(w) for the NR

term as

Jn,ηn
(w) = E

{∥∥∥∥
[
ηnnL −wH

Ln
ηnnR −wH

Rn

]∥∥∥∥2
}
, (24)

where 0 ≤ ηn ≤ 1 denotes the background noise scaling param-
eter, which controls the amount of noise reduction.

Furthermore, we define the cost function Jv,ηv
(w) for the

overall noise reduction (ONR) as

Jv,ηv
(w) = E

{∥∥∥∥
[
ηvvL −wH

L v
ηvvR −wH

Rv

]∥∥∥∥2
}
, (25)

where 0 ≤ ηv ≤ 1 denotes the overall noise scaling parameter,
which controls the amount of overall noise reduction (i.e., inter-
fering source plus background noise).

Remark 1: When setting the scaling parameters ηu, ηn, and
ηv, different important aspects should be considered, e.g., those
based on the desired SIR and SNR improvement and the ef-
fect of RTF estimation errors. This may improve situational
awareness and, consequently, enhance the preservation of the
spatial cues. This set of parameters can be determined by the
user based on personal perceptual preferences rather than tuned
by an optimization process maximizing a particular measure of
performance.

Remark 2: All the proposed MSE cost functions are, by
definition, non-negative values.

Remark 3: When the cost function for the target sourceJx(w)
(or equivalently, Tx(w)) is equal to zero, the filters must satisfy
a constraint set, namely, w ∈ Hx(w), with

Hx(w) =
{
w ∈ CM : wH

L a = aL,w
H
Ra = aR

}
. (26)

This leads to a family of distortionless beamformers, as elabo-
rated in Section V-B.

Similarly, when the cost function for the interfering source
Ju,ηu

(w) (or equivalently, Tu,ηu
(w)) is equal to zero, the filters

must satisfy a constraint set, w ∈ Hu,ηu
(w) with

Hu,ηu
(w) =

{
w ∈ CM : wH

L b = ηubL,w
H
Rb = ηubR

}
.

(27)

This leads to a family of null-steering beamformers, as elabo-
rated in Section V-A-3 and Section V-B.

D. Performance Measures

In this section, useful performance measures, which are used
in Section VI, are defined.

The narrow-band binaural SD is defined as the average of the
left and right target SD terms (cf. Eq. (17)) normalized by the
average input PSD of the left and right target component on the
reference microphones, i.e.,

SD =
E {‖xL −wH

L x‖2}+ E {‖xR −wH
Rx‖2}

E {‖xL‖2}+ E {‖xR‖2} . (28)

The binaural SD can be rewritten as

SD =
E {‖xL −wH

L x‖2}+ E {‖xR −wH
Rx‖2}

eHLRXeL + eHRRXeR
. (29)
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The narrow-band binaural input signal-to-interference-and-
noise ratio (SINR) is defined as the ratio of the average input
PSDs of the target source and the overall noise components
(interfering source plus background noise) in the reference
microphones, i.e.,

SINRin =
eHLRXeL + eHRRXeR
eHLRV eL + eHRRV eR

. (30)

The narrow-band binaural output SINR is defined as the ratio
of the average output PSDs of the target source and the overall
noise components (interfering source plus background noise) in
the left and the right hearing aid, i.e., [14]

SINRout =
wH

LRXwL +wH
RRXwR

wH
LRV wL +wH

RRV wR
. (31)

III. THE MULTI OPTIMIZATION PROBLEM

In this section, the multi-objective problem (MOP) is intro-
duced. First, the mathematical foundations of the MOP are laid
(Section III-A). Second, the considered binaural problem is ex-
pressed in a MOP formulation, and a novel binaural beamformer
denoted Pareto-BMWF is derived, constituting a Pareto optimal
set of filters solving the MOP (Section III-B).

A. Mathematical Formulation

MOP is a field of multiple criteria decision making that
involves the simultaneous optimization of more than one ob-
jective function. This section provides a brief description of the
MOP that is used in the next sections, following the description
in [32]–[34]. The interested reader is referred to [30], [35], [36].

A single-objective problem (SOP) for the binaural system
considered in this study is given by finding the binaural filter
solution w that minimizes a single cost function J(w), i.e.,

min
w

J(w). (32)

The optimization technique leads to a unique optimal filter.
The general MOP can be described as a simultaneous opti-

mization of multiple cost functions, i.e.,

minPareto
w

C(w) (33)

with

C(w) = [J1(w), J2(w), . . . , JI(w)] , (34)

where I is the number of cost functions. The binaural filter w
is a vector of design variables. C(w) is a vector-valued global
objective function, or the generalized cost function, such that it
represents a set of criteria. Each Ji(w) denotes an objective as-
sociated with a different cost function. w∗

i is a filter solution that
minimizes the cost function Ji(w). The feasible design space
W (frequently called the feasible decision space) is defined as
the set of all possible solutionsw. The feasible criterion spaceZ
(also called the feasible cost space or the attainable set) is defined
as the set Z = {C(w)|w ∈ W}. Each point in the design space
maps to a point (vector-valued) in the criterion space, but the
reverse may not be true. We attribute attainability to a point

(vector-valued) in the criterion space that maps to a point in the
design space.

If there is a feasible solution that minimizes all criteria, then
a single solution is obtained, similar to the SOP. However, it
is typically impossible to find a unique solution that minimizes
all criteria. In these situations, the notion of Pareto optimality
becomes of paramount importance. A set of Pareto-optimal
solutions comprises all solutions that minimize each cost func-
tion individually and also the solutions that trade off these cost
functions. The Pareto optimality is defined as follows.

Definition 1: A filter solution w∗ dominates another filter
solution w if i) w∗ is no worse than w in all objectives and ii)
w∗ is strictly better than w in at least one objective.

Definition 2: A filter solution w∗ ∈ W is Pareto optimal
solution iff there does not exist another filter solution w ∈ W ,
such that Ji(w) ≤ Ji(w

∗) for all i = 1, 2, . . . , I and Jj(w) <
Jj(w

∗) for at least one index j (cost function). In other words, a
filter solution w∗ is Pareto optimal if it is not dominated by any
other filter solution.

Definition 3: All the Pareto optimal filter solutions solve the
MOP and lie on the boundary of the feasible criterion space
Z [37]. The set of Pareto solutions constitutes the Pareto frontier.

This means that a filter is a Pareto solution if no other filter
exists that improves at least one cost function without leading
to a degradation in another cost function. We note that for any
given MOP, there may be an infinite number of Pareto optimal
solutions constituting the Pareto optimal set.

The Pareto frontier is the optimal trade-off between multiple
objectives. As in our study, all cost functions are convex by
definition (see Section II-C Remark 2), the local Pareto solution
is also global Pareto optimal. Then, one does not need to discuss
particular cases because all the solutions on the frontier are
optimal. As the “operator” of the optimization process that
determines a specific solution, it is guaranteed that any selected
point on the frontier gives an optimal trade-off between the cost
functions. In that sense, every Pareto optimal point is an equally
acceptable solution of the MOP.

