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Abstract—Many signal processing algorithms have been pro-
posed to improve the quality of speech recorded in the presence of
noise and reverberation. Perceptual measures, i.e., listening tests,
are usually considered the most reliable way to evaluate the quality
of speech processed by such algorithms but are costly and time-
consuming. Consequently, speech enhancement algorithms are of-
ten evaluated using signal-based measures, which can be either
intrusive or non-intrusive. As the computation of intrusive mea-
sures requires a reference signal, only non-intrusive measures can
be used in applications for which the clean speech signal is not
available. However, many existing non-intrusive measures corre-
late poorly with the perceived speech quality, particularly when
applied over a wide range of algorithms or acoustic conditions. In
this paper, we propose a novel non-intrusive measure of the quality
of processed speech that combines modulation energy features and
a recurrent neural network using long short-term memory cells.
We collected a dataset of perceptually evaluated signals represent-
ing several acoustic conditions and algorithms and used this dataset
to train and evaluate the proposed measure. Results show that the
proposed measure yields higher correlation with perceptual speech
quality than that of benchmark intrusive and non-intrusive mea-
sures when considering various categories of algorithms. Although
the proposed measure is sensitive to mismatch between training
and testing, results show that it is a useful approach to evaluate spe-
cific algorithms over a wide range of acoustic conditions and may,
thus, become particularly useful for real-time selection of speech
enhancement algorithm settings.

Index Terms—Speech quality, non-intrusive prediction, modu-
lation energy, LSTM-network.
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I. INTRODUCTION

IN MANY speech communication applications, such as tele-
conferencing or hearing-aids, speech of a distant user is

recorded by a single or by multiple microphones. Often, the
recorded speech signal is corrupted by ambient noise and rever-
beration, which may severely degrade the perceived speech qual-
ity and speech intelligibility. To overcome these effects, many
speech enhancement algorithms have been proposed [1]–[4].
Although many algorithms are able to substantially reduce the
amount of noise and reverberation in the recorded signal, the
choice of the best suited algorithm often depends on the acoustic
condition, and processing artefacts may result in a degradation
of speech quality [5]. Consequently, speech enhancement algo-
rithms need to be evaluated in terms of speech intelligibility and
quality.

Perceptual speech quality evaluation based on listening tests
requires a group of human assessors to evaluate the processed
speech signals with respect to predefined attributes, such as over-
all quality, level of reverberation or residual noise, or coloration.
Such evaluation is typically performed by grading each attribute
on a scale which either consists of a few values, such as for
the mean opinion score (MOS) [6], or continuous values, as
in the multiple stimuli test with hidden reference and anchor
(MUSHRA) [7]. Speech intelligibility can be assessed as the
number of speech items, i.e., phonemes or words, identified by
assessors in relation to the total number of items present in the
signal under test [8]. Speech intelligibility is often reported using
the speech reception threshold (SRT), i.e., the level of degra-
dation for which only 50% of the speech items are correctly
identified by an assessor [9]. Perceptual measures are generally
considered the most reliable way to assess the quality or in-
telligibility of processed speech signals. However, since these
measures are costly and time-consuming, speech enhancement
algorithms are often evaluated using signal-based measures.

Signal-based measures, aiming at either speech quality or
speech intelligibility prediction, can be categorized as either in-
trusive or non-intrusive. The computation of intrusive measures
requires a (clean) reference signal in addition to the target sig-
nal under test, whereas non-intrusive measures can be computed
from the target signal only. Among intrusive measures, the artic-
ulation index (AI) [10], the speech transmission index (STI) [11],
the speech intelligibility index (SII) [12], the short-time objec-
tive intelligibility (STOI) [13] and mutual-information-based
techniques, such as the algorithm proposed in [14], aim at speech
intelligibility prediction, whereas the perceptual evaluation of
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speech quality (PESQ) [15], the perceptual objective listening
quality assessment (POLQA) [16] or the perception model for
quality (PEMO-Q) [17] are used to predict the speech quality.
However, in practice, a reference signal is not available, e.g.,
to evaluate algorithms using realistic corpora or to automati-
cally select the best algorithm for a specific acoustic condition.
Consequently, reliable non-intrusive measures are required.

