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Introduction

Speech signals recorded in communication devices are fre-
quently corrupted by undesired additive noise. To im-
prove the speech quality, single-microphone noise reduc-
tion is often applied in the short-time Fourier transform
(STFT) domain. In contrast to single-frame approaches,
where a gain is applied to each noisy STFT coefficient in-
dependently, multi-frame approaches aim to exploit the
speech inter-frame correlation (IFC) [1, 2, 3, 4].

In this paper, we investigate a real-valued speech-
distortion weighted Wiener gain (SDW-WG) as well
as real- and complex-valued speech-distortion weighted
inter-frame Wiener filters (SDW-IFWFs) [1, 4]. These
filters incorporate a trade-off between noise reduction
and speech distortion. We compare these filters and an-
alyze the influence of the corresponding trade-off param-
eter. Experimental results for different speech signals,
noise types, and signal-to-noise ratios (SNRs) show that
the real-valued SDW-IFWF (R-SDW-IFWF) achieves a
higher speech quality improvement than the SDW-WG
and complex-valued SDW-IFWF (C-SDW-IFWF). Al-
though the SDW-WG applies more noise reduction than
the multi-frame approaches, the C-SDW-IFWF intro-
duces less speech distortion as the level of noise reduction
is increased.

Problem Statement

In this section, we introduce the single- and multi-frame
signal models.

Single-Frame Signal Model

By applying an STFT with analysis window hF of length
F to the noisy microphone signal, the noisy speech co-
efficient Y [f, l] with time frame l and frequency bin
f ∈

{
−F2 + 1,−F2 + 2, . . . , F2

}
is obtained. The single-

frame signal model is defined as

Y [f, l] = S[f, l] +N [f, l] (1)

where S[f, l] and N [f, l] denote the speech and the noise
coefficients, respectively. In single-frame approaches the
speech coefficient S[f, l] is estimated by applying a (real-
valued) gain G[f, l] independently to each noisy speech
coefficient, i.e.,

Ŝ[f, l] = G[f, l] Y [f, l] (2)
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Multi-Frame Signal Model

Similarly to (1), we apply an STFT to the noisy micro-
phone signal with analysis window hK of length K, to
obtain the noisy speech coefficient Y [k, l] with frequency
bin k ∈

{
−K2 + 1,−K2 + 2, . . . , K2

}
, which can be decom-

posed into the speech coefficient S[k, l] and the noise co-
efficient N [k, l]. The noisy speech vector yyy[k, l] is defined
by considering M consecutive time frames, i.e.,

yyy[k, l] = [Y [k, l], Y [k, l − 1], . . . , Y [k, l −M + 1]]
T
, (3)

where T denotes the transpose operator. Similarly to (1),
this vector can be written as

yyy[k, l] = sss[k, l] +nnn[k, l] (4)

where the speech vector sss[k, l] and the noise vector nnn[k, l]
are defined similarly as in (3). In multi-frame approaches
the speech coefficient S[k, l] is estimated by applying an
M -dimensional (complex-valued) finite impulse response
(FIR) filter www[k, l] to the noisy speech vector, i.e.,

Ŝ[k, l] = wH [k, l] y[k, l] (5)

where H denotes the Hermitian operator. For concise-
ness, in the remainder of this paper the indices f , k, and
l will be omitted wherever possible.

Assuming that the speech and noise signals are uncor-
related, the M×M -dimensional noisy speech correlation
matrix RRRyyy = E

[
yyyyyyH

]
, with E [·] the expectation opera-

tor, is given by
RRRyyy = RRRsss +RRRnnn, (6)

where RRRsss = E
[
ssssssH

]
and RRRnnn = E

[
nnnnnnH

]
denote the

speech and noise correlation matrices, respectively.

Considering the speech correlation across time frames, it
was proposed in [1] to decompose the speech vector sss into
a temporally correlated speech component xxx and a tem-
porally uncorrelated speech component xxx′ with respect
to the speech coefficient S, i.e.,

sss = xxx+ xxx′ = γγγsssS + xxx′, (7)

where γγγsss denotes the normalized speech IFC vector,
which is defined as

γγγsss =
E [sssS∗]

E [|S|2]
=
rrrsss

φS
, (8)

where ∗ denotes the complex-conjugate operator and rrrsss
is the speech IFC vector. Due to the normalization with
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the speech power spectral density (PSD) φS = E
[
|S|2

]
,

the first element of γsγsγs is equal to 1.