We use the so-called weighted-sum or scalarization method,
as described in [33], to compute the Pareto set. The MOP is
solved by combining its multiple objectives into one single-
objective generalized cost function. This is defined as

J(w) = λ1J1(w) + λ2J2(w) + . . .+ λIJI(w)

s.t.
I∑

i=1

λi = 1, (35)

where λi, i = 1, 2, . . . , I are defined as the weighting parame-
ters that provide a trade-off between the cost function terms.

We note that the minimization of the single-objective general-
ized cost function J(w) is sufficient for finding a Pareto optimal
solution if J(w) increases monotonically with respect to each
cost function [32]. That is, any filter that solves the generalized
cost function belongs to the Pareto frontier.

It is generally desirable to obtain one point as a solution out
of the Pareto optimal set. This can be accomplished using a
decision-making procedure [34], based on considerations that
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are independent of the MOP (this can be accomplished by, e.g.,
by setting the weighting parameters). Hence, a second stage in
the MOP framework is to define a decision-making procedure
that selects a preferred solution from the Pareto frontier based on
a list of considerations (e.g., required SD, SIR, NR, or binaural
cue preservation requirements).

B. Binaural Multiple Objective Problem

In this section, we apply the MOP formulation to the binaural
problems at hand.

1) Pareto Three-Objectives Problem: In Section II-C, we de-
fined the MSE cost functions for SD, IR, and NR. The objective
of the examined problem is to minimize simultaneously the three
cost functions. The MOP can be described in mathematical terms
as

minPareto
w

CPareto-3(w) (36)

with

CPareto-3(w) = [Jx(w), Ju,ηu
(w), Jn,ηn

(w)] . (37)

Since the problem optimizes three cost functions, it is referred
to as a Pareto-3 problem.

To calculate the Pareto frontier, we use the scalarization
method. The generalized MSE cost function consists of a
weighted sum of the three cost functions (17), (21), and (24),
i.e.,

JPareto-3(ηu,ηn)(w) = λxJx(w) + λuJu,ηu
(w) + λnJn,ηn

(w)

s.t. λx + λu + λn = 1, (38)

where the target, interference, and background noise weighting
parameters 0 ≤ λx ≤ 1, 0 ≤ λu ≤ 1, and 0 ≤ λn ≤ 1 provide
a trade-off between SD, IR, and NR MSE terms. The optimal set
of solutions can be found by seeking minima through varying
the weighting parameters λx and λu, where λn = 1− λx − λu.
This is possible, since the solution of the generalized cost
function for any λx and λu corresponds to a particular filter,
which forms the Pareto frontier. In the second stage, the decision-
making procedure will select the preferred optimal solution from
the Pareto frontier, by determining the weighting parameters.

2) Pareto Two-Objectives Problem: Let us examine a setting
whereλv = λu = λn andηv = ηu = ηn such that the interfering
source and the background noise are similarly treated. The
generalized MSE cost function in (38) is then equal to

JPareto-3(ηu,ηn)(w) = λxJx(w) + λv(Ju,ηu
(w) + Jn,ηn

(w))

s.t. λx + λv = 1. (39)

Assuming statistical independence between u and n, it can be
shown that the cost function Jv,ηv

(w) for the ONR is equal to
the sum of the signal-based cost function Ju,ηu

(w) for the IR
term and the signal-based cost function Jn,ηn

(w) for the NR
term, i.e.,

Jv,ηv
(w) = Ju,ηu

(w) + Jn,ηn
(w). (40)

Hence, the objective of the examined problem is to simultane-
ously minimize two cost functions (referred to as a Pareto-2

problem):

minPareto
w

CPareto-2(w) (41)

with

CPareto-2(w) = [Jx(w), Jv,ηv
(w)] . (42)

The generalized cost function is equal to

JPareto-2(ηv)(w) = λxJx(w) + (1− λx)Jv,ηv
(w), (43)

where λv = 1− λx.
3) Pareto Three-Objectives Filter Decomposition: The fil-

ters minimizing the cost function in (38) can be computed as

wL = R−1
λ RηeL, wR = R−1

λ RηeR, (44)

with

Rλ = λxRX + λuRU + λnRN (45)

and

Rη = λxRX + λuηuRU + λnηnRN . (46)

The filters are referred to as the Pareto-BMWF, with λn = 1−
λx − λu. Further, the left and right filters for the Pareto-BMWF
can be written in a unified stacked vector as

w = R−1
G rG, (47)

with

RG =

[
Rλ 0
0 Rλ

]
, (48)

and

rG =

[
RηeL
RηeR

]
. (49)

By substituting the rank-1 correlation matrices RX and RU

from (8) into (44), we obtain filters that can be decomposed as

wL = wX,L + ηuwU,L + ηnwN,L,

wR = wX,R + ηuwU,R + ηnwN,R, (50)

with

wX,L = λxR
−1
λ PXaa∗L wX,R = λxR

−1
λ PXaa∗R

wU,L = λuR
−1
λ PUbb

∗
L wU,R = λuR

−1
λ PUbb

∗
R

wN,L = λnR
−1
λ RNeL wN,R = λnR

−1
λ RNeR. (51)

The obtained filters are decomposed into a sum of three filters,
related to the target, interference, and noise sources. This de-
composition can be interpreted as a source separation procedure
that first calculates three outputs and then, remixes the outputs
by the trade-off parameters.

Both (λx, λu) and (ηu, ηn) control the Pareto-3(ηu,ηn) MOP.
The scaling parameters (ηu, ηn) control the amount of interfer-
ence and noise reduction required (internally) in the IR and NR
MSE terms, respectively. Various Pareto-3(ηu,ηn) frontiers are
obtained as a function of these scaling parameters. On the other
hand, the target and interference weighting parameters (λx, λu)
provide a trade-off between the SD, IR, and NR MSE terms,
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such that they give us a tool for selecting a point on the specific
Pareto-3(ηu,ηn) frontier in the decision-making procedure.

From (50), it is evident that the Pareto-3 filters are a sum of
the target filters wX,L and wX,R, the interference filters wU,L

and wU,R (weighted with ηu), and the noise filters wN,L and
wN,R (weighted with ηn). For ηu = 1, and ηn = 1, using (44),
the filters are reduced to the identity filters (i.e., wL = eL and
wR = eR) since Rη = Rλ, such that the output of each filter is
equal to the respective noisy reference microphone signal.

