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Abstract—In multi-microphone speech enhancement, reverber-
ation as well as additive noise and/or interfering speech are com-
monly suppressed by deconvolution and spatial filtering, e.g., using
multi-channel linear prediction (MCLP) on the one hand and
beamforming, e.g., a generalized sidelobe canceler (GSC), on the
other hand. In this article, we consider several reverberant speech
components, whereof some are to be dereverberated and others to
be canceled, as well as a diffuse (e.g., babble) noise component to
be suppressed. In order to perform both deconvolution and spatial
filtering, we integrate MCLP and the GSC into a novel architecture
referred to as integrated sidelobe cancellation and linear prediction
(ISCLP), where the sidelobe-cancellation (SC) filter and the linear
prediction (LP) filter operate in parallel, but on different micro-
phone signal frames. Within ISCLP, we estimate both filters jointly
by means of a single Kalman filter. We further propose a spectral
Wiener gain post-processor, which is shown to relate to the Kalman
filter’s posterior state estimate. The presented ISCLP Kalman filter
is benchmarked against two state-of-the-art approaches, namely
first a pair of alternating Kalman filters respectively performing
dereverberation and noise reduction, and second an MCLP+GSC
Kalman filter cascade. While the ISCLP Kalman filter is roughly
DM ? times less expensive than both reference algorithms, where M
denotes the number of microphones, it is shown to perform at least
similarly as compared to the former, and to outperform the latter.
A MATLAB implementation is available.
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I. INTRODUCTION

N MANY wide-spread speech processing applications such
I as hands-free telephony and distant automatic speech recog-
nition, reverberation as well as additive noise and/or interfer-
ing speech impinging on a microphone may deteriorate the
quality and intelligibility of the speech recordings [1]. The
demanding tasks of dereverberation, noise reduction and/or in-
terfering speech cancellation, and in particular the conjunction
of these therefore remain a subject of ongoing research, with
multi-microphone-based approaches exploiting spatial diversity
receiving particular interest [2]—[22]. In this context, we below
briefly discuss two broad concepts in multi-microphone speech
enhancement, namely spatial filtering and deconvolution.

As a spatial filtering technique, beamforming is commonly
used in noise reduction and interfering speech cancellation,
but may as well be applied for dereverberation [2]-[4]. In
order to perform both dereverberation and noise reduction,
several beamforming schemes have been proposed. In [2], a
cascaded approach is presented, using data-independent, super-
directive beamforming for dereverberation, and data-dependent,
e.g., minimum-variance distortionless response (MVDR) beam-
forming, for noise reduction. The generalized sidelobe canceler
(GSC), a popular implementation of the MVDR beamformer,
has been applied in different constellations [3], [4]. In [3], joint
dereverberation and noise reduction is performed using a single
GSC, while in [4], a nested structure is proposed, employing
an inner GSC for dereverberation and an outer GSC for noise
reduction. The GSC is composed of two parallel signal paths:
a reference path and a sidelobe-cancellation (SC) path. The
reference path traditionally employs a matched filter (MF), while
the SC path cascades a blocking matrix (BM), blocking either
the entire or the early-reverberant speech component, and an
SC filter, minimizing the output power and thereby suppress-
ing residual nuisance components in the reference path, i.e.
either residual noise or both residual noise and reverberation
components.
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As adeconvolution technique, multi-channel linear prediction
(MCLP) [5]-[22] recently prevailed in blind speech derever-
beration, while noise reduction is not targeted. As opposed to
beamforming, MCLP does not require spatial information on the
speech source. Instead, for each microphone, the reverberation
component to be canceled is modeled as a linear prediction (LP)
component, i.e. as a filtered version of the delayed microphone
signals, with the LP filter to be estimated. Besides iterative LP
filter estimation approaches such as [6], [8], [9], [11]-[13], also
adaptive approaches based on recursive least squares (RLS) [7],
[10], [16], [19] as well as the Kalman filter [14], [15], [17] have
been proposed in the past years. In order to reduce noise after
dereverberation, multiple-output MCLP has been cascaded with
MVDR beamforming in [12], [13], which was seen to be a com-
monly adopted approach in the 2018 CHiME-5 challenge [23].
In [22], the cascade in [12], [13] is unified. In [18], joint MCLP-
based dereverberation and noise reduction is performed using a
pair of alternating Kalman filters respectively estimating the LP
filter and the noise-free reverberant speech component.

In [21], we have presented a comparative analysis of the GSC
and MCLP. In another previous paper [20], instead of cascading
MCLP and beamforming or relying on beamforming only, we
have proposed to integrate the GSC and MCLP by employing an
SC path and LP path in parallel, resulting in an architecture we
refer to as integrated sidelobe cancellation and linear prediction
(ISCLP). Within this novel architecture, we have estimated the
SC and LP filters jointly by means of a single Kalman filter.
Here, the spatial pre-processing blocks MF and BM require
an estimate of the relative early transfer functions (RETFs), cf.
also [3], while the Kalman filter requires an estimate of the power
spectral density (PSD) of the desired early speech component,
cf. also [14], [15], [17]. In this paper, the work in [20] is
extended in the following manner. We generalize the short-time
Fourier transform (STFT) domain-based signal model, which
now comprises several reverberant speech components, whereof
some are to be dereverberated and others to be canceled, as well
as a diffuse (e.g., babble) noise component to be suppressed.
This generalized acoustic scenario necessitates (non-stationary)
multi-source early PSD estimation and RETF updates, which is
achieved by means of the algorithm recently proposed in [24].
We further augment the proposed approach by a spectral Wiener
gain post-processor, which is shown to relate to the Kalman
filter’s posterior state estimate. In order to demonstrate the
effectiveness of the ISCLP Kalman filter, we compare against
two state-of-the-art approaches — first the previously mentioned
alternating Kalman filters in [18], and second a MCLP+GSC
Kalman filter cascade, conceptually relating to [12], [13]. As
compared to these two reference algorithms, the ISCLP Kalman
filter is computationally roughly /2 times less expensive, where
M denotes the number of microphones. Yet, the ISCLP Kalman
filter is shown to perform similarly as compared to the alternating
Kalman filters, and to outperform the MCLP+GSC Kalman filter
cascade. A MATLAB implementation and audio examples are
available at [25].

The paper is organized as follows. In Section II, we present
the signal model in the STFT domain. In Section III, the
ISCLP Kalman filter is described. Implementational aspects are
discussed in Section IV, followed by simulations in Section V.

II. SIGNAL MODEL

Throughout the paper, we use the following notation: vec-
tors are denoted by lower-case boldface letters, matrices by
upper-case boldface letters, I and O denote an identity and
zero matrix, 1 denotes a vector of ones, A*, A7, A¥, and
E[A] denote the complex conjugate, the transpose, the complex
conjugate transpose or Hermitian, and the expected value of
a matrix A. The operation Diag[a] creates a diagonal matrix
with the elements of a on its diagonal, and tr[A] denotes the
trace of A. Submatrices are referenced either by index ranges or
alternatively by sets of indices, e.g., the submatrix of A spanning
all rows and the columns j; to jo is denoted as [A]. ;,.;,, and
the submatrix composed of all rows and the columns of A with
indices in the ordered set T is denoted as [A]. c.

In the short-time Fourier transform (STFT) domain, with [
and k indexing the frame and the frequency bin, respectively,
let y,, (I, k) with m = 1,..., M denote the mth microphone
signal, with M the number of microphones. In the following,
we treat all frequency bins independently and hence omit the
frequency index. We define the stacked microphone signal vector
y(l) e CM,

y(O) =) - yu(l)" (D

composed of the mutually uncorrelated reverberant speech com-
ponents x,(l) with n=1,..., N originating from N < M
point speech sources and the noise component v([), defined
similarly to (1), i.e.