Using (6) and (7), the speech correlation matrix RsRsRs can
be decomposed into the rank-1 correlation matrix RxRxRx =

φSγsγsγsγsγsγs
H and the correlation matrix RRRxxx′ = E

[
xxx′xxx′

H
]
.

Hence, the speech IFC vector rsrsrs and the speech PSD φS
in (8) can be computed as

rsrsrs = RxRxRxeee, φS = eeeTRxRxRxeee (9)

with eee =
[
1, 0, . . . , 0

]T
anM -dimensional selection vec-

tor. Considering the uncorrelated speech component x′x′x′

in (7) as an interference, we define the undesired signal
vector uuu = xxx′+nnn such that the multi-frame signal model
is given by

yyy = γγγsssS + uuu (10)

Using (10), the noisy speech correlation matrix in (6) can
also be written as

RRRyyy = φSγγγsssγγγ
H
sss +RRRuuu, (11)

with the undesired correlation matrix RRRuuu = RRRxxx′ + RRRnnn.
Similarly to (8) and (9), the normalized noisy speech IFC
vector γγγyyy and normalized noise IFC vector γγγnnn are defined
as

γγγyyy =
rrryyy

φY
=

RRRyyyeee

eeeTRRRyyyeee
, γγγnnn =

rrrnnn

φN
=

RRRnnneee

eeeTRRRnnneee
. (12)

Using (6) and (12), it can be easily shown that

φY γγγyyy = φSγγγsss + φNγγγnnn. (13)

Speech-Distortion Weighted Filters

In this section, a SDW-WG is derived using the single-
frame signal model and a C-SDW-IFWF and R-SDW-
IFWF are derived using the multi-frame signal model.
The filters incorporate a trade-off between noise reduc-
tion and speech distortion.

SDW-WG

A cost-function for the SDW-WG can be designed which
aims to minimize the speech distortion power as well as
the output noise power, where the importance of each
term can be weighted with a trade-off parameter µ ∈
[0,∞], i.e.,

Ĝ = argmin
G

 E
[
|GS − S|2

]︸ ︷︷ ︸
Speech

distortion power

+µE
[
|GN |2

]︸ ︷︷ ︸
Output

noise power

 . (14)

Solving this optimization problem leads to the real-
valued SDW-WG

GSDW-WG =
ξ

µ+ ξ
(15)

with ξ =
φS

φN
the a-priori SNR.

C-SDW-IFWF

Similarly to (14), the aim of the SDW-IFWF is to min-
imize the speech distortion power as well as the noise
power, weighted with µ, i.e.,

ŵ̂ŵw = argmin
www

 E
[
|wwwHγsγsγs − S|2

]︸ ︷︷ ︸
Speech

distortion power

+µE
[
|wwwHuuu|2

]︸ ︷︷ ︸
Output

noise power

 .

(16)
Solving this optimization problem leads to the C-SDW-
IFWF [1]

wwwSDW-IFWF =
RRR−1
yyy γγγsssφS

µ+ (1− µ)γγγHsss RRR
−1
yyy γγγsssφS

. (17)

In [4], it was reported that this filter can be very sen-
sitive to estimation errors for µ > 0. Since it is
well known that decomposing a multi-frame Wiener Fil-
ter into a multi-frame minimum-power distortionless-
response (MFMPDR) filter and a postfilter leads to more
robust results [5], we suggest to decompose the C-SDW-
IFWF into an MFMPDR filter [1] and a postfilter

wwwSDW-IFWF =
RRR−1
yyy γγγsss

γγγHsss RRR
−1
yyy γγγsss︸ ︷︷ ︸

wwwMFMPDR

φS
µφout

U + φS︸ ︷︷ ︸
GSDW-WG

Postfilter

(18)

where φout
U =

(
γγγHsss RRR

−1
uuu γγγsss

)−1
denotes the undesired signal

PSD at the output of the MFMPDR filter.