4) Pareto Two-Objectives Filter Decomposition: The filters
minimizing the cost function in (43) are given by

wL = R̄
−1
λ R̄ηeL, wR = R̄

−1
λ R̄ηeR, (52)

with

R̄λ = λxRX + λvRV ; R̄η = λxRX + λvηvRV , (53)

and a stacked vector can be written by substituting Rλ and Rη

with R̄λ and R̄η in (47), i.e.,

w = R̄
−1
G r̄G, (54)

with

R̄G =

[
R̄λ 0
0 R̄λ

]
, (55)

and

r̄G =

[
R̄ηeL
R̄ηeR

]
. (56)

By substituting the rank-1 correlation matrix RX from (8)
into (52), we obtain filters

wL = (1− ηv)w̄X,L + ηveL,

wR = (1− ηv)w̄X,R + ηveR, (57)

where w̄X,L and w̄X,R are the Pareto-2(ηv = 0) filters, i.e.,

w̄X,L = λxR̄
−1
λ PXaa∗L,

w̄X,R = λxR̄
−1
λ PXaa∗R. (58)

The solution for this problem defines a Pareto frontier for the
Pareto-2(ηv) MOP.

Both λx and ηv control the Pareto-2(ηv) MOP. The target
weighting parameter λx provides a trade-off between SD and
ONR MSE terms. For ηv = 0, the MOP is optimal for both
speech distortion and overall noise reduction, i.e., Pareto-2(0).
As λx decreases, the relative importance of the ONR term be-
comes larger, hence a higher SD and a lower ONR are obtained.
The scaling parameter ηv controls the amount of overall noise
reduction required in the ONR MSE term, such that the output of
the filters is a sum of the output signals of the Pareto-2(ηv = 0),
weighted with (1− ηv), and the noisy reference microphone
signals, weighted with ηv . As ηv increases, a larger component
of the noisy reference microphone signals leaks to the output.
In the following, it is shown that this binaural beamformer is
equivalent to the MWF-N proposed in [7].

5) Signal-Based and TF-Based Pareto BMWF Variants: In
this section, variants of the Pareto-2 and Pareto-3 MOPs are
introduced. A variant of the generalized cost function for the
Pareto-2 MOP is given by substituting Jx(w) with Tx(w)
in (43), i.e.,

JPareto-2,b(ηv)(w) = λx,bTx(w) + (1− λx,b)Jv,ηv
(w). (59)

Since the signal-based cost function Jx(w) is equivalent to the
TF-based cost function Tx(w), up to a scaling factor, which
is equal to the PSD of the signal source (20), we postulate
that the two variants of the Pareto-BMWF are equivalent, up
to a scaling factor between the weighting parameters such that
λx,b = PXλx, provided that the signals are non-zero.3

Similarly, three variants of the proposed Pareto-3 MOP can
be obtained by minimizing TF-based cost functions Tx(w) and
Tu,ηu

(w), instead of the signal-based cost functions of the target
source and the interfering source Jx(w) and Ju,ηu

(w), i.e.,

minPareto
w

CPareto-3b(w) (60)

minPareto
w

CPareto-3c(w) (61)

minPareto
w

CPareto-3d(w) (62)

with

CPareto-3b(w) = [Tx(w), Ju,ηu
(w), Jn,ηn

(w)] , (63)

CPareto-3c(w) = [Jx(w), Tu,ηu
(w), Jn,ηn

(w)] , (64)

CPareto-3d(w) = [Tx(w), Tu,ηu
(w), Jn,ηn

(w)] . (65)

As a result, the generalized MSE cost functions for these three
variants are given by

JPareto-3,b(ηu,ηn)(w) =

λx,bTx(w) + λu,bJu,ηu
(w) + λn,bJn,ηn

(w), (66)

s.t. λx,b + λu,b + λn,b = 1.

JPareto-3,c(ηu,ηn)(w) =

λx,cJx(w) + λu,cTu,ηu
(w) + λn,cJn,ηn

(w), (67)

s.t. λx,c + λu,c + λn,c = 1.

JPareto-3,d(ηu,ηn)(w) =

λx,dTx(w) + λu,dTu,ηu
(w) + λn,dJn,ηn

(w),

s.t. λx,d + λu,d + λn,d = 1. (68)

Using the relation in (20) and (23), we postulate that the
four variants of the Pareto-3 MOP (38), (66), (67), and (68) are
equivalent, except for a scaling factor between the weighting
parameters, provided that the signals are non-zero.

IV. CUE PRESERVATION PROPERTIES

The preservation of the sources’ binaural cues plays an im-
portant role in speech intelligibility improvement. The proposed

3The PSD of the signal PX may be larger than 1
λx

. Since it is required that
0 < λx,b < 1, additional constraints on the λx may be required.
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binaural beamformer allows the binaural cues of the target
source and the interfering source to be controlled separately
using the weighting and scaling parameters. Since the binaural
cues can be computed from the ITF using (11), we examine the
ITF preservation of the target and the interference sources.

We note that, in general, the binaural cues of the sources
are distorted. The trade-off parameters control the amount of
distortion. In this section, we examine the impact of the scaling
and weighting parameters on the binaural cue preservation.

A. Pareto-3 Setting With Scaling Parameters Set to Zero

Setting both scaling parameters ηu and ηn to zero in (36)
results with a reasonable requirement to reject the interference
and noise completely. By substituting the rank-1 correlation
matrix RX (8) into (44), we obtain binaural filters that are equal
to

wL = λxR
−1
λ PXaa∗L,

wR = λxR
−1
λ PXaa∗R. (69)

For this case, the output RTF of the target component is equal
to the input RTF, i.e.,

ITFX,OUT =
wH

L x

wH
Rx

=
aL
aR

= ITFX,IN. (70)

Hence, the binaural cues of the target source are preserved.
However, the output RTF of the interfering source is also equal
to the input RTF of the target source, since the binaural filters
are parallel, i.e., wL = ITF∗

X,INwR, such that all sources are
perceived as coming from the target source direction (cf. Sec-
tion V-A), i.e.,

ITFU,OUT =
wH

L u

wH
Ru

= ITFX,IN. (71)

This is obtained for Pareto-3(ηu = 0,ηn = 0) MOP, for any (λx,
λu), i.e., for all points on the frontier.

Nevertheless, the filters of the Pareto-BMWF are in general
not parallel, thus allowing to separately control the binaural cues
of the target and the interfering sources.