N
y(1) = xa(l) +v(D). )

n=1

Here, the reverberant speech components x,, (/) may be decom-
posed into the early and late-reverberant speech components
Xple(l) and x, (1), i.e.

Xn (l) = Xn|e(l) + Xn|£(l)7 (3)

which are commonly parted by the arrival time of the therein con-
tained reflections and assumed to have distinct i})atio-temporal
properties as outlined below. Let xc(I) = >, _; Xpe(!) and

x(l) = 227:1 Xp)¢(l) denote the sum of the early and late-
reverberant speech components, respectively, such that y (1) in
(2)—(3) may alternatively be written as

y(1) = xe(1) +x¢(1) + v(0). ©)

Early reflections are assumed to arrive within the same frame,!

where the early components in x,, (1) are related by the RETFs
in h, (1) € CM as x,¢(I) = hy,(I)sy(1). Here, without loss of
generality, the RETFs are assumed to be relative to the first
microphone, i.e. [h,(1)]; =1, and s,,(I) = [Xpc(])]1 denotes
the early component in the first microphone originating from the
nth source, in the following referred to as early source image.
We stack h,, () and s,,(1) into H(l) € CM*¥ and s(l) € C¥,

li.e. the frame length directly relates to the definition of early reflections in
terms of their arrival time. In our implementation, we use a frame length of
32 ms cf. Section V-D, and hence consider reflections with a propagation delay
of up to 32 ms as early.
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respectively, i.e.
H(1) = (b, (1)
(1) = (s1(0)
such that x.(1) is expressed by
(1) = H(D)s(1). ©)

In the following, let N < N early speech source images s,, (1)
be defined as the target source images, and let 7" denote the
set of the corresponding |T'| = Ny target-source indices. Let 7"
denote the complement set to T, with |T"| = N — Np. In order
to distinguish the target components in y(/) as well as their
complements, we introduce the short-hand notations similar to

3)-(D,

hy (1)), )

Hr (1) = [H()). er, (®)
st(l) = [s(D)er, ©)
xqr(l) = Hr(D)sr(l), (10)

and Hr (1), s7(1), and X7 (1) similarly, such that x. (1) in (4)
becomes

Xe(l) = Xe\T(l) + Xe|T’(l)' (11)
Our objective is to estimate
sr(l) = Z sn(l) =17sr(1), (12)

nel

from y(I) by means of the ISCLP Kalman filter. To this end,
we rely on assumptions on the spatio-temporal behavior of
the individual microphone signal components. We assume that
sn (1) is temporally uncorrelated across frames, i.e. we have
E[s,(I—=1")s;,(1)] = 0forl’ > 0,and with x,,c(I) = h,,(1)sn(1)
consequently

E[Xn‘e(l - l/)XH

nle

(] =0 for I'>0. (13)

For speech signals, this assumption can be considered approxi-
mately justified if the STFT window length and window shift are
sufficiently large. Within the limits defined by the reverberation
time, we assume that the late-reverberant speech component
Xpje(l) is correlated to previous early source images s, (I —1')
with I’ > 0, but not to the current early source image s, (1), i.e.
we have

(14)

Ble(l—1)xfi ()] £ 0 for I'>0,

Efx,e(1)xy,(1)] = 0.

Note that (14) is always satisfied practice, where the frame length
is commonly much shorter than the room impulse response
(RIR). Assumption (14) also implies E[x,o(I—I')x/{, ()] # 0
for all ', i.e. we may predict x,,,(I) from x,,(I 1), which
indeed is the fundamental assumption of MCLP-based dere-
verberation [5]-[19]. Assumption (15) is commonly used in
dereverberation [26], [27], and implicitly requires (13) to hold if
(14) is assumed. Assumptions (13) and (15) allow for unbiased
filter estimation [21] in MCLP-based dereverberation [5]-[19]

s5)

y() a(l) )
O———{ &) +)
M
mult. MF a
us(1) R Zse(l)
—-{ B(/) —| Wic(1)
M — Nt
mult. BM mult. SC filter
uLP(l) N ZLP(l>
—-| ;1 —{ W p(1)
(L-1)M
delay conv. LP filter
Fig. 1. The integrated sidelobe cancellation and linear prediction (ISCLP)
architecture.

and GSC-based dereverberation and noise reduction [3], [4],
respectively. Hence, all three assumptions (13)—(15) are equally
essential in the derivation of the ISCLP Kalman filter, cf.
Section III. In Section IV-A, we outline how the ISCLP Kalman
filter offers robustness against model deficiencies, e.g., for the
case where these assumptions are violated.

Similarly to s,, (1), the noise component v({) is assumed to be
temporally uncorrelated, i.e.

E[v(i—I)W"(1)] =0 for I'>0, (16)

and is therefore not predictable.

Within frame I, i.e. for I’ = 0, we further make assumptions
on the spatial behavior of x,, (1) and v(I), namely that both may
be modeled as spatially diffuse. However, as these assumptions
are irrelevant in the derivation of the ISCLP Kalman filter itself,
cf. Section III, but required only for parameter estimation based
on [24], i.e. the estimation of the RETFs Hr({) and the PSD
©sr (1) = E[sp(1)si(1)], we treat them in the corresponding
section only, cf. Section I'V-B.

III. INTEGRATED SIDELOBE CANCELLATION AND LINEAR
PREDICTION KALMAN FILTER

We strive to estimate the target component sz (1) from the
microphone signals y () defined in Section II. For this purpose,
we introduce the ISCLP architecture. In Section III-A, we
describe the SC and LP signal paths and filter constellations,
which require spatio-temporal pre-processing of y([). In Sec-
tion III-B, striving for recursive filter estimation, we define an
ISCLP state-space model for the SC and the LP filter, whereof
a Kalman filter is deduced. The Kalman filter yields a (prior)
estimate e(l) = $7 (1) of s1(l), which may further be spectrally
post-processed, as shown in Section III-C.

A. ISCLP Signal Path Architecture

A block-diagram of the ISCLP architecture is depicted in
Fig. 1. It integrates the GSC and MCLP and hence consists of
three signal paths: areference path employing an MF, an SC path,
composed of a BM and an SC filter, and a LP path, composed of
adelay and an LP filter. While the MF, the BM and the SC filter
are multiplicative (mult.), i.e. they operate on a single frame,
the LP filter is convolutive (conv.), i.e. it operates across frames.
The MF and the BM perform spatial pre-processing, serving
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unconstrained estimation of the SC filter, while the delay may
analogously be considered as temporal pre-processing, serving
unconstrained estimation of the LP filter. Structurally, one may
interpret ISCLP either as MCLP with the conventional reference
channel selection replaced by a GSC, or alternatively as a GSC
employing a generalized BM (composed of a traditional BM and
adelay line), and a convolutive filter (composed of the SC and the
LP filter). In the following, we formally discuss the individual
signal paths.

