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Abstract—In this paper, we propose a semi-distributed multi-
channel noise reduction method which considers the inter-
frame correlation in the short-time Fourier transform (STFT)
domain. Although exploiting the correlation of speech STFT
coefficients enables to achieve impressive results, it also increases
the computational complexity, especially in the case of a large
number of frames and/or microphones. To address this issue in
each time-frequency unit we propose to utilize the information
of the current frame and a compressed signal from the previous
frames in a distributed way. Simulation results show that the
computational complexity can be substantially reduced by the
proposed method without impairing speech quality.

I. INTRODUCTION

Undesired background noise makes speech communication
unpleasant or in some cases, even impossible. Extracting
the clean speech signal from the noisy observed microphone
signals has been an important research topic due to its appli-
cations in, e.g., hands-free communication, teleconferencing,
and hearing aids.

Noise reduction algorithms are usually implemented in
the short-time Fourier transform (STFT) domain. A common
assumption which simplifies the processing is that successive
speech frames are uncorrelated. However, it is well known that
this assumption is not accurate and that the inherent correlation
of the speech signal in addition to the overlap procedure
applied in the STFT processing introduces a large correlation
between consecutive frames [1].

In [2] the authors exploited the inter-frame correlation (IFC)
in the STFT domain for single-microphone noise reduction.
In each time-frequency unit (TFU) they employed the noisy
observation of the current and previous frames. Consequently,
they developed a single-channel multi-frame minimum vari-
ance distortion-less response (MVDR) filter, showing that
impressive results in terms of signal-to-noise ratio (SNR)
improvement and low signal distortion can be achieved if
the IFC can be accurately estimated. In [3] blind maximum-
likelihood and maximum a-posteriori estimators for the speech
IFC vector have been proposed. In addition, to set the trade-
off between speech distortion and noise reduction, speech-
distortion weighted inter-frame Wiener filters have been pro-
posed in [4].

This work was supported in part by Iran National Science Foundation
(INSF) and German Academic Exchange Service (DAAD).

The concept of exploiting the IFC has also been considered
in multi-microphone noise reduction. In this way, in each
TFU the received signals from different microphones at the
current and previous frames are taken into account to improve
the overall performance. It has been shown that the noise
reduction performance provided by the multi-channel multi-
frame algorithms is better than the improvement achieved
by the multi-channel algorithms, which ignore the IFC [1].
Although exploiting the IFC results in SNR improvement,
it also increases the computational complexity, especially in
the case of a large number of frames and/or microphones. In
order to overcome this challenge, in this paper we propose
a reduced-complexity multi-channel multi-frame MVDR filter
inspired by existing distributed algorithms in wireless acoustic
sensor networks (WASNs).

WASNs consist of several spatially distributed nodes, where
each node contains a small-sized array of sensors which
connects to the other nodes via a wireless link. In a centralized
algorithm, all nodes transmit their data to a fusion center that
combines all information. The fusion center hence has direct
access to all data of the network, enabling it to achieve a better
performance than each individual node. However, this comes
at the cost of a larger required bandwidth and computational
complexity, especially in the case of a large number of nodes.
Hence, distributed algorithms have been proposed in order to
decrease the complexity and the required bandwidth. In these
algorithms, nodes share data between themselves, such that
there is no need for a fusion center.

In [5] the distributed multi-channel Wiener filter (DB-
MWF) was proposed for two nodes. The DB-MWF was
generalized in [6] to multiple nodes, leading to the so-
called distributed adaptive node specific estimation (DANSE)
algorithm. In addition, a distributed version of the generalized
sidelobe canceller (GSC) was proposed in [7]. A comprehen-
sive review of distributed algorithms for noise reduction in
WASNs has been presented in [8], indicating that the main
idea of all mentioned techniques is similar: each node performs
calculations using its local information and a compressed
signal from the other nodes.

Motivated by the idea behind the above-mentioned dis-
tributed algorithms, in this paper we propose a distributed
version of the multi-channel multi-frame MVDR filter which
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takes the IFC into account. In order to realize causal process-
ing, we assume that in each TFU the filter has access to the
information of the current frame and a compressed signal from
the previous frames (hence the term ”semi-distributed”).