B. Pareto-3 Setting With Interference Scaling Parameter
Larger Than Zero

Setting the scaling parameter ηu to a value larger than zero,
while the scaling parameter ηn is still set to zero, results in an
additional binaural filter that is added to (69), i.e.,

wL = λxR
−1
λ PXaa∗L + ηuλuR

−1
λ PUbb

∗
L,

wR = λxR
−1
λ PXaa∗R + ηuλuR

−1
λ PUbb

∗
R. (72)

For this case, the output RTF of the target source is now equal
to

ITFX,OUT =

PXγa

PUγba

λx

λu

PXγa

PUγba

λx

λu
+ bR

aR
ηu

ITFX,IN

+

bR
aR

ηu
PXγa

PUγba

λx

λu
+ bR

aR
ηu

ITFU,IN, (73)

and the output RTF of the interfering source is equal to

ITFU,OUT =

PXγab

PUγb

λx

λu

PXγab

PUγb

λx

λu
+ bR

aR
ηu

ITFX,IN

+

bR
aR

ηu
PXγab

PUγb

λx

λu
+ bR

aR
ηu

ITFU,IN, (74)

with

γab = aHRλ
−1b,

γa = aHRλ
−1a,

γb = bHRλ
−1b, (75)

whereas γa and γb defined as the generalized squared norms,
and γab defined as the generalized inner product between the
ATF vectors a and b, and γba = γ∗

ab.
The output RTFs of the target and interfering sources are now

two different weighted sums of the input RTFs of the target
and interfering sources. For ηu = 0, the output RTFs of both
the target and interfering sources are equal to the input RTF
of the target source ITFX,IN. For ηu larger than zero, as λx

becomes larger than λuηu, the output RTFs become “closer” to
ITFX,IN and vice versa. The output RTF of the target source
ITFX,OUT is controlled by the ratio between the generalized
squared norm γa and the generalized inner product γba, whereas
the output RTF of the interfering source ITFU,OUT is controlled
by the ratio between the generalized squared norm γb and the
generalized inner product γab. In addition, consider PX

PU
is the

ratio between the powers of the target and interfering sources.
For larger PX

PU
, the output RTFs of both target and interfering

sources are “closer” to the input RTF of the target ITFX,IN and
vice versa.

Let us consider a specific optimal set of solutions in the Pareto-
3 (ηu,ηn) frontier, where both Tx(w) = 0 and Tu,ηu

(w) = 0.
Substituting (26) and (27) in (14) (as described in Section (II-C),
Remark 3) and comparing the results with (16), it is evident that,
both the binaural cues of the target and the interference sources
are preserved (for any ηu > 0 and any ηn), i.e.,

ITFX,OUT =
wH

L a

wH
Ra

= ITFX,IN; ITFU,OUT =
wH

L b

wH
R b

= ITFU,IN.

(76)

In the following, it is shown that this binaural beamformer is
equivalent to the BLCMV-N proposed in [21].

C. Pareto-2 Setting

If the interfering source and the background noise are treated
similarly, i.e., the Pareto-2 setting where λu = λn and ηu = ηn,
an interesting phenomenon appears in relation to the binaural
cues. For this case, the output RTF of the target component is
equal to the input RTF for all trade-off parameters ηv , i.e.,4

ITFX,OUT =
(1− ηv)λxPX γ̄aaL + ηvaL
(1− ηv)λxPX γ̄aaR + ηvaR

= ITFX,IN. (77)

4Note that γ̄a and γ̄ab are defined similarly as γa and γab by substituting Rλ

with R̄λ in (75), respectively.
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TABLE I
CONFIGURATION SETUP FOR PARETO-BMWF

By substituting (57) in (14), it can be shown that the output RTF
of the interfering source is equal to (compare with [38])

ITFU,OUT =
PX γ̄abλx(1− ηv)

PX γ̄abλx(1− ηv) +
bR
aR

ηv
ITFX,IN

+

bR
aR

ηv

PX γ̄abλx(1− ηv) +
bR
aR

ηv
ITFU,IN. (78)

Equation (78) shows that the output RTF of the interfering source
is a weighted sum of the input RTF of the target and the input
RTF of the interfering source.

Both λx and ηv control the output RTF of the interfering
source. For λx → 0, a controllable null steering is obtained (i.e.,
Jv,ηv

(w) = 0), such that the output RTF of the interfering source
is equal to the input RTF of the interfering source. If ηv = 0, the
output RTF of the interfering source is equal to the input RTF
of the target (for any value of λx > 0), whereas, if ηv = 1, the
output RTF of the interfering source is equal to the input RTF
of the interfering source (as the output filters signals are equal
to the noisy input reference microphone signals).

V. SPECIAL CASES OF PARETO-BMWF

In this section, we show that the criteria for several well-
known binaural beamformers are special cases of the Pareto-
BMWF for specific settings of the scaling and weighting param-
eters (cf. Table 1), i.e., MWF-based beamformers (Section V-A)
and MVDR-based beamformers (Section V-B). In addition, we
give insight into the relation between the binaural MWF and the
binaural MVDR beamformer (Section V-C).

A. Multi-Channel Wiener Filter-Based Beamformers

In this section, we show that the binaural MWF and sev-
eral MWF-based binaural beamformers aimed at preserving
the binaural cues of the target source, the interfering source
and/or the background noise are special cases of the proposed
Pareto-BMWF.

1) Binaural MWF
The traditional MWF produces the minimum MSE estimate

of the target source component and the output signals, i.e.,

Jtraditional MWF(w) = E
{∥∥∥∥

[
xL −wH

L y
xR −wH

Ry

]∥∥∥∥2
}
. (79)

Considering the target and the noise are statistically independent,
the cost function can be written as a sum of the SD term in (17)

and the ONR term in (25), i.e.,

Jtraditional MWF(w) = Jx(w) + Jv,0(w), (80)

where Jv,0(w) is an abbreviation of Jv,ηv
(w), where ηv = 0.

In [8], [11], and [39] an extension of the traditional MWF,
denoted the binaural MWF, minimizes a weighted sum of the
SD term in (17) and the ONR term in (25), i.e.,

JMWF(w) = Jx(w) + μxJv,0(w), (81)

where μx trades off the speech distortion and noise reduction.
Note this beamformer is also referred to as speech distortion
weighted MWF (SDW-MWF). In [8], [11], it was shown that the
binaural MWF preserves the binaural cues of the target source
but distorts the binaural cues of the overall noise, i.e., interfering
source plus background noise.

In the following, we show that the binaural MWF is a spe-
cial case of the proposed Pareto-BMWF. In the Pareto-2 cost
function (41), we examine a configuration where the interfering
source and the background noise are treated similarly, i.e.,
λv � λu = λn and we set ηv � ηu = ηn = 0. When we set
ηv = 0, the generalized cost function in (43) is equal to

JPareto-2(ηv=0)(w) = λxJx(w) + (1− λx)Jv,0(w) (82)

where λx = 1− λv. Furthermore,

JPareto-2(ηv=0)(w) = λx (Jx(w) + μxJv,0(w))︸ ︷︷ ︸
JMWF

, (83)

withμx = 1−λx

λx
. Clearly, (83) is equivalent to the binaural MWF

cost function, except for a constant scaling factor (cf. Table 1).

2) Binaural MWF with partial noise estimation (MWF-N)

In [7], [11], an extension of the binaural MWF, denoted as the
MWF with partial noise estimation (MWF-N), was introduced,
aiming at the preservation of the binaural cues of the overall
noise component, while sacrificing the overall noise reduction.
The cost function for the MWF-N is equal to [11]

JMWF-N(w) = Jx(w) + μxJv,ηv
(w) (84)

In [8], [11], it was shown that, while the binaural cues of the
target source are preserved, there is a trade-off between overall
noise reduction and the preservation of the binaural cues of the
overall noise component.