Several measures have been proposed to remove the need for
a reference signal. Non-intrusive measures of the speech intelli-
gibility include the recently proposed non-intrusive STOI (NI-
STOI) [18], that relies on estimating the amplitude envelope of
the clean speech from the input signal, and the use of a trained
speech recognizer as proposed in [19]. To evaluate speech
quality, non-intrusive measures such as P.563 (P.563) [20] and
ANIQUE+ (ANIQUE+) [21] exist, which have not been ex-
plicitly developed for the evaluation of speech enhancement al-
gorithms but rather for the evaluation of narrow-band speech
codecs. Measures such as the signal to reverberant modulation
ratio (SRMR) [22] and its extension, the normalized SRMR
(SRMRnorm) [23], have been developed for both intelligibility
and quality prediction and apply a rather simple predicting func-
tion to a set of time-averaged modulation energies. Though this
measure has shown promising results, e.g., when predicting in-
telligibility for cochlear implants users in [24], its performance,
similarly as for P.563 and ANIQUE+, can be unpredictable when
applied to signals processed with different categories of algo-
rithms, as reported in [25]. In [26], twin hidden Markov models
(HMMs) have been proposed to generate an estimate of the clean
speech before using this estimate and the signal under test as in-
put to an intrusive measure. The reliability of the obtained pre-
diction largely depends on the accuracy of the estimated clean
signal such that the method does not outperform the used in-
trusive measure. Recent approaches have focused on applying
machine learning techniques to train a predicting function for
speech quality. The approach in [27] uses a classification and
regression tree (CART) algorithm while the approach in [28]
uses a similar combination of classification and regression with
a so-called model-tree [29]. In both [27] and [28], the predicting
function does not take into account the time dependencies within
the target signal and the evaluation of both approaches was lim-
ited by the datasets used for training. Indeed, [27] only uses data
labeled using existing signal-based measures and no perceptu-
ally evaluated data, whereas [28], used perceptually evaluated
data but trained the predicting function separately, in turn, for
each acoustic condition.

This paper proposes a novel non-intrusive measure aiming
at reliably predicting the speech quality of processed signals
across various acoustic conditions and types of processing. For
this purpose, we use a predicting function that takes the time
dependency of the target signal into account and is trained on a
perceptually evaluated dataset.

This paper is structured as follows. In Section II, we present
the proposed measure, which combines modulation energy (ME)
and a recurrent neural network (RNN) using long short-term
memory (LSTM) cells. Using such network as predicting func-
tion allows to model the time dependency of the proposed signal
and to apply the proposed measure to signals of arbitrary length.

In Section III, we describe the perceptually evaluated dataset
of speech signals, representing various acoustic conditions, i.e.,
room impulse responses (RIRs), noise types and signal-to-noise
ratios (SNRs), and several categories of algorithms, single- and
multichannel, with different settings resulting in various level of
interference suppression and processing artefacts. In Section IV,
we describe how we used this dataset to train and evaluate
the proposed measure and we present our experimental frame-
work and the considered benchmark. The results presented in
Section V show that the proposed measure, when trained for
a single category of algorithms, outperforms existing non-
intrusive measures and yields similar performance as the in-
trusive measures. When considering several categories of algo-
rithms, the proposed measure outperforms both non-intrusive
and intrusive existing measures.

II. PROPOSED APPROACH

The time-domain signal ym(n) recorded in the m-th micro-
phone of M ≥ 1 available microphones can be modeled as

ym(n) = xm(n) + vm(n) = s(n) ∗ hm(n) + vm(n), (1)

where n denotes the sample index, s(n) denotes the anechoic
speech signal, hm(n) denotes the RIR of length Lh between the
source and them-th microphone and vm(n) denotes the additive
noise component. The reverberant speech componentxm(n) can
be written as

xm(n) = dm(n) + rm(n), (2)

where

dm(n) = s(n) ∗ hd
m(n), (3)

rm(n) = s(n) ∗ hr
m(n), (4)

with hd
m(n) and hr

m(n) defined as

hd
m(n) =

{
hm(n) if n ≤ Ld,

0 otherwise,
(5)

hr
m(n) =

{
hm(n) if n > Ld,

0 otherwise,
(6)

where Ld is set so that hd
m(n) contains the direct path and a

few early reflections while hr
m(n) contains the late reflections,

i.e., the reverberant tail. The output signal ŝ(n) of a speech
enhancement algorithm is computed from the recorded micro-
phone signals ym(n), m ∈ [1 · · ·M ], as an estimate of either
s(n) or dref(n), where ref denotes the index of a reference mi-
crophone.