R-SDW-IFWF

As in [4], a real-valued, symmetric filter vector

WWW [k, l] = DDDwww[k, l] (19)

can be derived, where DDD is a discrete Fourier transform
(DFT) matrix. Assuming that the noisy correlation ma-
trix RcircyR

circ
yR
circ
y is circulant structured, it can be defined as

RcircyR
circ
yR
circ
y [k, l] =

1

2M
DDDHΦyΦyΦy[k, l]DDD, (20)

where ΦyΦyΦy[k, l] is a diagonal matrix containing the neigh-
bouring noisy PSD coefficients around the center fre-
quency of a frequency bin k. The matrix ΦyΦyΦy is obtained
by windowing the PSDs φY [f, l] in a filterbank with a 2M

O
higher frequency-resolution, where O denotes the over-
sampling factor,

ΦyΦyΦy[k, l](τ, τ) =
1

O
|HF [τ ]|2φY

[
2Mk

O
+ τ, l

]
,

τ = −M + 1,−M + 2, . . . ,M, (21)

with HF the F -point DFT of the zero-padded analysis
window hK and ΦyΦyΦy[k, l](τ, τ) denotes the τ -th diagonal
element of the diagonal matrix ΦyΦyΦy[k, l]. Similar approx-
imations can be made for the correlation matrices RcircsR

circ
sR
circ
s
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and RcircnR
circ
nR
circ
n of speech and noise. Using (19) and (20) in

(16), a R-SDW-IFWF can be derived

WWW SDW-IFWF =
ΦΦΦ−1
yyy ΦΦΦsss111

µ+ (1− µ)
111TΦΦΦsssΦΦΦ

−1
yyy ΦΦΦsss111

111TΦΦΦsss111

(22)

This filter can be rewritten as a gain in the higher fre-
quency resolution filterbank with F = 2MK

O frequency
bins by applying an overlap procedure

G[f, l]=

O
2∑

ν=−O
2 +1

HK

[
f ′ +

F

K
ν

]
WWW

[
K

F
(f − f ′) + ν, l

](
f ′ +

F

K
ν

)
,

(23)
where HK is the DFT of the analysis window hK and

f ′ = mod

(
f +

F

K
− 1,

F

K

)
− F

K
+ 1, (24)

with mod () the modulo operator.

Parameter Estimation

In this section, we present several estimators for the re-
quired parameters of the SDW-WG, C-SDW-IFWF, and
R-SDW-IFWF.

Real-Valued Filters

For the SDW-WG, an estimate of ξ is required, which
is estimated using the decision-directed approach (DDA)
in [6] with φN estimated as in [7] in the high frequency
resolution filterbank F .

For the R-SDW-IFWF, estimates of the speech and the
noisy speech PSDs are required. The PSDs are estimated
using periodograms in the high frequency resolution fil-
terbank F . The noisy speech periodogram is given by

PY = |Y |2. (25)

The noisy PSD matrix ΦyΦyΦy is estimated by replacing φY
with PY in (21). The speech and noise periodograms are
estimated by applying a Wiener gain (WG) GWG (which
is obtained by setting µ = 1 in (15)) to PY , i.e.,

P̂S = GWGPY , P̂N = (1−GWG)PY , (26)

and the speech and noise PSD matrices ΦsΦsΦs and ΦnΦnΦn can
be estimated similarly to ΦyΦyΦy, by replacing φY with P̂S or

P̂N in (21), respectively.

Complex-valued filters

For the C-SDW-IFWF, estimates of RxRxRx, γsγsγs, φS , and RuRuRu
are required. The noisy speech correlation matrixRRRyyy can
be estimated using first-order recursive smoothing as

R̂̂R̂Ryyy[k, l] = λR̂̂R̂Ryyy[k, l − 1] + (1− λ)yyy[k, l]yyyH [k, l] (27)

with λ a forgetting factor. The normalized speech IFC
vector γsγsγs can be estimated as

γ̂̂γ̂γsss =
φ̂S + φ̂N

φ̂S
γ̂̂γ̂γyyy −

φ̂N

φ̂S

r̂̂r̂rnnn

r̂̂r̂rnnn(1)
(28)

where γyγyγy is estimated similarly to (12), using (27). In
[5], we proposed to estimate the noise IFC vector rnrnrn from
the F filterbank using the Wiener-Khinchin theorem sim-
ilarly to [4]. The theorem states that the correlation of
a wide-sense stationary process is given by the inverse
DFT (IDFT) of the PSD. Hence, the noise IFC vector
rrrnnn can be estimated by applying the IDFT to the noise
periodograms in Φ̂nΦ̂nΦ̂n, i.e.,

r̂̂r̂rnnn[k, l](m) =
1

2M

M∑
τ=−M+1

Φ̂nΦ̂nΦ̂n[k, l](τ, τ)e−j2πτm/2M ,

m = 0, 1, . . . ,M − 1. (29)