In oder to maintain the target component sp(1) in (12), the

MF g € C™ must satisfy [28], [29]
g"(Hr(l) =17, (17)

where a commonly used [28], [29] choice for g(I) adhering to
(17) is

g(l) = Hr()(HF()Hz () "1,

with Hy (1) (HZ()Hr (1)
practice, we hence require an estimate Hy (1) of Hy (1), cf. also
Section IV-B. With y (1) as in (4), combining (10)—(12), the MF
output ¢(1) becomes

[a() =" Wy ()]

= s7(1) + 8" (1) (xqzr (1) + x0(1) + v (1))
The BM B(l)

(18)

the pseudoinverse of H(1). In

19)
€ CM*M=N1 myst be orthogonal to Hr(1), i.e.
B"()Hr(l) =0, (20)

and with (18) hence B* (1)g(!) = 0. One may, e.g., choose B(])
based on the first M — Np columns of the rank-(M — Np)
projection matrix to the null space of Hp (1) [29], i.e.

B(l> = [I - HT(Z) (Hg(DHT(l))ilH?(l)] £ 1:M—Np> (21)

with Hy (1) (L% (1)Hr (1)) "HZ(1) the projection matrix to the
column space of Hp (7). With y (1) as in (4), combining (10)—
(11), the SC-filter input usc(l) € CM~N7 is then given by

lusc(l) = B" )y (1) |

= BH(Z) (Xc|T’(l) + Xl(l) + V(l))’

whereby the target component X7 (l) = Hr(I)sr(l) is can-
celed. Using a delay of one? frame, the LP-filter input up(l) €
C(L=DM jg defined by stacking y (I) over the past L — 1 frames,
ie.

(22)

up(l) = (y"(1-1)

With the SC filter Wsc(l) € C* N7 and the LP filter wyp(l) €
C=1M | the enhanced signal e(l) = 37(1) at the output of

vy (I—L+1)".

(23)

2In MCLP literature, delays of more than one frame are commonly used [8]—-
[13], [15], [16], [18], [19] in order to avoid temporal target component leakage
due to overlapping windows in the STFT processing, cf. Section IV-A. As we
here also consider interfering reverberant speech components to be canceled,
larger delays in the LP filter path however call for a convolutive SC filter [21]
instead. The here proposed design did not show to be sensitive to leakage effects,
cf. Section IV-A and Section V.

ISCLP, also referred to as error signal in the remainder, is given
by

e(l) = 87(l) = q(l) — zsc(l) — zLp(l),  (24)
with Zsc(l) §I (l)u_gc(l) (25)
zLp(l) = Wip(l)upe(l). (26)

At this point, given ¢(), usc(l), and upp(l), our task consists
in obtaining the filters Wsc(!) and wyp(l) as estimates of some
yet to be defined associated true states wgc(l) and wp(l), cf.
Sec III-B. In this respect, let us first discuss the mutual relations
between the target component sy () in ¢(!) and the signals
usc(l) and upp(l), as well as the consequences thereof for the
filter estimation. Note that due to the delay in the LP path, the
filter estimates Wgc(!) and wyp(l) do not operate on the same
input-data frame at the same time. The SC-filter input ugc(l) in
(22) depends on the current frame y () only, such that wgc(1)
will exploit spatial correlations within the current frame. Due to
the cancellation of x 7 (1) at the BM output and (15), we have
E[usc(l)si(1)] = 0. This allows for unconstrained, recursive
estimation of wgc(l), which is indeed the general incentive
behind the usage of GSC-like structures [28], [29]. In contrast,
the LP-filter input u;p(!) in (23) depends on the L — 1 previous
frames y(I—1") with I’ =1,..., L —1, such that wp(l) will
exploit spatio-temporal correlations between the current and the
previous frames (but not within the current frame). Due to this
delay and (13), we have E[urp(l)s}.(1)] = 0, likewise allowing
for unconstrained, recursive estimation of wyp(l). However,
with both ugc(l) and upp(l) containing (late-)reverberant com-
ponents, the two inputs are not independent, i.e.

| Efurp()uge() @7)
cf. (14), and as a consequence also E[z1p(1) 2§-(1)] # 0. In other
words, a change in Wgc() requires a change in wp(l), and vice
versa. We therefore strive to jointly estimate both filters.

B. ISCLP State-Space Model and Kalman Filter Update

In order to recursively estimate the SC and LP filter, we
employ a Kalman filter [31]-[33], which has also been applied
successfully to MCLP in previous works [14], [15], [17], [18].
Hereby, we interpret wsc (1) and wpp(l) as estimates of the true
states wsc(!) and wpp(l), which are defined by a state-space
model comprising the so-called measurement equation and the
process equation. In the following, we first define the state-space
model, and then present the corresponding Kalman filter update
equations, which recursively estimate the true state.

As we intend to estimate wgc(l) and wyp(l) jointly, cf.
Section III-A, we stack the SC and LP filter path into u(l) €
CLM=N1 and w(l) € CLM-N1 je.

= (usc(l) agp()”
= (Wic(l) wip()"

and w(l) defined similarly to (29). The true state w(l) is
considered a random variable with zero mean and correlation

(28)
(29)
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matrix ¥, (1) = E[w(l)w*(l)]. We assume that w(l) leads to
complete cancellation® of g (1) (x¢7 (1) + x¢(1) 4+ v(l)), and
therefore yielding e(l) = s (1), cf. (19) and (24)—(26). Refor-
mulating (24)—(26) using (28)—(29), inserting e(l) = sr(I) and
rearranging yields the so-called measurement equation,

¢ (1) = (hw(l) + s7(0). |

In Kalman filter terminology, we refer to ¢*(l) as the mea-
surement and to sk (1) as the (presumed zero-mean Gaussian.*
and temporally uncorrelated, cf. also Section II) measurement
noise with PSD ¢;,.(1) = E[sy(1)sk(1)]. In practice, in order
to implement the Kalman filter update equations, an estimate
sy (1) of g, (1) is required, cf. Section IV-B.

The true state w({) is assumed time-varying, which accounts
for potential time variations in the room impulse responses, €.g.,
caused by time-varying source and microphone-array positions,
as well as time-varying activity of individual sources and noise
powers. The so-called process equation models the evolution of
the true state w({) in the form of a first-order difference equation,
ie.

(30)

(w(l) = A" ()w(i—1) + wa(l). | 31

where A (l) models the state transition from one frame to the
next, and the process noise w, (/) models a random (presumed
zero-mean Gaussian and temporally uncorrelated) variation
component with correlation matrix W, (1) = Elwa(l)wZ(1)].
Lacking deeper knowledge on the exact evolution of the true
state, both A(!) and W,,, (I) are commonly considered design
parameters to be tuned [15], [17], [18], [34], cf. Section IV-C.

The true state w(!) modeled by (30)—(31) may be estimated
recursively by means of the Kalman filter update equations [31],
[33], which are commonly presented as two distinct sets of
updates per recursion, namely an a-priori time update reflecting
the state evolution, cf. (31), and an a-posteriori measurement
update reflecting the current measurement, cf. (30). Specifically,
let w(l) and w'(l) denote the yet to be defined prior and
posterior state estimates of w(l), respectively, and let w () and
w (1) denote the associated state estimation errors, i.e.

w(l) = w(l) - w(l),
W) =W (1) — wiD),

(32)
(33)

with the associated state estimation error correlation matrices
W (1) and ¥ £ (1). Then, based upon (31) and (30), respectively,
the prior and posterior state estimates w(l) and w(l) shall
recursively minimize the expected squared Euclidian norm of the
associated state estimation error, i.e. E[||w(1)?] = tr[®(1)]
and E[||w™(1)[|?] = tr[®Z(1)]. This leads to the celebrated

3Note that complete cancellation may not necessarily be possible, e.g., if
v(l) # 0 [21], and so the true state does not necessarily exist. Nonetheless,
lacking deeper knowledge on the true system, we assume that it lies in the
model set.