The perceived speech quality pŝ of the processed signal ŝ(n)
can be obtained from a listening test conducted with several as-
sessors (cf. Section III-B). The measure proposed in this paper
aims at non-intrusively predicting pŝ, i.e., at computing an es-
timate p̂ŝ of pŝ from the signal ŝ(n) while requiring neither a
listening test nor or reference signal, i.e., s(n) or dref(n). The
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Fig. 1. Overview of the feature extraction for one time frame. Contrary to
previous works [23], [28], [30], the proposed measure does not average the
features over time before applying the predicting function.

proposed measure relies on extracting a set of time-varying fea-
tures which are used as input to a predicting function. Section II-
A describes the considered features before presenting the RNN
used as predicting function in Section II-B.

A. Considered Features

The proposed measure uses modulation energies (MEs) as
features, which have already been used in the field of speech
quality prediction in [30] and further elaborated in [23], [28].
The computation of these features is depicted in Fig. 1 and can
be summarized as follows.

First, the signal under test ŝ(n) is filtered by a gammatone
filterbank with J channels, resulting in J filtered signals s̃j [n],
where j denotes the filter index. The temporal envelope ej(n)
is extracted from s̃j [n] as

ej(n) =
√

s̃2j [n] +H{s̃j [n]}2, (7)

where H{·} denotes the Hilbert transform. The temporal en-
velopes are divided into L = �N/(W −O)� overlapping win-
dowed frames using an overlap of O samples and a window
of length W , with N the signal length. The modulation spectral
energy ej(k, �) is computed as the squared magnitude of the dis-
crete Fourier transform of the �-th frame in the k-th modulation
frequency bin.

The modulation spectral energies ej(k, �), for frequency bins
in the interval kmin to kmax, are warped intoB overlapping mod-
ulation bands whose centre frequencies are set as in [23], result-
ing in the warped modulation energies ẽj(b, �), where b denotes
the index of the modulation band. As proposed in [23], thresh-
olding is applied to ẽj(b, �), resulting in αepeak ≤ ěj(b, �) ∈≤
epeak, where 0 ≤ α < 1 and where

epeak = max
j,b

(
1

L

L−1∑
�=0

ẽj(b, �)

)
. (8)

Finally, a feature vector e� of length J ·B is constructed for
each time frame as

e� =
[
ě0(0, �), . . . , ě0(B − 1, �), . . . ,

ěJ−1(0, �), . . . , ěJ−1(B − 1, �)
]T

,
(9)

where superscript T denotes the transpose operator.

In this paper, the different parameters of the feature extraction
have been set as in [23]. The gammatone filterbank is applied
to signals downsampled to 8 kHz and uses J = 23 channels
with center frequencies ranging from 125 Hz to 4 kHz. The
modulation frequency bins are grouped into B = 8 bands. The
temporal envelope ej(n) is divided in frames using a Hamming
window of length W corresponding to 256 ms and an overlap of
length O corresponding to 224 ms. The indices kmin and kmax

correspond to the range of modulation frequencies between 4 Hz
and 40 Hz and α is set to lower bound modulation energies
30 dB below epeak. These values have been shown to reduce
the sensitivity of the extracted features to speakers and pitch
content [23] compared to the settings initially proposed in [30].