The paper is organized as follows. After formulating the
multi-frame signal model in section II, we review the multi-
channel multi-frame MVDR filter in section III. The proposed
algorithm is introduced in section IV. Simulation results are
presented in Section V.

II. MULTI-CHANNEL MULTI-FRAME SIGNAL MODEL

Consider an N -element microphone array which captures a
speech signal in a noisy environment. In the STFT domain,
the received signal at the n-th microphone can be expressed
as

Yn(m, k) = Xn(m, k) + Vn(m, k), (1)

where Yn(m, k), Xn(m, k) and Vn(m, k) denote the noisy
microphone signal, the clean speech signal and the additive
noise respectively, with m the frame index and k the discrete
frequency index. We assume that the speech and noise signals
are zero mean random processes. Without loss of generality
the clean speech signal at the first microphone (X1(m, k)) is
considered the desired signal.
In vector notation (1) can be written as

y(m, k) = x(m, k) + v(m, k) ∈ CN×1, (2)

where y(m, k) = [Y1(m, k), Y2(m, k), ..., YN (m, k)]T ,
with T denoting the matrix transpose operation, the vectors
x(m, k) and v(m, k) can be defined similarly. By considering
the current frame and L − 1 previous frames, we define the
vector

y(m, k) = [yT (m, k), ..., yT (m− L+ 1, k)]T ∈ CNL×1,
(3)

where the vectors x(m, k) and v(m, k) can be defined simi-
larly, such that

y(m, k) = x(m, k) + v(m, k). (4)

The clean speech signal is estimated as

X̂(m, k) = hH(m, k)y(m, k), (5)

where h(m, k) = [hT
0 (m, k), hT

1 (m, k), ..., hT
L−1(m, k)]

T

are filter coefficients and H denotes the Hermitian operator.
Assuming that the speech and noise signals are uncorrelated,

the noisy correlation matrix is given by

Φyy(m, k) = E
{
y(m, k)yH(m, k)

}
= Φxx(m, k) + Φvv(m, k),

(6)

where E {.} denotes the expectation operator, Φxx(m, k)
denotes the clean speech correlation matrix and Φvv(m, k)
denotes the noise correlation matrix.

The noisy and noise correlation matrices are estimated
recursively as

Φ̂yy(m, k) = λyΦ̂yy(m− 1, k)+ (1−λy)y(m, k)yH(m, k),
(7)

Φ̂vv(m, k) = λvΦ̂vv(m− 1, k)+ (1−λv)v(m, k)vH(m, k),
(8)

where λy and λv denote forgetting factors. Using (6), the clean
speech correlation matrix can be estimated as Φ̂xx(m, k) =
Φ̂yy(m, k)− Φ̂vv(m, k). Considering estimation errors in the
noisy and noise correlation matrices, negative eigenvalues of
Φ̂xx(m, k) are set to zero to ensure that the resulting speech
correlation matrix is positive definite.

Considering that the clean speech signal X1(m, k) is the
desired signal at the current TFU, in [2] it was proposed
to decompose the vector x(m, k) into a correlated and an
uncorrelated component with regard to X1(m, k), i.e.,

x(m, k) = ρx(m, k)X1(m, k) + x′(m, k), (9)

where the speech IFC vector is defined as

ρx(m, k) =
E {x(m, k)X∗1 (m, k)}

E {|X1(m, k)|2}
=

Φxx(m, k)e

eTΦxx(m, k)e
, (10)

and E
{
|X1(m, k)|2

}
= φX1(m, k) is the variance of the clean

speech signal at the first microphone and e denotes a selection
vector with the first element equal to 1 and all other elements
equal to 0. Using this decomposition, (4) can be re-written as

y(m, k) = ρx(m, k)X1(m, k) + x′(m, k) + v(m, k). (11)

Since x′(m, k) is uncorrelated with X1(m, k), it can be
interpreted as an interference. By defining the undesired signal
as the sum of interference and additive noise, i.e., n(m, k) =
x′(m, k) + v(m, k), (6) can be re-written as

Φyy(m, k) = φX1
(m, k)ρx(m, k)ρ

H
x (m, k) + Φnn(m, k),

(12)
where Φnn(m, k) = Φx′x′(m, k) + Φvv(m, k) denotes the
correlation matrix of the undesired signal.