In the following, in a way similar to that for the binaural MWF,
we show that the MWF-N is a special case of the proposed
Pareto-BMWF. We now examine a configuration where the
interfering source and the background noise are treated similarly,
i.e., λv � λu = λn and we set ηv � ηu = ηn (i.e., strictly larger
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than zero), i.e., (41). The solution for this problem defines a
Pareto frontier for the Pareto-2(ηv) MOP. Using the scalarization
method, the generalized cost function is equal to (43). Further-
more,

JPareto-2(ηv)(w) = λx (Jx(w) + μxJv,ηv
(w))︸ ︷︷ ︸

JMWF-N

, (85)

with μx = 1−λx

λx
. Clearly, (85) is equivalent to the MWF-N cost

function, except for a constant scaling factor (cf. Table 1).

3) Binaural MWF with interference reduction (MWF-IR)

It was proposed in [40] that the amount of interference reduc-
tion can be controlled using the interference scaling parameter
ηu, leading to a novel binaural beamformer denoted as the MWF
with interference reduction (MWF-IR). The cost function of the
MWF-IR can be written as

JMWF-IR (w) = Jx(w) + μxJv,0(w), s.t. w ∈ Hu,ηu
(w). (86)

Since the interfering source component u is constrained by
Hu,ηu

(w), it can be shown that the solution minimizing (86)
is equivalent to the solution minimizing

JMWF-IR(w) = Jx(w) + μxJn,0(w), s.t. w ∈ Hu,ηu
(w), (87)

where Jv,0(w) is substituted by Jn,0(w).5 For ηu = 0, a null
is steered toward the interfering source, while the binaural cues
of the target source are preserved. For a higher value of ηu, the
MWF-IR is able to preserve the binaural cues of the interfering
source (due to the hard constraint Hu,ηu

(w)), whereas the
binaural cues of the target source may be distorted.

In the following, we show that the MWF-IR is a special case
of the proposed Pareto-BMWF such that the filter solving the
MWF-IR cost function lies on the Pareto frontier of the Pareto-3
(ηu,ηn = 0) MOP. Let us examine a configuration, where we set
ηn = 0 for the Pareto-BMWF (61). The MOP is equal to

minPareto
w

CPareto-3c(ηu,ηn=0)(w) (88)

with

CPareto-3c(ηu,ηn=0)(w) = [Jx(w), Tu,ηu
(w), Jn,0(w)] . (89)

The solution for this problem defines a Pareto frontier for
the Pareto-3 (ηu,ηn = 0) MOP. Now, let us examine (88) for
Tu,ηu

(w) = 0, i.e.,

C1(w) = [Jx(w), Jn,0(w)] , s.t. Tu,ηu
(w) = 0. (90)

Since Tu,ηu
(w) ≥ 0, clearly, any filter that satisfies (90) lies on

the Pareto frontier of (88). Using the scalarization method, the
generalized cost function for (90) is equal to

J1(w) = λxJx(w) + λnJn,0(w) s.t. w ∈ Hu,ηu
(w), (91)

5Note that (86) and (87) are theoretically equivalent. However, practically,
the obtained filters may be different when estimation errors of the correlation
matrices RV and RN exist.

where λn = 1− λx and Tu,ηu
(w) = 0 is substituted with w ∈

Hu,ηu
(w). Furthermore,

J1(w) = λx (Jx(w) + μxJn,0(w)) s.t. w ∈ Hu,ηu
(w)︸ ︷︷ ︸

JMWF-IR

, (92)

with μx = 1−λx

λx
. Clearly, (92) is equivalent to the MWF-IR cost

function, except for a constant scaling factor (cf. Table 1).

B. Distortionless Beamformers

In this section, we show that MVDR-based beamformers are
also special cases of the proposed Pareto-BMWF. These beam-
formers are able to extract the target source without distortion
and preserve the binaural cues of the target source. Moreover,
these beamformers require only an estimate of the RTF vectors
of the target source (and the interfering source), whereas the
MWF-based beamformers additionally require an estimate of
the target source PSD.

1) Binaural MVDR (BMVDR)

The binaural minimum variance distortionless response
(BMVDR) beamformer is a binaural extension of the well-
known MVDR beamformer [8], [14], [41], reproducing the
target source component at both reference microphones without
distortion, while minimizing the overall noise power, i.e.,

JBMVDR(w) = Jv,0(w), s.t. w ∈ Hx(w). (93)

In the following, in a way similar to that for the MWF-based
beamformers, we show that the BMVDR is a special case of
the proposed Pareto-BMWF, such that the filter that solves the
BMVDR cost function lies on the Pareto frontier of the Pareto-
2(ηv = 0) MOP defined in (41).

Let us examine the Pareto-2 configuration in (41), where the
interfering source and the background noise are treated sim-
ilarly, λv � λu = λn, and ηv � ηu = ηn = 0. For Jx(w) = 0
(or equivalently, Tx(w) = 0), the problem in (41) is equal to

J2(w) = Jv,0(w), s.t. Tx(w) = 0. (94)

Since Tx(w) ≥ 0, clearly, any filter that solves (94) lies on the
Pareto frontier of the Pareto-2(ηv = 0) MOP (41). Furthermore,
using Section II-C Remark 3, by substituting Tx(w) = 0 with
w ∈ Hx(w), (94) is equivalent to the BMVDR cost function
in (93) (cf. Table 1).

2) Binaural LCMV (BLCMV)

In order to control the amount of interference reduction, an ex-
tension of the BMVDR beamformer was proposed in [12], [16],
namely, the binaural linearly constrained minimum variance
(BLCMV) beamformer. The BLCMV beamformer reproduces
the target source component at both reference microphones with-
out distortion, while minimizing the noise power and reducing
the interfering source by the interference scaling parameter ηu in
both hearing devices. The BLCMV cost function can be written
as

JBLCMV(w) = Jn,0(w), s.t. w ∈ Hx(w), w ∈ Hu,ηu
(w).

(95)
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In the following, in a way similar to that for the MWF-IR, we
show that the BLCMV is a special case of the proposed Pareto-
BMWF, such that the filter that solves the BLCMV cost function
lies on the Pareto frontier of the Pareto-BMWF (ηu,ηn = 0)
MOP. Let us examine the configuration in (62) for ηn = 0, i.e,

minPareto
w

CPareto-3d(ηu,ηn=0)(w) (96)

with

CPareto-3d(ηu,ηn=0)(w) = [Tx(w), Tu,ηu
(w), Jn,0(w)] . (97)

For Tx(w) = 0 and Tu,ηu
(w) = 0, the cost function is equal to

J3(w) = Jn,0(w), s.t. Tx(w) = 0, Tu,ηu
(w) = 0. (98)

Since Tx(w) ≥ 0 and Tu,ηu
(w) ≥ 0, clearly, any filter that

solves (98) lies on the Pareto frontier of the Pareto-3 (ηu,ηn = 0)
MOP (96). Furthermore, using Section II-C Remark 3, by sub-
stituting Tx(w) = 0 and Tu,ηu

(w) = 0 with w ∈ Hx(w) and
w ∈ Hu,ηu

(w), respectively, (98) is equivalent to the BLCMV
cost function in (95) (cf. Table 1).