It can be noted that previous use of the ME for speech quality
prediction [23], [28], [30] used a single feature vector e of length
B to represent the signal ŝ(n), i.e,

e =
[
e(0) e(1) . . . e(B − 1)

]T
, (10)

where

e(b) =
1

JL

J−1∑
j=0

L−1∑
�=0

ěj(b, �). (11)

The SRMR [30] and the normalized SRMR (SRMRnorm) [23]
differ in the extraction of the vector e but both compute the es-
timate p̂ŝ as the ratio between the lower and higher coefficients
of e. The measure proposed by the author in [28] computes the
estimate p̂ŝ as the output of a model tree, i.e., a combination of
classification rules and regression but uses the same features as
in [23] and therefore does not take into account time dependen-
cies in the input signal. We propose to compute the estimate p̂ŝ
using a time ordered sequence of vectors and a trained LSTM-
Network.

B. LSTM Network as Predictive Function

Artificial neural networks (ANN) are composed of several
layers. Each λ-th layer applies a non linear mapping to an input
vector xλ, of length Lλ

x, in order to compute an output vector zλ,
of length Lλ

z . This mapping is applied by multiplying a weight
matrix Wλ

x,z of size Lλ
z × Lλ

x, where subscripts indicate the con-
nections represented by the matrix, with the input vector xλ

before summing the results with a bias vector bλ
z of length Lλ

z
and applying a non-linear activation function F (·) to the result,
i.e.,

zλ = F (Wλ
x,zxλ + bλ

z

)
. (12)

The values of Wλ
x,z and bλ

z have to be learned during a training
phase (cf. Section IV-B) and any number of layers can be used
by setting xλ = zλ−1. Layers described by (12) and networks
composed exclusively of such layers are commonly qualified as
feed-forward.

The use of RNNs is a common extension of (12) to take time
dependencies into account. Similarly as feed-forward artificial
neural networks (ANNs), RNNs are composed of several layers.
However, the input of the λ-th RNN layer is an ordered sequence
Xλ of T λ input vectors xλ

t , where t ∈ [0, T λ − 1] denotes the



1154 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 7, JULY 2019

Fig. 2. Overview of the updates applied by an LSTM-layer. Updates are ap-
plied along the time-ordered sequence of input vectors resulting in a sequence
of hidden vectors used to compute the output of the layer as in (15). The value
of each hidden vector depends on the current input as well as on the memory
cell and of the weights applied in the input, output and forget gates.

sequence index, i.e.,

Xλ =
{

xλ
0,x

λ
1, . . . ,x

λ
T λ−1

}
. (13)

Each layer of an RNN computes a sequence Hλ of hidden vec-
tors hλ

t of length Lλ
h and a sequence Zλ of output vectors zλ

t of
lengthLλ

z , both containingT λ vectors and defined similarly as in
(13). The vectors in these sequences are computed by iteratively
applying [31]

hλ
t = F (Wλ

x,hxλ
t + Wλ

h,hhλ
t−1 + bλ

h

)
, (14)

zλ
t = F (Wλ

h,zhλ
t + bλ

z

)
, (15)

where Wλ
x,h, Wλ

h,h and Wλ
h,z denote weight matrices of sizeLλ

h ×
Lλ

x, Lλ
h × Lλ

h and Lλ
z × Lλ

h, respectively, and where bλ
h and bλ

z
are bias vectors of length Lλ

h and Lλ
z , respectively.

For our application, i.e., the prediction of speech quality,
RNNs have two main advantages over feed-forward networks.
First, the sequence of hidden vectors computed by an RNN al-
lows the prediction to take into account temporal dependencies;
second, the iterative updates can be applied to a sequence of
arbitrary length. However, the values of the weight matrices and
of the bias vectors still have to be learned during a training
phase and the formulation in (14) and (15) can cause instabil-
ity during training, leading to overly long training time or even
divergence [32]. In order to avoid these issues, so-called gated
units, such as in the LSTM layers used in this paper, are used in
practice.