III. MULTI-CHANNEL MULTI-FRAME MVDR FILTER

The multi-channel multi-frame MVDR (MCMF-MVDR)
filter exploiting the IFC was proposed in [1]. This filter
aims at minimizing the power spectral density of undesired
signal while not distorting the desired signal. This constrained
optimization problem can be expressed as

min
h(m,k)

hH(m, k)Φnn(m, k)h(m, k)

s.t. hH(m, k)ρx(m, k) = 1.
(13)

The solution of this constrained optimization problem is [1]

hMCMF−MVDR(m, k) =
Φ−1nn(m, k)ρx(m, k)

ρH
x (m, k)Φ−1nn(m, k)ρx(m, k)

.

(14)
By applying the matrix inverse lemma to (12) this filter can
be written as 1

hMCMF−MVDR(m, k) =
Φ−1yy (m, k)ρx(m, k)

ρH
x (m, k)Φ−1yy (m, k)ρx(m, k)

.

(15)

1Although this actually corresponds to the minimum power distortionless
response (MPDR) filter [9], we decided to keep the original terminology from
[1].
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The MCMF-MVDR filter uses the noisy observations at the
current and L − 1 previous frames to estimate the clean
speech signal. Especially for a large number of frames and/or
microphones, this may however lead to a large computational
complexity, as NL × NL-dimensional correlation matrices
need to be estimated and inverted (which may in addition lead
to numerical problems).

IV. SEMI-DISTRIBUTED MULTI-CHANNEL MULTI-FRAME
MVDR FILTER

Motivated by distributed processing approaches employed
in WASNs, in this section we propose a distributed version of
the MCMF-MVDR filter in (15) to reduce its computational
complexity.

It should be realized that there are some important differ-
ences between WASNs and our considered problem. First,
the IFC vectors are more time-varying in comparison with
WASNs. In addition, in WASNs each node can share its
information with all other nodes, whereas in our application,
considering the causality constraint, only the information from
the previous frames can be shared (no future frames).

In order to reduce computational complexity, instead of
using the NL-dimensional vector in (3) the proposed semi-
distributed MCMF-MVDR (SDMCMF-MVDR) filter employs
the noisy observation at the current frame and a compressed
signal from the L− 1 previous frames, i.e.,

ysd(m, k) =

[yT (m, k), ..., Z(m− L+ 1, k)]T ∈ C(N+L−1)×1,
(16)

where Z(m − l, k) denotes the compressed signal delayed
with l frames. The computation of the compressed signal
Z(m, k) can be explained as follows. The vectors xsd(m, k)
and vsd(m, k) are defined similar to ysd(m, k). Similarly as
in (5), the clean speech signal is estimated as

X̂(m, k) = hH
sd(m, k)ysd(m, k), (17)

with

hsd(m, k) = [hT
sd0

(m, k), Hsd1
(m, k), ..., HsdL−1

(m, k)]T ,
(18)

the N+L−1 filter coefficients. Using (16) and (18), (17) can
be written as

X̂(m, k) = hH
sd0

(m, k)y(m, k)︸ ︷︷ ︸
Z(m,k)

+
L−1∑
i=1

H∗sdi
(m, k)Z(m−i, k).

(19)
Motivated by [6], the compressed signal is defined as the
noisy observation at the current frame y(m, k) filtered with
hsd0(m, k), i.e. the first N elements of hsd(m, k). The com-
pressed signals are computed as a part of the enhanced signal.
(In [6], it was shown that each node is able to converge to the
centralized solution of fully connected WASN by broadcasting
a compressed signal, which is defined as the filtered version of
the recorded signals of that node.) It is evident that using the
compressed signal from previous frames decreases the vector

dimension from NL to N + L − 1, considerably reducing
computational complexity.
Similarly to (15), the filter coefficients of the SDMCMF-
MVDR filter can be computed as

hsd(m, k) =
Φ−1ysdysd

(m, k)ρxsd
(m, k)

ρH
xsd

(m, k)Φ−1ysdysd(m, k)ρxsd
(m, k)

, (20)

where ρxsd
(m, k) denotes the semi-distributed speech IFC

vector, and the semi-distributed noisy correlation matrix is
given by

Φysdysd
(m, k) = E

{
ysd(m, k)y

H
sd(m, k)