For ηu = 0, it was shown in [13] that a null is steered toward
the interfering source, while the binaural cues of the target source
are preserved. For a higher value of ηu, the BLCMV beamformer
is able to preserve the binaural cues of both the target and the
interfering sources, as shown in [12], [16].

3) Binaural MVDR and Binaural LCMV with partial noise
estimation (BMVDR-N/BLCMV-N)

Previously in this section, we referred to the MWF-N, which
is aimed at preserving the binaural cues of the overall noise
component, while sacrificing the overall noise reduction. The
disadvantage of this binaural beamformer is that a distorted
response for the target source may result. Two extensions of
the MWF-N, denoted as the BMVDR with partial noise esti-
mation (BMVDR-N) beamformer and the BLCMV with partial
noise estimation (BLCMV-N) beamformer, are proposed, which
reproduce the target source component at both reference micro-
phones without distortion [21], [24].

The BMVDR-N cost function can be written as [24]

JBMVDR-N(w) = Jv,ηv
(w), s.t. w ∈ Hx(w), (99)

while the BLCMV-N cost function can be written as [21]

JBLCMV-N(w) = Jv,ηv
(w), s.t. w ∈ Hx(w),w ∈ Hu,ηu

(w).
(100)

It is straightforward to show that the BMVDR-N is a special case
of the proposed Pareto-BMWF(ηv) by substitutingJv,0(w)with
Jv,ηv

(w) in the derivation shown for the BMVDR, such that the
filter that solves the BMVDR-N cost function lies on the Pareto
frontier of the Pareto-2 (ηv) MOP (cf. Table 1). In addition, it
is straightforward to show that the BLCMV-N is a special case
of the proposed Pareto-BMWF(ηu,ηn) by substituting Jn,0(w)
with Jn,ηn

(w) in the derivation shown for the BLCMV, such
that the filter that solves the BLCMV-N cost function lies on the
Pareto frontier of the Pareto-3(ηu,ηn) MOP (cf. Table 1). These
derivations are omitted for the sake of brevity.

C. Insights Into the Relation Between the Binaural MWF and
Binaural MVDR Beamformer

Recall that the well-known binaural MWF is controlled by a
weighting parameter μx that trades off the speech distortion and
noise reduction (81). It has been shown that the optimal filters
can be decomposed into a (spatial) binaural MVDR beamformer
followed by a single-channel (spectral) Wiener filter, i.e.,

wL =
ρMVDR

μx + ρMVDR︸ ︷︷ ︸
wL,post

R−1
V a

aHR−1
V a

a∗L︸ ︷︷ ︸
wL,MVDR

wR =
ρMVDR

μx + ρMVDR︸ ︷︷ ︸
wR,post

R−1
V a

aHR−1
V a

a∗R︸ ︷︷ ︸
wR,MVDR

, (101)

where ρMVDR = PXaHR−1
V a is the output signal-to-noise

ratio (SNR) of the binaural MVDR beamformer [8]. Now, setting
μx = 0, the obtained binaural MWF filters become equivalent
to the binaural MVDR filters wL,MVDR and wR,MVDR solv-
ing (94) [8], as can be straightforwardly deduced from (101).
However, careful examination of the generalized cost function
of the binaural MWF (i.e., JMWF(w) = Jx(w) + μxJv,0(w))
shows that, if μx = 0 (which corresponds with λx → 1), the
generalized cost function is reduced toJMWF(w) = Jx(w), such
that it consists of only the SD term. Clearly, this cost function
differs from the generalized cost function of the binaural MVDR
beamformer (93). Moreover, the cost function of the binaural
MWF (81) varies as a function of μx, and consequently the
value of the cost function is unbounded.

The analyses in this paper clarify these two pitfalls. In Sec-
tions V-A and V-B, we proved that the binaural MWF and the bin-
aural MVDR beamformer are two optimal solutions belonging to
the same Pareto set of solutions, namely, Pareto-2(ηv = 0). Both
SD and ONR terms are non-negative values (cf. Section II-C,
Remark 2). Hence, applying the decision-making procedure on
the Pareto-2(ηv = 0) frontier, we are free to select any feasible
optimal solution. Two such solutions are 1) SD term equal to
zero leading to the binaural MVDR, and 2) the binaural MWF,
which is continuously controlled by λx.

Following, are a few relevant observations that can shed more
light on the relations between the two beamformers: 1) a solution
satisfying Jx(w) = 0 (or equivalently, Tx(w) = 0) exists on
the Pareto-2(ηv = 0) frontier; 2) for this setting, the filters must
satisfy the constraint set (26) (cf. Section II-C, Remark 3); 3)
the optimal solution for this setting is equivalent to the binaural
MVDR; 4) the parameter setting for that case corresponds with
λx = 1, λv = 0, hence μx = 1−λx

λx
= 0. We conclude that sub-

stituting the original binaural MWF cost function (81) with the
generalized cost function (82) is a required step for solving the
MOP using the scalarization procedure to clarify the procedure
and limit and balance the generalized cost function.

To summarize, under the Pareto formulation we can easily
deduce that the MVDR is a proper member in the family of
solutions satisfying the same Pareto frontier as the MWF. This
observation also shed some light on the relations between these
two widely-used beamformers.
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VI. SIMULATIONS WITH NOISY SPEECH SIGNALS

In this section, we validate the analytical expressions for the
binaural Pareto-2 and Pareto-3 MOPs derived in Section III, and
we compare the performance of the considered MOP solutions
for various trade-off parameter settings using simulated signals
in a noisy and reverberant environment. First, in Section VI-A,
the simulation setup and the algorithm parameters are intro-
duced. In Section VI-B, the Pareto-2 MOP derivation is validated
demonstrating the single cost function terms for various settings
(e.g., the Pareto L-curve is provided). In Section VI-C, the
experimental performance evaluation is given, demonstrating
the impact of the trade-off parameters on various performance
measures, i.e., in terms of binaural SD and the binaural SINR
improvement and the target and interference binaural cue preser-
vation capabilities. Similarly, Section VI-D and Section VI-E
are dedicated to the Pareto-3 MOP discussing validation and
performance evaluation, respectively.

Note that Section VI-B and Section VI-D verify the theoretical
MOP derivation using real data, whereas Section VI-C and
Section VI-E demonstrate the performance outcomes of the
selected settings.