Though in a standard RNN layer, the function F (·) in (14)
is commonly a simple non-linear function such as a sigmoid,
in an LSTM layer, this function relies on iterative updates of
sequences of vectors, Iλ, Oλ, Fλ and Cλ, the so-called, input
gate, output gate, forget gate and cell memory, respectively and
their mutual influence on the layer’s output is illustrated in Fig. 2.
For each step t of the input sequence Xλ, the vectors iλt and fλt

Fig. 3. Overview of the network used as predicting function. The first LSTM-
layer computes a sequence of input vectors containing as many vectors as frames
available in the target signal. The second LSTM-layer applies updates along this
sequence and the last vector of its output sequence is input to the feed-forward
layer whose sigmoid activation function results in a prediction bounded between
0 and 1.

are computed from the input vector xλ
t and from the memory

cell vector cλ
t−1 saved at the previous step, i.e.,

iλt = S (Wλ
x,ix

λ
t + Wλ

h,ih
λ
t−1 + Wλ

c,ic
λ
t−1 + bλ

i

)
, (16)

fλt = S (Wλ
x,fx

λ
t + Wλ

h,fh
λ
t−1 + Wλ

c,fc
λ
t−1 + bλ

f

)
, (17)

where S (·) denotes the logistic sigmoid function. The resulting
vectors iλt and fλt weight the influence of the current and previous
input, respectively, to the updated vector cλ

t computed as

cλ
t = fλtc

λ
t−1 + iλt tanh

(
Wλ

x,cxλ
t + Wλ

h,chλ
t−1 + bλ

c

)
. (18)

The influence of this memory cell vector cλ
t to the layer output

is weighted by the ouput gate oλ
t computed as

oλ
t = S (Wλ

x,oxλ
t + Wλ

h,ohλ
t−1 + Wλ

c,ocλ
t + bλ

o

)
, (19)

and used to compute the hidden vector hλ
t ,

hλ
t = oλ

t tanh
(
cλ
t

)
, (20)

from which the ouput vector zλ
t is finally computed as per (15).

We propose to use the stacking of Λ = 3 layers as the pre-
dicting function of the quality of processed speech. Using this
network structure, similar to the one used in [33] and depicted
in Fig. 3, the speech quality from a signal ŝ(n) is predicted by
using the sequence of L time ordered frames of features as input
to the first LSTM layer, i.e., for λ = 0 we have T 0 = L , and

X0 =
{

x0
0,x

0
1, . . . ,x

0
T 0−1

}
, with, (21)

x0
t = et, t ∈ [0, T 0 − 1]. (22)

The output sequence, obtained after iterating (16)–(20) and (15)
along the input sequence, is used as input to a second LSTM
layer, i.e., X1 = Z0 and the iterative updates yield the output
sequence Z1. The last vector of this sequence is input to the last,
feed-forward, layer, i.e., x2 = z1T 1−1. Aiming at an estimate p̂ŝ
that is bounded between 0 and 1, we replace F (·) in (12) by a
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TABLE I
EXPECTED BEHAVIOR OF THE CONSIDERED ALGORITHMS

sigmoid and compute the estimate of pŝ as

[p̂ŝ] = S (W2
x,zx2 + bλ

z

)
. (23)

The values of the multiple weight matrices and bias vectors
needed for the computation of (23) can be learned during a train-
ing phase using perceptually labeled training data. Section III
presents the dataset that was collected for this purpose and the
training procedure is described in Section IV.

III. DATASET

In order to train and evaluate the proposed measure described
in Section II, we collected a database of noisy and reverberant
speech signals processed by several categories of algorithms
and labeled in terms of perceived speech quality. This section
provides short descriptions of the considered algorithms before
describing the perceptual evaluation conducted in order to label
signals in terms of perceived speech quality.

A. Considered Algorithms

The algorithms considered in this paper process the recorded
signal in the short-time Fourier transform (STFT) domain, in
which the signal model from (1)–(2) can be expressed as

ym(k, �) = xm(k, �) + vm(k, �), (24)

ym(k, �) = Xd
m,k�+Xr

m,k�+ vm(k, �), (25)

where ym(k, �), xm(k, �), vm(k, �), Xd
m,k� and Xr

m,k� denote
the STFTs of ym(n), xm(n), vm(n), dm(n), and rm(n), respec-
tively.