The speech PSD φS is estimated by applying a WG to
the noisy speech, i.e. φ̂S = GWGφ̂Y , with ξ estimated
using the DDA and φN estimated using [7]. To estimate
the output undesired PSD φout

U , the undesired correlation
matrix RuRuRu is estimated as

R̂RRuuu = R̂RRyyy − φ̂Sγ̂γγsssγ̂γγ
H
sss . (30)

Due to estimation errors, R̂̂R̂Ruuu may not be positive semi-
definite, thus, we set negative eigenvalues of R̂̂R̂Ruuu to zero.

Experimental Results

In this section, we begin with describing the algorithmic
implementation details and then we compare the perfor-
mance of the presented SDW-WG and SDW-IFWFs in
dependence of the trade-off parameter µ.

Implementation and Performance Measures

The performance compared to the noisy speech signal is
evaluated in terms of the perceptual evaluation of speech
quality (PESQ) [8] improvement and the segmental mea-
sures for speech distortion (sSD) and noise reduction
(sNR) [9] as well as SNR improvement (∆sSNR)[2], using
the clean speech signal as the reference signal. We used
audio material from [10] sampled at 16 kHz. We evalu-
ated the average performance over 105 s of speech ma-
terial under five different noise conditions (babble, white
Gaussian noise (WGN), traffic, modulated WGN, cross-
road) at 0 dB and 10 dB input SNRs.

To achieve a high speech correlation, we use an STFT
with a frame length of K = 64 samples (4 ms) and a
frame shift of 16 samples (1 ms) in the low frequency-
resolution STFT filterbank. As analysis and synthesis
window hK we use a Hann window. The number of the
consecutive time frames is M = 8, resulting in 11 ms
of analysis data in the low frequency-resolution filter-
bank. In the high frequency-resolution STFT filterbank,
we use a four-times higher frequency-resolution, i.e., a
frame length of F = 256 samples (16 ms), a frame shift
of 16 samples (1 ms), and apply an asymmetric analysis
window similarly to [4]. However, hK is used as the syn-
thesis window to maintain low synthesis delay (3 ms). In
both filterbanks, the weighting parameter for the DDA
[6] is set to 0.97. To reduce the amount of musical noise,
the Wiener gain is limited to -17 dB. The forgetting fac-
tor in (27) is experimentally set to λ = 0.9, resulting in
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Figure 1: Averaged results at 0 dB SNR.

Figure 2: Averaged results at 10 dB SNR.

a smoothing window of 10 ms. Before computing R̂̂R̂R
−1

yyy

in (18), regularization based on diagonal loading is per-
formed with a regularization parameter of 0.04 as in [2].

Comparison of SDW-IFWFs with SDW-WG

In Figs. 1, 2, the average PESQ, sSD, sNR, and ∆sSNR
results at 0 dB and 10 dB SNR are depicted for the SDW-
WG, C-SDW-IFWF, and R-SDW-IFWF. The R-SDW-
IFWF leads to the highest PESQ improvement with µ =
0.7, followed by the SDW-WG with µ = 0.6 at 0 dB and
µ = 0.45 ad 10 dB. The SDW-WG leads to the highest
∆sSNR scores with µ = 0.7 and µ = 0.4 at 0 dB and
10 dB, respectively. The SDW-WG leads to the highest
NR scores for increasing µ, however, simultaneously also
the lowest SD scores. The C-SDW-IFWF outperforms
all filters for all measures except for SD at µ = 0. Only
the SDW-WG achieves higher SD scores at µ = 0 since it
applies no filtering, leaving the original signal unchanged
and therefore the speech undistorted.

CONCLUSION

In this paper, we evaluated the influence of the trade-off
parameter in real- and complex-valued speech-distortion
weighted filters, using a single- and multi-frame signal
model, which balance noise reduction and speech distor-
tion. We compared the performance for different speech
and noise signals and signal-to-noise ratios, using prac-

tically feasible estimators for the required quantities.
We showed that the R-SDW-IFWF achieves the high-
est speech quality improvement. Although the SDW-
WG applies more noise reduction than multi-frame ap-
proaches, the C-SDW-IFWF, introduces less speech dis-
tortion.
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