“Note that the STFT coefficients of speech are said to be super-Gaussian
instead of Gaussian distributed [30] The Kalman filter is the best linear state
estimator also in case of non-Gaussian noises, but better non-linear estimators
may indeed exist [31], [32].

Kalman filter update equations [31]-[33],

w(l) = A" ()W (—1), (34)
W) = AH(l)\IIjD(l— DA() + ¥, (1), 35)
e'(l) = q¢"()) —u"()w(l), (36)
@e(l) =u" () ®y(D)u(l) + s, (1), (37
k(1) = g (u(l)e, (1), (38)
viz*(l) =w(l) + k()e*(1), 39)
() =¥a(l) —k(Du" ()P (1), (40)

where the time and the measurement update are given by (34)—
(35) and (39)—(40), respectively. In the time update, cf. (34)-
(35), the previously acquired posterior quantities w* (I — 1) and
Wt (I — 1) are propagated according to the evolution of the state
w(l), cf. (31), yielding the prior quantities W(l) and W (I).
Then, given w(l) and W ; (1), the complex conjugate error signal
e*(1), its PSD ¢, (1), and the Kalman gain k(l) are computed,
cf. (36)—(38), thereby leveraging new information in terms of
the measurement ¢* (1) and the measurement noise PSD ¢;...(1),
cf. (30). Finally, in the measurement update, cf. (39)—(40), e* (1)
and k(1) are utilized to update w(l) and W (l), yielding the
posterior quantities W (1) and Wt (). The error signal e(1) in
(36) thereby represents the Kalman filter estimate of sp (1), cf.
also (24)—(26). As the Kalman filter minimizes tr[¥ (1)] during
convergence, itis easily seen that also ¢, (1) = E[|e(1)[?] in (37)
is minimized. The Kalman filter requires initialization, which we
consider in Section IV-C.

C. Posterior-Like Spectral Post-Processing

With w(l) a prior estimate of w(l), we may consider e(l) =
S7(1) in (36) a prior estimate of sr(1). After the measurement
update in (39), yielding the posterior estimate w™ (1) of w(l),
we may accordingly define a posterior estimate e (1) = §%(1)
similar to (36) by

O =) =g W) - OFED. @D
Interestingly, e (1) in (41) can be shown to be a spectrally post-
processed version of e(1). Precisely, inserting (39) while using
(36), inserting (38) and finally (37), we find

(42)

where v(1) = @5, (1)/pe(l) can be recognized as the spectral
Wiener gain minimizing E[|s7 (1) — y(I)e(1)|?]. In practice,
where we rely on potentially highly non-stationary estimates
@sp (1), cf. Section IV-A and Section IV-B, one may prefer
slowly decaying gains for perceptual reasons [35]. Therefore,
instead of using (42), we propose to alternatively define (1)
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and e (1) by

_ SDST(Z)
v(l) = max o) Byl —=1)1, (43)
et (1) = 85.(1) = v(D)e(l), (44)

with the tuning parameter 8 € [0, 1] limiting the gain decay.
Note that (43)—(44) reduce to (42) for 8 = 0, and to (36) for
£ = 1and y(0) = 1 as initial gain, since @y, (1)/¢c(l) < 1 due
to (37).

IV. IMPLEMENTATIONAL ASPECTS

Kalman filters perform optimally if the assumed state-space
model matches the true system [31], [33]. In a practical im-
plementation, the here presented ISCLP Kalman filter derived
from the ISCLP state-space model in (30)—(31) is subject to
modeling errors, requires parameter estimation, and, where
deeper knowledge on the underlying system dynamics is not
available, parameter tuning. These implementational aspects are
discussed in the following. In Section IV-A, we qualitatively
discuss the potential target component leakage due to imperfect
spatio-temporal pre-processing in ISCLP and its impact on the
proposed ISCLP Kalman filter. In Section IV-B, we summarize
arecently proposed approach to early PSD estimation and recur-
sive RETF updating, which we employ in conjunction with the
Kalman filter. In Section IV-C, we discuss the process equation
parameter tuning and Kalman filter initialization.

A. Spatio-Temporal Target Component Leakage

The previously made assumptions that E[ugc(l)sh(1)] =0
and E[up(l)si(1)] = 0, cf. Section III-A, may not be strictly
satisfied in a practical implementation, which we refer to as
target component leakage. Leakage may occur due to the fol-
lowing reasons. The spatial pre-processing components MF and
BM rely on spatial information in terms of the RETFs Hy (1),
cf. (18) and (21), which needs to be estimated in practice. The
estimate I:IT(Z) commonly contains estimation errors, i.e. we
have Hy (1) # Hy (). Further, the RETF-based data model in
(7) itself may be erroneous, e.g., due to dependencies across
frequency bins [36]. Finally, the assumption in (15) that x,, (/)
and XS\ ,(1) are uncorrelated may be violated, e.g., due to over-
lapping windows in the STFT processing. In general, these
estimation and modeling errors cause incomplete blocking and
therefore target component leakage through the BM, such that
Elusc(l)si-(1)] # 0, cf. (19), (22). This may be referred to as
spatial target component leakage. Similarly, if st (1) is tempo-
rally correlated such that (13) is violated, e.g., due to overlapping
windows in the STFT processing or to too small window lengths
and shifts, we find E[upp(l)s5(1)] # 0, cf. (19), (23), which may
be referred to as temporal target component leakage.

Potentially, spatial and temporal leakage cause a biased [21]
filter estimate w(7), which leads to partial suppression of sz (1),
also referred to as speech cancellation in GSC terminology [28],
[29], or excessive whitening in MCLP terminology [5]. How-
ever, note that the Kalman filter offers inherent robustness
towards target-component leakage. To see this, consider the
measurement update terms in (39)—(40), respectively given by

k(l)e*(1) and k()u” (1)® (). Using (30) and (32), we may
express e* (1) in (36) in terms of s.(1), while using (37), we may
similarly express k(1) in (38) in terms of ¢, (1), i.e.

e"(l) = sp(l) —u"()w(l),
Y (Du(l)
u’ ()@ (Da(l) + wsr (1)

From (45)—(46), we note that ¢, (1) = E[sp(l)sh(I)] acts as
a regularization parameter in both update terms k(I)e* (1) and
k(l)u® (1)®;(1). Consequently, strong target powers inhibit the
measurement update, while weak target powers promote it. Put
differently, in terms of robustness towards target-component
leakage and convergence, the Kalman filter benefits from non-
stationarities and sparsity in @, (l) across time. Note that in
recursive MCLP implementations based on the weighted pre-
diction error (WPE) criterion and RLS [7], [10], [16], [19], the
target-component PSD similarly appears as aregularization term
in the update equations.

In practice, we rely on estimates @5 (1), which should hence
maintain non-stationarities. In WPE RLS literature, the target-
component PSD estimate is obtained, e.g., directly from the
plain microphone signals [7], based on a late-reverberant PSD
estimate obtained by means of an exponential decay model [10],
[16], or using a neural network [19]. Here, as we consider
a more generic signal model comprising several reverberant
speech components and diffuse noise, cf. Section II, we instead
estimate Q. ({) by means of [24], cf. Section IV-B.

(45)

K(l) = (46)

B. Target PSD Estimation and RETF Update

We require an RETF estimate Hy (1) of Hy (1), cf. (18) and
(21), and a PSD estimate ¢, (1) of s,.(1), cf. (37) and (43). To
this end, we use an algorithm recently proposed in [24] by the
authors of this paper, which computes early PSD estimates and
recursively updates the RETF estimates for all /V point sources.
The algorithm [24] is summarized as follows.