A. Simulation Setup and Algorithm Parameters

In this section, we compare the performance of the considered
algorithm using simulated signals in a noisy and reverberant
environment using Behind-The-Ear hearing aids From Olden-
burg database [31]. Each of the hearing aids is equipped with
2 microphones. Binaural Behind-the-Ear Impulse Responses
(BTE-IRs) measured on an artificial head in a cafeteria were used
to generate the signal components. The target speech source was
located at−35◦ and a distance of 117.5 cm, while the interfering
speech source was located at 0◦ and a distance of 102 cm.
Recorded ambient noise from the cafeteria was added to the
speech components. The signals were processed at fs = 16 kHz
using a weighted overlap-add framework with a block size of
1024 samples and an overlap of 50% between successive blocks.
The input signal-to-interference ratio (SIR) with respect to the
interference speaker and the SNR with respect to the background
noise were set to 10 dB and 0 dB, respectively. For the estimation
procedure, three training sections were used. The first training
section consisted of a 2 s segment in which none of the speech
sources was active. This segment was used to estimate the covari-
ance matrix of the noise component RN . The second training
section consisted of a 2.5 s segment in which the target source
was active, but the interfering source was inactive. This segment
was used to estimate the noisy target source covariance matrix
RY . The third training section consisted of a 2.5 s segment in
which the interfering source was active, but the target source
was inactive. This segment was used to estimate the overall
noise covariance matrixRV . The covariance matrix of the target
speech component was estimated as RX = RY −RN , where
a rank-1 approximation of RX was used.

Several performance measures were used for evaluating the
performance of the considered algorithm, i.e., the global binaural
SD, the global binaural SINR improvement, the global ILD error,
and the global ITD error. The global binaural SD is defined

Fig. 1. Jx(w) and Jv,ηv (w) as functions of λx.

as the narrow-band binaural SD averaged over all frequencies.
The global binaural output/input SINR is defined as the average
of the narrow-band binaural output/input SINR in dB over all
frequencies. The global SINR improvement is obviously defined
as the difference between the global binaural output SINR and
global binaural input SINR. The narrow-band ILD/ITD error
is defined as the absolute value of the difference between the
input ILD/ITD and the output ILD/ITD as defined in (11). The
global ILD/ITD error is defined as the narrow-band ILD/ITD
error averaged over all frequencies.

In the following, we discuss the effects of the weighting and
scaling parameters on the binaural SD, binaural SINR, and the
binaural cue error for the target and the interfering sources.
It is shown that different parameter settings lead to different
trade-offs between binaural SD, binaural SINR, and binaural
cue errors.

B. Pareto-2 MOP Verification

In the first setting, we examine a configuration where the
interfering source and the background noise are treated similarly,
i.e., λv � λu = λn, and we set ηv � ηu = ηn (i.e., higher than
zero), i.e.,

CPareto-2(ηv)(w) = min
w

{Jx(w), Jv,ηv
(w)}. (102)

Recall the solution for this problem defines a Pareto frontier for
the Pareto-2(ηv) MOP such that the generalized cost function is
equal to

JPareto-2(ηv)(w) = λxJx(w) + (1− λx)Jv,ηv
(w), (103)

where λv = 1− λx. This setting corresponds to the MWF-N (cf.
Sec. V-A).

Fig. 1 depicts the cost functions for the SD term Jx(w) and
for the ONR term Jv,ηv

(w), as functions of the target weighting
parameter λx for various overall noise scaling parameter values
ηv. As the target weighting parameter λx increases, the cost
function for the SD term Jx(w) decreases, whereas the cost
function for the ONR term Jv,ηv

(w) increases. As the overall
noise scaling parameter ηv increases, both the cost function for
the SD term Jx(w) and the cost function for the ONR term
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Fig. 2. Jv,ηv (w) as a function of Jx(w) for various ηv , color-bar λx values.

Fig. 3. Noise reduction performance for various ηv : (a) Jv,0(w) and Jx(w)
terms as function of λx for various ηv ; (b) Jv,0(w) as function of Jx(w),
color-bar λx values.

Jv,ηv
(w) decrease, since the MOP requirement is more easily

met.
Fig. 2 depicts the cost function for the ONR term Jv,ηv

(w)
as a function of the cost function for the SD term Jx(w),
for various target weighting parameter values λx and various
overall noise scaling parameter values ηv. The Pareto L-curve is
clearly seen for various ηv values, where λx provides a trade-off
between the cost function terms. Clearly, as the overall noise
scaling parameter ηv increases, both the cost function for the SD
term Jx(w) and the cost function for the ONR term Jv,ηv

(w)
decrease. We emphasize that as shown in Fig. 1-2, as Jv,ηv

(w)
decreases, wH

L v and wH
Rv are closer to ηvvL and ηvvR,

respectively.

C. Performance Evaluation for Pareto 2 MOP

First, we examine the relation between two common perfor-
mance measures for various settings, i.e., noise reduction versus
speech distortion. The amount of noise reduction is evaluated
using the output (overall) noise PSD Jv,0(w), i.e.,

Jv,0(w) = E
{∥∥∥∥

[
wH

L v
wH

Rv

]∥∥∥∥2
}
. (104)

The amount of speech distortion is evaluated using the signal-
based cost function Jx(w) for the target SD term (17). Fig. 3(a)
and Fig. 3(b) depict the noise reduction performance by substi-
tuting Jv,ηv

(w) in Fig. 1 and Fig. 2 with Jv,0(w), respectively.
It is observed that the target weighting parameter λx trades off
the SD term Jx(w) and the output noise PSD term Jv,0(w) for

Fig. 4. Dependence of binaural speech distortion (a) and binaural signal-
interference-noise ratio improvement (b) on target weighting parameter λx.

all various overall noise scaling parameter values ηv such that,
as the relative importance of the SD term is higher, the target
weighting parameter λx increases, and the cost function for the
SD term Jx(w) decreases, while the output noise PSD term
Jv,0(w) increases.

As the overall noise scaling parameter ηv increases, while
the cost function for the SD term Jx(w) decreases, the output
noise PSD term Jv,0(w) increases. Interestingly, as λx → 1,
Jx(w) → 0 such that no speech distortion is obtained, whereas
as λx decreases, the output noise PSD term Jv,0(w) decreases
up to a minimum value (higher than zero for ηv > 0) obtained
for λx → 0. The minimum value increases as ηv increases (e.g.,
the L-curve in Fig. 3 is higher). In addition, for this setting (i.e.,
λx → 0), Jx(w) decreases as ηv increases (e.g., the L-curve in
Fig. 3(a) is shorter).

Fig. 4(a) and Fig. 4(b) depict the binaural SD and the binaural
SINR improvement performance measures, respectively, as a
function of the target weighting parameter λx for various overall
noise scaling parameter values ηv . As the target weighting
parameter λx increases, the relative importance of the SD term
is higher such that a lower binaural SD is obtained. For ηv = 0,
as the target weighting parameter λx increases, the SINR im-
provement decreases. However, for ηv 	= 0, this trend does not
hold, since λx controls the importance of Jv,η(w) rather than
of Jv,0(w). In general, as the overall noise scaling parameter
ηv increases, both the binaural SD and the SINR improvement
decrease, since the MOP requirement can be more easily met.