These algorithms aim at computing the STFT ŝ(k, �) of ŝ(n)
from ym(k, �). In addition to the unprocessed (UN) version of
the signal, we considered three categories of algorithms, namely,
single-channel spectral suppression (SC) [34], the minimum
variance distortionless response (MVDR) beamformer and the
application of this beamformer to the output of the generalized
weighted prediction error (GWPE) [35], denoted by GWPE-
MVDR. These algorithms have been chosen for their applica-
bility to realistic scenarios, e.g., real-time applications, as well
as to provide a wide range of processing artefacts typically oc-
curring in different reverberation and noise conditions. The ex-
pected behavior of the algorithms in terms of interference re-
duction and introduced distortions is summarized in Table I and
the categories of algorithms are briefly described in the next
subsections.

All signals have a sampling frequency of fs =16 kHz. Noisy
and reverberant signals have been generated by convolving clean
speech extracted from the WSJCAM0 database [36] with RIRs
and adding noise to the resulting reverberant speech. We used

TABLE II
RIRS USED TO GENERATE THE RECORDINGS ALONG WITH THEIR

RESPECTIVE CHARACTERISTICS

3 different RIRs extracted from the ACE challenge dataset [37]
recorded using a 42 cm linear array of M = 8 equidistant mi-
crophones, whose characteristics, summarized in Table II, have
been selected to represent a wide range of reverberation levels.
We considered two noise types, namely fan noise and babble,
for which noise signals recorded in the same rooms and with
the same microphones positions as for the RIRs are available.
We consider two SNRs, namely of 5 dB and 15 dB, calculated
according to [38]. The 12 resulting combinations of RIRs with
noise types and SNRs will be referred to as acoustic condi-
tions in the remainder of this paper. When referring to UN as an
algorithm, we consider ŝ(n) = yref(n) with ref arbitrarily set
to 1.

1) Single-Channel Spectral Suppression (SC): SC algo-
rithms estimate ŝ(k, �) by applying a real valued gain to the
STFT of one of the input channel, i.e.,

ŝ(k, �) = g(k, �)yref(k, �). (26)

The gain g(k, �) is computed as

g(k, �) = max (g̃(k, �), gmin) , (27)

where gmin is a spectral floor introduced to limit possible speech
distortion and where g̃(k, �) is in this paper computed as the
solution to the minimum mean square error (MMSE) estimator
of the speech amplitude proposed in [39], i.e.,

g̃(k, �) =

√
ξ(k, �)

μ+ ξ(k, �)
·

⎡
⎣Gam

(
μ+ β

2

)
Gam (μ)

Φ
(
1− μ− β

2 , 1;−ν(k, �)
)

Φ(1− μ, 1;−ν(k, �))

⎤
⎦
1/β

·

(√
γ(k, �)

)−1

,

(28)

where

ν(k, �) =
γ(k, �)ξ(k, �)

μ+ ξ(k, �)
, (29)

and where Φ(·) and Gam (·) denote the confluent hypergeomet-
ric function and the complete Gamma function [40], respec-
tively, and where β and μ are parameters of the assumed speech
amplitude distribution [34]. Additionally, ξ(k, �) denotes the a
priori signal-to-interference ratio (SIR) defined as

ξ(k, �) =
σ2
d,ref(k, �)

σ2
r,ref(k, �) + σ2

v,ref(k, �)
, (30)
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and γ(k, �) denotes the a posteriori SIR, defined as

γ(k, �) =
|yref(k, �)|2

σ2
r,ref(k, �) + σ2

v,ref(k, �)
. (31)

In (30) and (31), σ2
d,ref(k, �), σ

2
r,ref(k, �) and σ2

v,ref(k, �) denote
power spectral densities (PSDs), i.e.,

σ2
d,ref(k, �) = E

{|dref(k, �)|2} , (32)

where E {·} denotes the expectation operator, and with
σ2
r,ref(k, �) and σ2

v,ref(k, �) defined similarly. In practice, these
power spectral densitys (PSDs) are unknown and their estimates,
σ̂2
d,ref (k, �), σ̂

2
r,ref (k, �) and σ̂2

v,ref (k, �) have to be used instead.
The choice of the PSD estimators can greatly influence the

performance of SC algorithms. In this paper, we denote by ‘SCa’
the combination described in [34], which has been shown effec-
tive in improving speech qualtiy in reverberant scenarios [41],
[42]. The estimates of the PSDs, σ2

v,ref(k, �), σ
2
r,ref(k, �) and

σ2
d,ref(k, �), are estimated using a modified version of the well

known minimum statistics (MS) estimator [43], the Lebart ap-
proach [44] and cepstral smoothing [45], respectively, g̃(k, �)
is computed using (28) and gmin is set to a minimum gain of
−10 dB. A detailed description of the approach is available
in [34].