Let ¥, (1) = E[xe(l)x% (1)] denote the correlation matrix of

X (1) within frame [, which generally has rank N and is given
by

v, (1) = H(I) Diag[ep, (1)|JH" (1),
(1) = (s, (1) esn ()7,

with ¢ (1) denoting the PSD of the early speech source image
sn(1). Instead of directly using the conventional early correlation
matrix model in (47), the algorithm in [24] is based on its
factorization, i.e. it relies on the square-root model

¥!/2(1)Q(1) = H(1) Diagle"* (1))

(47)
(48)

(49)

where \Il;/f(l) € CM*N and /> € C are some square roots
of W, (1) and ¢,(I) such that ‘Il;f(l)lIlf/Z(l) =W, (1) and
Diag[e"/2(1)]p'/?(1) = 4(1), respectively, and (1) is a uni-
tary matrix, i.e. Q(1)27 (1) = I, which accounts for the non-
uniqueness of both square-roots. Note that right-multiplying
each side of (49) with its Hermitian yields (47). In the esti-
mation, we distinguish the prior and posterior RETF estimates
ﬂ(l) and ﬂ+(l), respectively, and assume that initial RETF
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estimates fI(O) are available, which may be based on, e.g.,
initial single-source RETF estimates acquired from segments
with distinctly active sources [37], or some initial knowledge or
estimates of the associated dicrections of arrival (DoAs) [38],
[39]. Given a (to be obtained) square-root estimate \il;/f(l ) and
a prior RETF estimate H(I), which is propagated from the
previous posterior, i.e. H(l) = HT (I —1), we first obtain the
unitary and diagonal estimates €2(!) and Diag[¢"/?], yielding
@, (1) = Diag[¢"/*]¢"/?, and based on these estimates second
update the RETF estimate, yielding the posterior H (1), whereat
the recursion is closed. Here, both steps are based on approxi-
mation error minimization with respect to the square-root model
in (49). Given ¢ (1) and H (1), we extract (. (1) and Hp (1) as
Gap (1) = 17[@ (1)]er and Hp (1) = [HT (1)), cf. Section 1.

The said required square root \II;/2 (1) is estimated in the fol-
lowing manner. While x,,¢(I) and v(l) exhibit a fundamentally
different temporal behavior across frames, cf. Section II, we
assume that their spatial behavior within frame [ is the same.
Specifically, we model both x,,,(1) and v(1) as spatially diffuse
with coherence matrix I' € CM*M | which may be computed
from the microphone array geometry [40], [41] and is there-
fore assumed to be known. For the late reverberant component
Xp¢(1), this is a commonly made assumption [26], [27], [40]. For
the noise component v(l), the assumption is commonly made
for noise types such as, e.g., babble noise [42], which we use
in our simulations, cf. Section V. Based on these assumptions,
the microphone signal correlation matrix ¥, (1) = E[y (1)y" ()]
may be written as

with @4(l) = Y0, @a,, (1) + @u(1) and @, (1) and @, (1)
denoting the PSDs of the late-reverberant speech components
and the diffuse noise component, respectively. We obtain a
subspace representation of (50) by means of the generalized
eigenvalue decomposition (GEVD) of ¥, (I) and I'. Based on
the generalized eigenvectors and generalized eigenvalues, ¥, ()
may be decomposed into a diffuse component, cf. also the
diffuse PSD estimator in [27], and a factorized early rank-/NV

component ¥, (1) = \Il;/f(l)'llff(l). A temporally smooth es-
timate lily|sm(l ) of ¥, (1) itself is obtained from the microphone
signals by recursively averaging y* (I)y({). In order to restore
non-stationarities, we desmooth’ the generalized eigenvalues of
\ily‘ sm(1) and T and thereby yield non-stationary PSD estimates
in the subsequent processing steps, as as favored in the Kalman
filter, cf. Section IV-A. For further details, we refer the interested

reader to [24].

(50)

C. Process Equation Parameter Tuning and Initialization

The tracking and convergence behavior of the Kalman fil-
ter depends on its process equation parameter tuning and
initialization. The process equation models the evolution of the
state by means of the parameters A(l) and ¥,,, (1), cf. (31)

3Considering recursive averaging as an invertible recursive filtering operation,
the generalized eigenvalues may be desmoothed by means of the corresponding
inverse filter.

and (34)—(35). In practice, only limited knowledge of the state
evolution is available, such that A (I) and ¥, (1) are commonly
left to tuning [15], [17], [18], [34]. Typically, both A(l) and
W, (1) are chosen to be scaled identities, with A (1) commonly
time-invariant [15], [17], [18], [34] and acting as a forgetting
factor [17], [34], and W, (1) either time-variant [15], [18], [34]
or time-invariant [17]. Here, we set A(l) and W, (1) based on
the assumption that the state correlation matrix ¥, (1) is time-
invariant, i.e. ¥, () = ¥,,. Unfortunately, ¥, is unknown and
not available in practice, however, we may define a rough guess
W . Given such a guess ¥, by means of a forgetting factor
a € (0, 1), we may account for a steadily time-varying acoustic
scenario and true state w(l) by setting

A(l) = VT,
T, ()= (1-a)l,,

(5D
(52)

such that if ¥, = ¥,,, we rightly have ¥, = aW¥,, + (1 —
a)®,, from (31). While o, may rather be defined by de-
sign than by truly estimating W, the notion of ¥, being a
rough guess of W,, may nonetheless guide its definition to
some extent. Here, we choose a diagonal matrix with distinct
diagonal elements. With ¥, = Diag[1,,], let 9, € RM N7
and QZJw w € R =DM denote the subvectors of {bw associated to
the SC and the LP filter, respectively, which we treat separately.
Expecting lower values for later prediction coefficients in the
LP filter, we choose the power of the diagonal elements in ).,
to drop exponentially each M elements, i.e. we set

/(p’wsc = /(Z)UISC]W
- — _ T
¢ww - ( 111)LP1T e wlltl):pllT) )

with 1,5, > 0 and 1y, € (0,1) further adjustable.

The matrix ¥,, may also be used to initialize the Kalman
filter. With the commonly chosen initial state estimate w(0) =
0, we have w(0) = w(0) in (32), such that the true initial state
estimation error correlation matrix ¥ (0) becomes W;(0) =
v, (0) = ¥,,. Therefore, we initialize the Kalman filter by

(53)

(54)

w(0) = 0, (55)

W;(0) = W, (56)
in (34)~(35), where ¥ (0) in (56) is an estimate if ¥, # ¥,,.
Finally, note that the process equation parameter tuning in (51)—
(52) may also be considered from a (re-)initialization perspec-
tive. In case of meaningful measurement updates, the Kalman
filter tracks w([), but otherwise tends to return to its initial condi-
tion due to (51)—(52), such that explicit re-initialization as, e.g.,
in case of a sudden change in the acoustic environment, is not
necessary. To see this, consider the case where, e.g., u(l) = 0 for
aperiod of time, such that no measurement update is performed.
In this case, regardless of their current values, we have w(l)
slowly converging to 0 and lil,u;(l) slowly converging to W,
cf. (34)—(35). Note that if desired, explicit re-initialization may
still easily be incorporated in the proposed concept, namely by
defining o time-variant and setting it to zero at the determined
re-initialization point.
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V. SIMULATIONS

In order to demonstrate the effectiveness of the presented
ISCLP Kalman filter, we define two case studies, case A and
case B. In case A, we compare to the (computationally more
demanding) alternating Kalman filters proposed in [18]. Here,
we consider one reverberant speech and a babble noise compo-
nent, x; (1) and v (1), with x; (/) containing the target component
X7 (1) = x1)e(l). In case B, we compare to a (computationally
more demanding) MCLP+GSC Kalman filter cascade, which
conceptually relates to [12], [13] in that it cascades linear
prediction and beamforming. Here, we consider two reverberant
speech components and a babble noise component, x1 (1), x2(1),
and v(l), with x;(/) again containing the target component
X7 (1) = x1)e(1), and x3(I) an interfering speech component
to be canceled. In both cases, we investigate the algorithms’
behavior depending on the signal-to-noise ratio, SNR, which is
defined as the power ratio of x;(I) to v(1), and depending on
the filter length L. In case A, we additionally investigate the
convergence behavior.