}
= Φxsdxsd

(m, k) + Φvsdvsd
(m, k),

(21)

where Φxsdxsd
(m, k) and Φvsdvsd

(m, k) denote the semi-
distributed clean speech and noise correlation matrices, re-
spectively. Similarly to (7) and (8) the correlation matrix
Φysdysd

(m, k) and Φvsdvsd
(m, k) can be estimated as

Φ̂ysdysd
(m, k) =

λyΦ̂ysdysd
(m− 1, k) + (1− λy)ysd(m, k)y

H
sd(m, k),

(22)

Φ̂vsdvsd
(m, k) =

λvΦ̂vsdvsd
(m− 1, k) + (1− λv)vsd(m, k)v

H
sd(m, k).

(23)

The semi-distributed clean speech correlation matrix is given
by

Φ̂xsdxsd
(m, k) = Φ̂ysdysd

(m, k)− Φ̂vsdvsd
(m, k), (24)

to ensure that the resulting correlation matrix is positive
definite, all negative eigenvalues are set to zero.

The semi-distributed speech IFC vector is defined as

ρxsd
(m, k) =

E {xsdX
∗
1 (m, k)}

E {|X1(m, k)|2}
=

Φxsdxsd
(m, k)esd

eT
sdΦxsdxsd

(m, k)esd
,

(25)
and esd denotes a selection vector with the first element equal
to 1 and all other elements equal to 0.

Due to the fact that for the processing of the current
frame only compressed signals from the previous frames are
used (which is different to distributed processing schemes in
WASNs) we don’t expect that the proposed SDMCMF-MVDR
filter will obtain the same performance as the MCMF-MVDR
filter.

V. SIMULATION RESULTS

In this section, we compare the performance of the proposed
SDMCMF-MVDR filter using the compressed signal from
previous frames with the traditional MCMF-MVDR filter
using the noisy vectors from previous frames.

For the simulations we consider a rectangular room with
dimensions 4.5 m × 4.5 m × 3 m (width×length×height)
with reverberation time T60 = 200 ms. We consider a
uniform linear array with N = 4 microphones at positions
(xn = xinit + (n − 1)d, y = 1 m, z = 2 m ), n = 1, · · · , 4
with xinit = 1 m and inter-microphone distance d = 0.02 m.
The speech source signal is located at (x = 2 m ; y = 1.5
m; z = 1.8 m). The image method is used to generate the
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(a) (b)

Fig. 1. Performance of the proposed SDMCMF-MVDR and the MCMF-
MVDR filters in terms of PESQ and STOI improvement compared to the
noisy signal for several SNRs (white Gaussian noise)

room impulse responses between the speech source and the
microphones [10]. As clean speech signals we use samples
from four male and four female speakers from the TIMIT
database [11] and report average results. The microphone
signals are corrupted by additive noise (either white Gaussian
noise or factory noise) at SNRs ranging from −5 dB to 15 dB.
In the case of factory noise, the noise source signal is located at
(x = 0.5 m ; y = 3.5 m; z = 1.3 m). The sampling frequency
is 16 kHz and the STFT is implemented using NFFT= 256
with 75% overlap and a Hamming window.

For the multi-frame MVDR filters we chose L = 5 to
achieve a good compromise between performance and compu-
tational complexity. For this choice of parameters the length
of the vector y(m, k) for the MCMF-MVDR filter is equal
to NL = 20, while the length of the vector ysd(m, k) for
the SDMCMF-MVDR filter is equal to N + L − 1 = 8. The
forgetting factor to update the noisy correlation matrices based
on (7) and (22) is λy = 0.92. Also, similarly as in [2], to
avoid the effect of errors in the estimation of noise correlation
matrix, we compute the noise correlation matrices Φvv(m, k)
and Φvsdvsd

(m, k) with the knowledge of noise signals based
on the (8) and (23) using λv = λy = 0.92.

The sensitivity of the multi-frame MVDR filter to estima-
tion errors in the speech and noise correlation matrix was
investigated in [9] for single-microphone noise reduction. The
main goal of this paper is to investigate how much the
performance is affected when using the compressed signal
in the proposed SDMCMF-MVDR filter instead of the noisy
vectors. Analyzing the sensitivity of the proposed SDMCMF-
MVDR filter to estimation errors of noise correlation matrix
can be considered as a topic of future research.