Aiming at measuring the effect of distortions that a poorly
tuned SC algorithm could introduce, we used a modified ver-
sion of this scheme denoted by ‘SCb’. In this case, we esti-
mate σ2

v,ref(k, �) and σ2
d,ref(k, �) using the estimators proposed

in [46] and in [47], respectively, and set gmin to a minimum gain
of −30 dB.

2) MVDR Beamformer: The MVDR beamformer consid-
ered in this paper estimates ŝ(k, �) by filtering and summing
the STFT coefficients of the multichannel input, i.e., with su-
perscript H denoting hermitian conjugation,

ŝ(k, �) = wH
θ̂
(k)y(k, �) (33)

where wθ̂(k) denotes the stacked filter coefficient vector of the
beamformer steered towards the estimate θ̂ of the direction of
arrival (DOA), θ, of the target speech and where y(k, �) denotes
the M -dimensional stacked vector of the received microphone
signals

y(k, �) = [y1(k, �) y2(k, �) . . . yM (k, �)]T. (34)

Aiming at minimizing the noise power while providing a unity
gain in the direction of the target speech, the filter coefficients
of the MVDR beamformer are computed as [48]

wθ̂(k) =
Γ̂
−1
(k)dθ̂(k)

dH
θ̂
(k)Γ̂

−1
(k)dθ̂(k)

, (35)

where dθ(k) and Γ̂(k) denote the steering vector of the target
speaker and the noise coherence matrix, respectively.

In this paper, the estimate Γ̂(k) is computed as

Γ̂(k) = Γ(k) + 
(k)IM , (36)

where Γ(k) denotes the coherence matrix of a diffuse noise
field [48], IM denotes the M ×M -dimensional identity matrix

and 
(k) denotes a frequency-dependent regularization param-
eter used to limit potential amplification of uncorrelated noise,
especially at low frequencies. This regularization parameter is
computed iteratively such that

wH
θ̂
(k)wθ̂(k) ≤ WNGmax, (37)

where WNGmax denotes the so-called white noise gain con-
straint [49]. In this paper we set this constraint to −10 dB, com-
pute the steering vector dθ̂(k) using a far-field assumption and
measure the true θ from the main peaks of the used RIRs. In order
to evaluate the impact of steering error on the performance of the
beamformer we consider perfectly steered, i.e., θ̂ = θ, denoted
by ‘MVDRa’, and missteered beamformer, i.e., θ̂ = θ + εθ̂ with
εθ̂ = π/4 denoted by ‘MVDRb’.

3) GWPE-MVDR: The combination of GWPE and MVDR
beamformer (GWPE-MVDR) considered in this paper estimates
ŝ(k, �) as

ŝ(k, �) = wH
θ̂
(k) (y(k, �)− r̂(k, �)) , (38)

where wθ̂(k) is computed as in (35) and

r̂(k, �) = [r̂1(k, �) r̂2(k, �) . . . r̂M (k, �)]T, (39)

where r̂m(k, �) denotes an estimate of Xr
m,k�, i.e., ŝ(k, �) is

estimated by subtracting a complex valued estimate of the late
reverberation from the multichannel input signal before applying
an MVDR beamformer.