In what follows, we describe the two reference algorithms
in more detail in Section V-A, the performance measures in
Section V-B, the acoustic scenario in Section V-C, the algo-
rithmic settings in V-D, and finally the simulation results in
Section V-E.

A. Reference Algorithms

We discuss the alternating Kalman filters in Section V-A1 and
the MCLP+GSC Kalman filter cascade in Section V-A2.

1) Case A: Alternating Kalman Filters: In [18], MCLP-
based dereverberation and noise reduction is performed in
each microphone channel using two alternating Kalman fil-
ters. The Kalman filter dedicated to dereverberation estimates
a multiple-output LP filter, and the Kalman filter dedicated
to noise reduction estimates the noise-free reverberant speech
component. The enhanced signal is computed from the posterior
state estimates of both Kalman filters. The two state vectors have
dimensions M?(L — 1) and M (L — 1), respectively, while the
ISCLP Kalman filter requires a single state vector with dimen-
sion M L. — N only with Ny = 1in case A, cf. (29). Since the
Kalman filter in general exhibits a quadratic computational cost
in the state vector dimension, the alternating Kalman filters are
computationally roughly M? times as demanding as the ISCLP
Kalman filter. The two state space models do not provide a
spatial distinction between point sources (and therefore do not
require RETF estimates, as opposed to the ISCLP Kalman filter)
and further do not consider temporally correlated interference
components such as interfering reverberant speech. We hence
set x2(l) = 0 when comparing to [18], i.e. interfering speech is
absent, cf. Section V-C2.

The alternating Kalman filters require correlation matrix esti-
mates of the measurement and process noises, more precisely of
the random variation of the multiple-output LP filter state, com-
parable to ¥, (1) in the ISCLP Kalman filter, cf. (31), the early
component W, (I) = ¥, (1), the early-plus-noise component
W, (1) + ¥, (1), and the noise component ¥, (1) [18]. In the
original implementation in [18], a time-invariant estimate lilv is
assumed to be available, which we here compute in an oracle

fashion from v (1) directly, while the other correlation matrices
are estimated based on the previous state estimates and error
signals of the alternating Kalman filters. For the sake of a fair
and more meaningful comparison, we implement two versions
of [18]. The first version is implemented as proposed in [18]
and discussed above, subsequently referred to as the original
alternating Kalman filters. In the second version, we align the
parameter estimation and tuning towards the proposed approach,
i.e. W, (1) is instead estimated based on [24], cf. Section IV-B,
and the process equation parameters modeling the evolution of
the multiple-output LP filter state are defined similarly to Sec-
tion IV-C, subsequently referred to as the modified alternating
Kalman filters.

2) Case B: MCLP+GSC Kalman Filter Cascade: In [12],
[13], multiple-output MCLP based on the (iterative) WPE cri-
terion [8], [9] is cascaded with MVDR beamforming in order
to reduce noise after dereverberation, which became a popular
approach in the CHiME-5 challenge [23]. For the sake of a close
comparison, however, we here instead compare to a (recursive)
multiple-output MCLP-based Kalman filter cascaded with a
(recursive) GSC-based Kalman filter, subsequently referred to
as MCLP+GSC. Herein, we estimate the LP and SC filters inde-
pendently. The enhanced signal at the GSC output is computed
using spectral post-processing of the same kind as in (43)—(44).
The two state vectors have dimensions M?(L — 1) and M — 1,
respectively, while the ISCLP Kalman filter requires a single
state vector with dimension M L — N only with N7 =1 in
case B, cf. (29). Since the Kalman filter in general exhibits a
quadratic computational cost in the state vector dimension, the
MCLP+GSC Kalman filter cascade is computationally roughly
M? times as demanding as the ISCLP Kalman filter. The GSC
state space model does provide a spatial distinction between
point sources (based on an RETF estimate, as the ISCLP
Kalman filter). We hence set x2(1) # 0 when comparing to the
MCLP+GSC Kalman filter cascade, i.e. interfering speech is
present, cf. Section V-C2.

The MCLP and GSC Kalman filters require correlation matrix
estimates of their respective measurement and process noises,
more precisely of the random variation of the multiple-output
LP filter and SC filter state, respectively, defined similarly to the
corresponding SC and LP submatrices of ¥,,, (/) in the ISCLP
Kalman filter, cf. (31), and the early components \Ile‘T(l) and
s, (1), respectively, computed based on [24] as in the proposed
ISCLP Kalman filter, cf. Section IV-B.

B. Performance Measures

As performance measures, we choose the perceptual eval-
uation of speech quality [43], PES(Q, with mean opinion
scores of objective listening quality € [1,4.5], the short-time
objective intelligibility [44], STOI, with scores € [0, 1], the
frequency-weighted segmental signal-to-interference ratio [35],
[45], SIR/* in dB, and the cepstral distance [35], [45], CD,
in dB. While high values are preferable for PESQ, STOI,
and SIR/*, low values are preferred for CD. These intrusive
measures require a clean reference signal 5 (1), which ap-
proximates the target signal sp (1) in (12). In order to gener-
ate $7(1), we convolve the target speech source signal with
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f/kHz

Fig. 2.

) /dB

Exemplary spectrograms depicting 2 s of (a) the reference microphone signal, and the corresponding outputs of (b) the original alternating Kalman filters,

(c) the modified alternating Kalman filters, and (d) the ISCLP Kalman filter for L = 6 at SNR = 10 dB.

the early part of the RIR to the first microphone, cf. Sec-
tion V-C, whereat we define the first Ngrpr samples of the
RIR as its early part, with Ngrpr the analysis and synthe-
sis window length of the STFT processing corresponding to
32 ms, cf. Section V-D. Note that due to modeling errors
in the RETF-model in (7), we generally have 57 (1) # sp(1).
When investigating the dependency on SNR or L, we compute
the measures from 4 s to 10 s, i.e. roughly after convergence.
When investigating the convergence behavior, we compute the
measures within sliding windows of 2 s each. The computed
measures are averaged over several individual simulations, cf.
Section V-C.

C. Acoustic Scenario

We describe the acoustic scenarios without and with interfer-
ing speaker in Section V-C1 and Section V-C2, respectively.