Fig. 5 depicts the target and interference binaural cue errors
as functions of the target weighting parameter λx for various
overall noise scaling parameter values ηv. The binaural cues of
the target are preserved for any λx values, as expected (cf. (77)).
As the target weighting parameter λx increases, the interference
binaural cue errors increase, while as the overall noise scaling
parameter ηv increases, the interference binaural cue errors
decrease. These trends correspond to Eq. (78). Note that, as the
target weighting parameter λx → 1, the cost function for the SD
term Jx(w) goes to zero, such that the BMVDR-N is obtained
(cf. Sec. V-B).

D. Pareto-3 MOP Verification

In the second setting, we examine a more generalized con-
figuration. The objective now is to minimize simultaneously the
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Fig. 5. Dependence of target binaural cues [ILD (a) and ITD (b)] and inter-
ference binaural cues [ILD (c) and ITD (d)] on target weighting parameter λx.
Note the y-axis value for the target binaural cues is very small.

Fig. 6. Mean squared error cost functions Jx(w) and Jn,0(w) as function
of λx for various λu.

three cost functions, i.e.,

minPareto
w

CPareto-3(w) (105)

with

CPareto-3(w) = [Jx(w), Ju,ηu
(w), Jn,ηn

(w)] , (106)

such that the generalized MSE cost function consists of a
weighted sum of the three cost functions (17), (21), and (24),
i.e.,

JPareto-3(ηu,ηn)(w) = λxJx(w) + λuJu,ηu
(w) + λnJn,ηn

(w)

s.t. λx + λu + λn = 1. (107)

For this setting the background noise scaling parameter ηn is set
to zero, in order to emphasize the noise reduction task, while the
interference scaling parameter ηu is set to 0.1. The performance
measures are now examined as functions of target weighting
parameter λx for various values of interference weighting pa-
rameter λu.

Fig. 6(a) depicts the cost functions for the SD term Jx(w)
and the NR term Jn,0(w), as functions of the target weighting

Fig. 7. Dependence of binaural SD (a) and binaural signal-interference-noise
ratio improvement (b) on target weighting parameter λx for various interference
weighting parameter values λu.

Fig. 8. Dependence of target binaural cues [ILD (a) and ITD (b)] and inter-
ference binaural cues [ILD (c) and ITD (d)] on target weighting parameter λx
for various interference weighting parameter values λu.

parameter λx for various interference weighting parameter
values λu. Fig. 6(b) depicts the cost function for the NR term
Jn,0(w) as a function of the cost function for the SD term
Jx(w), for various target weighting parameterλx and for various
interference weighting parameter values λu. As expected, as
the target weighting parameter λx increases, the cost function
for the SD term Jx(w) decreases, while the cost function for
the NR term Jn,0(w) decreases. In addition, as the interference
weighting parameter λu increases, the cost function for the SD
term Jx(w) decreases, while the cost function for the NR term
Jn,0(w) decreases. This indicates that, as λu increases for any
specific λx, λn decreases such that the relative importance of
the SD term Jx(w) is higher than that of the NR term Jn,0(w).
The Pareto L-curve is clearly observed in Fig. 6(b) for various
various λu values, where λx provides a trade-off between the
cost function terms.

E. Performance Evaluation for Pareto 3 MOP

Fig. 7 depicts binaural SD and the binaural SINR improve-
ment performance measures as functions of the target weighting
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parameter λx for various interference weighting parameter λu.
As the target weighting parameter λx increases, the relative
importance of the SD term is higher such that the binaural SD
decreases. The same SINR trends as obtained in Fig. 4b for the
Pareto-2 case, can also be observed in Fig. 7.

Fig. 8 depicts the target and interference binaural cues as
functions of the target weighting parameter λx for various inter-
ference weighting parameter λu. As the target weighting param-
eter λx increases, clearly the target binaural cue errors decrease.
However, up to the middle of the range, the interference binaural
cue errors increase, while from the middle to the end of the
range of the target weighting parameter values the interference
binaural cue errors decrease. As the interference weighting
parameter λu increrases, as expected, the interference binaural
cues errors decrease. The interference binaural cue errors are
limited with a maximum value that depends on the weighting
parameter value λu. As the interference weighting parameter
λu increases, the interference binaural cue errors decrease (this
phenomenon corresponds to that mentioned in Section III-D-2).

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed a unified Pareto optimization
framework for multi-microphone speech enhancement in binau-
ral hearing aid applications, by defining a generalized MSE cost
function, derived from a MOP. As we focused on the dual source
scenario, the discussion was restricted to the case of a single tar-
get source and a single interfering source, with the corresponding
cost functions. We stress, however, that this discussion can be
easily extended to cover the multi-target and multi-interference
case by introducing additional cost functions to the respective
Pareto MOP. An analysis of a specific multi-speaker scenario is
provided in [16].

Multiple cost functions can be introduced into the MOP
framework. Specifically, an explicit cost function for preserving
the binaural cues (e.g., the ITFs of the target and the interfering
sources) can be introduced. In the current contribution, we
focus only on cost functions addressing signal distortion,
interference suppression, and noise reduction, leading to Pareto
optimal binaural beamformers. Consequently, the interaural
cue preservation can only be implicitly achieved. Nevertheless,
we carefully analyzed the binaural cue preservation capabilities
of the obtained beamformers. We note that while the binaural
cue preservation of the target and interference sources are not
an explicit part of the optimization procedure, they are heavily
impacted by the application of the optimal beamformers. Three
beamformers with explicit binaural cue preservation constraints
were presented in [11], [42] and [14]. It can be shown that
these beamformers fit the MOP framework and are Pareto
optimal.

Two sets of trade-off parameters are provided. The first
set, denoted the scaling parameters set, ηv and (ηu, ηn), is
responsible for the level of the overall, interference, and noise
reduction in the respective ONR, IR, and NR cost functions.
The Pareto-2(ηv) and Pareto-3(ηu,ηn) frontiers are directly
determined by these scaling parameters. The scaling parameters

can be set by the user based on perceptual preferences without
resorting to a tedious optimization procedure of a specific
performance measure. The scaling parameters may differ in the
left and right beamformers and can also be frequency-dependent.
In the current contribution, we used, for simplicity, identical
values for all frequencies and devices.

The second set of parameters, denoted the weighting param-
eters (λx, λu), play a different role in the optimization process.
These parameters are used to select a specific beamformer that
lies on the the Pareto-2(ηv) and Pareto-3(ηu,ηn) frontiers, thus
providing the desired trade-off between the SD and ONR, or the
SD, IR, and NR cost functions.

The user may use Fig. 8 to determine the weighting parameters
that satisfy the permissible level of binaural cue distortion. From
these values, the obtained binaural SD, and binaural SINR can
be evalauted by using Fig. 7. Note that the experimental study
in Section VI is based on real data recordings from Oldenburg
database [31] and can therefore facilitate practical design of
hearing aids.

Finally, another contribution of the paper is the establishment
of the mathematical links between the MVDR and the MWF
beamformers. We show in Section V-C that both solutions are
specific points on the respective Pareto frontier.
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