For white Gaussian noise Fig. 1 depicts the performance of
the proposed SDMCMF-MVDR and the MCMF-MVDR filters
in terms of PESQ [12] and short-time objective intelligibility
(STOI) [13] improvement compared to the noisy signal at the
first microphone (clean speech signal at the first microphone is
considered as reference). It can be observed from Fig. 1 (a) that
MCMF-MVDR outperforms SDMCMF-MVDR in terms of
PESQ for low SNRs. On the other hand, MCMF-MVDR needs
to compute the inverse of a 20 × 20-dimensional correlation
matrix, while SDMCMF-MVDR needs to compute the inverse
of an 8×8-dimensional correlation matrix, hence considerably
reducing the computational complexity.

(a) (b)

(c)

Fig. 2. Performance of the proposed SDMCMF-MVDR and the MCMF-
MVDR filters in terms of SegNR, SSPSNR and SSNR for several SNRs
(white Gaussian noise)

In terms of STOI, we observe a similar trend, where
MCMF-MVDR achieves a larger STOI improvement than
SDMCMF-MVDR for low SNRs, whereas SDMCMF-MVDR
achieves a slightly larger STOI improvement than MCMF-
MVDR at high SNRs.

Fig. 2 depicts the performance of the SDMCMF-MVDR and
MCMF-MVDR filters in terms of the speech segmental SNR

(a) (b)

(c) (d)

Fig. 3. Spectrograms of (a) clean signal, (b) noisy signal, (c) enhanced
signal using MCMF-MVDR filter, and (d) the enhanced signal using proposed
SDMCMF-MVDR filter (SNR = 10 dB, white Gaussian noise).
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(a) (b) (c)

Fig. 4. Performance of the proposed SDMCMF-MVDR and MCMF-MVDR in terms of PESQ, STOI and SSNR in the case of factory noise

(SPSSNR), segmental noise reduction (SegNR) and segmental
SNR (SSNR) as proposed in [14]. The SPSSNR has been
defined as a measure for speech distortion; the larger SPSSNR
the lower the speech distortion. From Fig. 2, the usual trade-
off between noise reduction and speech distortion is evident.
For all considered SNRs it can be observed that the MCMF-
MVDR achieves better results in terms of noise reduction
while the SDMCMF-MVDR achieves better results in terms
of speech distortion. In terms of SSNR which considers both
noise reduction as well as speech distortion, it can be observed
that MCMF-MVDR achieves better results for low SNRs while
SDMCMF-MVDR achieves better results for high SNRs.

Fig. 3 illustrates the spectrograms of the clean speech signal
at the first microphone, the noisy signal (SNR = 10 dB),
the enhanced signal using the MCMF-MVDR filter, and the
enhanced signal using the proposed SDMCMF-MVDR filter in
case of white Gaussian noise. These spectrograms are highly
consistent with the evaluation results shown in Fig. 2. The
MCMF-MVDR filter considerably reduces the noise however,
it removes some speech components which results in speech
distortion. In the case of SDMCMF-MVDR, the noise has
been significantly reduced, while the speech spectrum is not
substantially degraded.

Fig. 4 depicts the performance in terms of PESQ improve-
ment, STOI improvement and segmental SNR when using
factory noise instead of white Gaussian noise. It can be
observed that the proposed reduced-complexity SDMCMF-
MVDR filter yields almost the same (sometimes even better)
performance as the MCMF-MVDR filter.

VI. CONCLUSION

In this paper, the inter-frame correlation between speech
components in the STFT domain was exploited to develop a
semi-distributed MCMF-MVDR filter which substantially de-
creases the computational complexity. In each time-frequency
unit a vector consisting of the observations at the current frame
and compressed signals from previous frames was considered
to derive the SDMCMF-MVDR filter. The compressed signals
were computed as a part of the enhanced signal at previous
frames. We compared the performance of the proposed filter
with the traditional MCMF-MVDR filter for white Gaussian
and factory noises, showing that the proposed filter yields

a similar performance while substantially reducing computa-
tional complexity.
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