1) Case A. Without Interfering Speech: In case A, the mi-
crophone signals are composed of one reverberant speech and a
babble noise component, x; (1) and v (1), with x; () containing
the target component X7 (1) = x;c(l). To generate x;([), we
use RIRs to a linear microphone array, measured [46] in a room
of 0.61 s reverberation time of and 0.67 m critical distance for
omnidirectional sources. The linear microphone array contains
M = 5 microphones with 8 cm inter-microphone distance. The
source is positioned in 2 m distance (i.e., at roughly three times
the critical distance) of the microphone array. When investigat-
ing the dependency on SNR or L, the speech source remains
positioned at 0° relative to the broad-side direction during 10s
of simulation. When investigating the convergence behavior, the
speech source remains positioned at 0° for the first 8s, then
jumping to 15°, where it remains for another 10 s. Both female
and male speech [47] are used as speech source signals. The
babble noise component is generated using [42], [48]. From
the speech source signal files and the babble noise file [48],
we randomly select individual segments, yielding individual
simulations to be averaged in the performance evaluation, cf.
Section V-B. In total, when investigating the dependency on
SNR or L, we generate 64 individual simulations per condition.
When investigating the convergence behavior, we generate 128
individual simulations.

2) Case B. With Interfering Speech: In case B, the micro-
phone signals are composed of two reverberant speech compo-
nents and a noise component, x1 (1), x2(1), and v (1), with x; ()
again containing the target component X7 () = xc(l), and
x2(1) an interfering speech component. We investigate the de-
pendency on SNR and L, and generate x; (1) and v(!) in the same
manner as in case A, cf. Section V-C1. To generate x5(!), we use
the same set of RIR measurements, where the associated source
is positioned in 2m distance at either {30, 60,90}°. If x;({)
contains female speech, then x2(l) contains male speech [47]
and vice versa. On average, x;(I) and x3(!) have roughly the
same power. From the speech source signal files and the babble
noise file, we randomly select individual segments, generating
3 - 64 = 192 individual simulations per condition to be averaged
in the performance evaluation, cf. Section V-B.

D. Algorithmic Settings

In our simulations, the sampling frequency is f; = 16 kHz,
and the STFT analysis and synthesis uses square-root Hann
windows of Ngppr = 512 samples with 50% overlap. When
investigating the dependency on SNR and the convergence
behavior, we set L = 6 in (23). The estimates ¢, (1) and H* (1),
required in (37) and (18), (21) are obtained by means of [24], cf.
Section IV-B.In (51)—(52), we set v such that 10log ;o (1 — o) =
—25 dB. Expecting lower values for SC filter coefficients at
higher frequencies due to generally reduced spatial correlations
between individual microphones, we choose 1, in (53) to
be frequency-dependent with 101og; ¥, decreasing linearly
from 0dB at O kHz to —15dB at 8 kHz. In (54), we set
1010g;( Yu,, = —4 dB.In (43), we set 3 such that 20 log;, 3 =
—2dB, and v(0) = 1.

E. Results

We discuss the results in case A and B in Section V-E1 and
Section V-E2, respectively. Audio examples are available at [25].

1) Case A: Consider the spectrograms in Fig. 2 depicting
2s of (a) the reference microphone signal y;(l), and the cor-
responding outputs of (b) the original alternating Kalman fil-
ters, (c) the modified alternating Kalman filters, and (d) the
ISCLP Kalman filter for L = 6 in an exemplary simulation at
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SNR = 10 dB. As can be seen by comparison with (a), all three
algorithms in (b)-(d) considerably reduce reverberation and
noise. Yet, their spectrograms exhibit slightly different features.
As opposed to the modified alternating Kalman filters and the
ISCLP Kalman filter (c)—(d), the original alternating Kalman
filters (b) show some amount of temporal smearing resembling
musical noise [18]. This is due to errors in the correlation matrix
estimates used to update the alternating Kalman filters, which in
turn are computed recursively based on the alternating Kalman
filters’ previous state estimates and error signals [ 18]. In contrast,
in the modified alternating Kalman filters and the ISCLP Kalman
filter, the required correlation matrix and PSD estimates are
computed directly from the microphone signals while main-
taining non-stationarities, cf. Section IV-B and Section V-Al.
As compared to the modified alternating Kalman filters (c), the
signal power in the ISCLP Kalman filter (d) decays somewhat
less quickly after transient speech components, which is due
to 8 > 0 in (43), cf. Section V-D, resulting in a perceptually
somewhat more pleasant sound image [25].

Fig. 3 shows the performance in terms of (a) PESQ, (b)
STOI, (c) SIR'™*, and (d) CD versus SNR for the refer-
ence microphone signal [***** 1, the original alternating Kalman
filters [-- -1, the modified alternating Kalman filters [—=—],
and the ISCLP Kalman filter [=*—] with L = 6. In this and
the following figures, the graphs denote medians over all in-
dividual simulations, cf. Section V-C, and the shaded areas
indicate the range from the first to the third quartile. Overall,
the measures show a high degree of agreement. As expected,
the reference microphone signal reaches better scores at higher
SNR values in all measures. Above roughly SNR = —5 dB,
all three algorithms show a significant improvement over the
reference microphone signal in all measures, least pronounced
in STOI. The modified alternating Kalman filters generally
outperform the original alternating Kalman filters, validating
the modified parameter estimation and tuning aligned to the
proposed ISCLP Kalman filter, cf. Section V-Al. In terms of
PESQ, STOI, and CD, the ISCLP Kalman filter reaches very
similar scores as compared to the modified alternating Kalman
filters. In terms of SIRT"*, the ISCLP Kalman filter performs
somewhat worse than the modified alternating Kalman filters
above SNR = 20 dB, which is due to a small amount of speech
cancellation caused by the SC filter, cf. Section IV-A. Note that
in this SNR range, the babble noise component v(I) becomes
negligible, i.e. reverberant interference is pre-dominant, which
can be handled by the LP filter only. The SC filter therefore
becomes superfluous in this case. Further simulations showed
that the ISCLP Kalman filter may reach similar STR'™* scores
as compared to the modified alternating Kalman filters if the SC
filter variance 1, in (53) is set depdending on the SNR, which
allows to essentially switch off the SC filter at high SNR values,
and thereby avoid unnecessary speech cancellation.

Fig. 4 depicts the performance improvement in terms of (a)
APESQ, (b) ASTOI, (c) ASIRT™*, and (d) ACD versus L
with respect to the reference microphone signal for the orig-
inal alternating Kalman filters [~ - - 1, the modified alternating
Kalman filters [—®—], and the ISCLP Kalman filter [—*—] at
SNR = 25 dB. Note that in Fig. 4 and in the following figures
presenting performance improvements, the resolution of the

o )
p———0—0
a /./’___,————
i
9; N o(”/ ................
= /’ ............
S /"‘ ........
H":_h_-__‘—'=50:"-+--*-”‘4.,.-‘-“
- P S— )
®© .(:ff’_ ..............
5 2 i
5 S 7
= il
S| L.
B8
A
. —
2 Y i P
g e
] Z
CT] < ,’./_..u""
“H__._a_‘.’/i ________
Q‘D .........
| — (d)
% \.\ .....
E - \;\\: ..........
Q \o\‘~\ .....................
- S
- | Tt —t——
-20 —10 0 10 20 30 40
SNR/dB
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Fig. 3.
the reference microphone signal [ ], the original alternating Kalman filters
[' - ], the modified alternating Kalman filters [_'_], and the ISCLP Kalman
filter [®—] with L = 6 if interfering speech is absent.

vertical axes is twice as large as in Fig. 3. Again, the measures
show a high degree of agreement. We find that in all measures,
the original alternating Kalman filters generally yield less im-
provement and in addition show a stronger dependency on L
as compared to the modified alternating Kalman filters and the
ISCLP Kalman filter. The improvement for both the modified
alternating Kalman filters and the ISCLP Kalman filter saturates
at roughly L = 6. The original alternating Kalman filters reach
the largest improvement between L = 8 and L = 10. In terms
of (¢) ASIR™* and (d) A CD, however, as opposed to the other
two algorithms, its performance decays again for larger values of
L [18]. Further simulations showed that for all three algorithms,
the dependency on L decreases with decreasing SNR values.
This is expected since at low SNR values, the babble noise
component v(l) becomes pre-dominant, which is temporally
uncorrelated, cf. Section II, and may therefore not be suppressed
by the LP filter.

Fig. 5 shows the performance improvement in terms of (a)
APESQ, (b) ASTOI, (c) ASIRf"* and (d) A CD versus time
t with respect to the reference microphone signal for the orig-
inal alternating Kalman filters [- - - I, the modified alternating
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Fig. 8.

Exemplary spectrograms depicting 2 s of (a.1)—(d.1) the recorded reference microphone signal and (a.2)—(d.2) the output of the ISCLP Kalman filter for

L = 16 if interfering speech and noise are (a) absent and (b)—(d) present, at (b) SNR = 25 dB, (¢c) SNR = 10 dB, and (d) SNR = 0 dB.

Kalman filters ["—], and the ISCLP Kalman filter [—®—] with
L =6 at SNR =10 dB. Again, the measures largely agree.
We find that after initialization, all algorithms converge after
roughly 4 s. The speech source position changes at 8 s, cf.
Section V-C1, such that the three algorithms have to re-adapt.
In case of the ISCLP Kalman filter, this does not only require
adaptation of w(l), but also of the estimate Hp(l), cf. (18),
(21), and Section IV-B. Note that none of the three algorithms
is re-initialized after t = 8 s, but re-adapt themselves, cf. also
Section IV-B for the ISCLP Kalman filter. However, we find
that for all three algorithms, convergence speed after the speech
source position change is somewhat reduced as compared to the
initial convergence stage.

2) Case B: Fig. 6 shows the performance in terms of (a)
PESQ, (b) STOI, (c) SIRT™*, and (d) CD versus SNR for the
reference microphone signal [****], the MCLP+GSC Kalman
filter cascade [—v—] and the ISCLP Kalman filter [—*—] with
L = 6. Also here, the measures show a high degree of agreement.
Asin case A, cf. Fig. 3, the reference microphone signal reaches
better scores at higher SIVR values in all measures. The curves
are, however, generally flatter as compared to those in Fig. 3,
which is due to the now additional interfering speech component
x2(1), cf. Section V-C. Above roughly SNR = —5 dB, both
algorithms show a significant improvement over the reference
microphone signal in all measures, with the ISCLP Kalman
filter clearly outperforming the MCLP+GSC cascade. For the
ISCLP Kalman filter, as compared to case A where x2(l) = 0,
cf. Fig. 3, PES(Q now predicts less improvement, while STOI
predicts more improvement, indicating different sensitivity of
both measures to the additional interfering speech component

Xg(l).

Fig. 7 depicts the performance improvement in terms of
(a) APESQ, (b) ASTOI, (c) ASIR'™, and (d) ACD ver-
sus L with respect to the reference microphone signal for
the MCLP+GSC Kalman filter cascade [—v—1 and the ISCLP
Kalman filter[—®—]at SNR = 25 dB. Again, the ISCLP Kalman
filter clearly outperforms the MCLP+GSC Kalman filter cascade
in the simulated range. For the ISCLP Kalman filter, as com-
pared to case A where x2(l) = 0, cf. Fig. 4, the improvement
shows a stronger dependency on L and saturates somewhat later,
indicating that longer filters are required in case of additional
temporally correlated components such as x5(1), which is in
line with the findings in [21]. As in case A, further simulations
showed that for both algorithms, the dependency on L decreases
with decreasing SNR values.

VI. AN EXAMPLE ON ACTUAL RECORDINGS

In this section, instead of synthesizing the microphone signals
from measured RIRs and artificially generated diffuse babble
noise as in Section V, we present an example of the ISCLP
Kalman filter applied to actual recordings. Note that for this
case, an objective performance evaluation using the intrusive
measures described in Section V-B is not possible, since a clean
reference signal, which should contain early target speech only,
cannot be observed separately. Hence, we refer the interested
reader to the corresponding audio examples [25] and limit the
evaluation to a qualitative discussion of spectrograms.

Recordings were performed in a lab of the department of
electrical engineering (ESAT) at KU Leuven. The selected room
exhibits a comparably high reverberation time of 1.5 s and a
critical distance of 0.45 m for omnidirectional sources. Similar
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to Section V-B, we use a linear microphone array of M =5
microphones with 8 cm inter-microphone distance. Two loud-
speakers resembling a target and an interfering source are placed
in 2 mdistance (i.e., at more than four times the critical distance)
at 0° and 45° relative to broadside direction, emitting male and
female speech [47], respectively. Diffuse babble noise is gener-
ated by means of eight additional loudspeakers, placed around
the setup in an arbitrary manner. Each of these loudspeakers
emits randomly selected speech segments [49], with three speech
segments overlaid at a time. We use the same algorithmic settings
as described in Section V-D except for the following parameters.
In order to account for the larger reverberation time as compared
to the simulations in Section V, we now set L = 16 in (23) and
101log g Y, = —2 dB in (54).

Fig. 8 shows examplary spectrograms of 2 s of (a.1)—(d.1) the
recorded reference microphone signal and (a.2)—(d.2) the output
of the ISCLP Kalman filter for different acoustic conditions. The
recording in Fig. 8(a.1) contains reverberant target speech only.
As can be seen in Fig. 8(a.2), late reverberation is effectively
suppressed by ISCLP Kalman filter. The recording in Fig. 8(b.2)
contains both reverberant target and interfering speech as well
as diffuse babble noise at SNR = 25 dB. The interfering speech
component can be seen, e.g., at around 1.5 s. In Fig. 8(b.2),
residual early interfering speech is most prominently observable
around 6.01 kHz, where spatial aliasing occurs for the given
setup and hence the early target and interfering source images
become spatially indistinguishable. In Fig. (c¢)—(d), the experi-
ment of Fig. (b) is repeated for SNR = 10dB and SNR = 0dB,
respectively. As expected, further residual noise components
appear in the output with increasing noise power at the input.
Nevertheless, the early target speech component remains pre-
dominant. Informal listening tests confirm increased quality and
intelligibility of the enhanced signals for all presented acoustic
conditions.

VII. CONCLUSION

In this paper, in order to jointly perform deconvolution and
spatial filtering, allowing for dereverberation, interfering speech
cancellation and noise reduction, we have presented the ISCLP
Kalman filter, which integrates MCLP and the GSC. Hereat, the
SC filter and the LP filter operate in parallel but on different
input-data frames, and are estimated jointly. We further have
proposed a spectral Wiener gain post-processor, relating to the
Kalman filter’s posterior state estimate. Implementational as-
pects such as spatio-temporal target component leakage, target
PSD estimation and RETF updates, as well as process equa-
tion parameter tuning and initialization have been discussed.
The presented ISCLP Kalman filter has been benchmarked in
terms of its dependency on the SNR and the filter length L,
as well as in terms of its convergence behavior. With M the
number of microphones, the ISCLP Kalman filter is roughly
M? times less expensive than both reference algorithms, namely
first a pair of alternating Kalman filters in an original and
a modified version, and second an MCLP+GSC Kalman fil-
ter cascade. Nonetheless, simulation results indicate better or
similar performance as compared to the original or modified
version of the former, and better performance as compared to the
latter.
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