In this paper, the estimate r̂(k, �) is computed using the ap-
proach described in [35], i.e., as

r̂(k, �) = PH(k, �)ỹ(k, �−Δ), (40)

where Δ denotes a delay introduced to preserve the early reflec-
tions, and

P(k, �) = [p1(k, �) · · ·pM (k, �)] ∈ CMLP×M , (41)

where pm(k, �) ∈ CMLP denotes a multichannel prediction fil-
ter, and

ỹ(k, �) = [y1(k, �) · · · y1(k, �− LP + 1) · · ·
yM (k, �) · · · yM (k, �− LP + 1)]T,

(42)

denotes a vector of STFT coefficients of length M · LP .
For each time-frequency bin, the matrix P(k, �) is computed

by applying γ iterative updates aiming at solving the optimiza-
tion problem [35]

argmin
P(k,�)

tr
{

PH(k, �)Â(k, �)P(k, �)
}

− 2�
{
tr
{

PH(k, �)B̂(k, �)
}}

subject to |PH(k, �)ỹ(k, �−Δ)|2 ≤ σ̂2
r (k, �) ,

(43)

where

σ̂2
r (k, �) = [σ̂2

r,1 (k, �) · · · σ̂2
r,M (k, �)]T, (44)
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and σ̂2
r,m (k, �) is computed similarly as in Section III-A1 and

with

Â(k, �) =

�∑
i=1

δ�−iŵP (k, i)ỹ(k, i−Δ)ỹH(k, i−Δ), (45)

B̂(k, �) =

�∑
i=1

δ�−iŵP (k, i)ỹ(k, i−Δ)yH(k, i), (46)

where δ ∈ [0, 1] denotes a smoothing constant, and ŵP (k, �) de-
notes the weight used to emphasize frames where the the signal
to be preserved is expected to have low power, computed as

ŵP (k, �) =

(
1

M
‖σ̂2

d (k, �) ‖22 + ε

)−1

, (47)

where ε denotes a small regularization constant and where

σ̂2
d (k, �) = [σ̂2

d,1 (k, �) · · · σ̂2
d,M (k, �)]T, (48)

where σ̂2
d,m (k, �) is an estimate of σ2

d,m(k, �) computed from
σ̂2
r,m (k, �) and σ̂2

y,m (k, �) using recursive temporal smoothing.
It can be noted that the optimization problem in (43) does

not take noise into account as the approach presented in [35] has
been designed aiming at dereverberation in noise-free scenarios.
The filtered noise signal resulting from (38) might have different
spatial properties than the noise signal recorded by the micro-
phones and might result in lower noise reduction achieved by
GWPE-MVDR compared to MVDR alone. In practice, GWPE-
MVDR could be combined with spectral suppression to over-
come such drawbacks. Such combination has not been consid-
ered in this paper in order to obtain processed signals containing
a wide range of processing artefacts. We used prediction filters
of length LP = 5 and a smoothing constant δ = 0.95. Other
parameters have been set as in [35]. Similarly as for MVDR,
we consider both perfect steering and steering error and refer
to the corresponding settings as ‘GWPE-MVDRa’ and ‘GWPE-
MVDRb’, respectively.

All STFTs have been computed using a Hamming window. In
the case of SC and MVDR, we used a window of 32 ms and an
overlap of 16 ms while in the case of GWPE-MVDR, we used a
window of 64 ms and an overlap of 48 ms, in order to replicate
the implementation from [34] and [35].

B. Perceptual Evaluation

In order to obtain a dataset of processed signals labeled in
terms of overall quality, we conducted a MUSHRA test [7] in-
volving 20 self-reported normal-hearing assessors. All asses-
sors evaluated all combinations of the algorithm categories SC,
MVDR and GWPE-MVDR, with two settings being considered
for each, e.g., SCa and SCb, with the 12 acoustic conditions de-
scribed in Section III-A. For each assessor, this total of 72 com-
binations was divided into two equally sized groups assigned to
two sessions of listening tests. For each session, the UN algo-
rithm was added to the group of combinations to be evaluated
resulting in a total of 48 combinations per session and per as-
sessor. The 48 combinations were randomly divided into six
partitions and three clean male speech and three clean female

TABLE III
OVERVIEW OF THE DATABASE OF PERCEPTUALLY EVALUATED DATA,

EXCLUDING REFERENCES AND ANCHORS. NUMBERS DENOTE THE DURATION

IN MINUTES, FOR EACH COMBINATION OF ACOUSTIC CONDITION AND

ALGORITHM, FOR A TOTAL OF 5.23 HOURS AND 1920 PERCEPTUALLY

EVALUATED SIGNALS

speech utterances were randomly extracted from the WSJCAM0
database [36], with a sanity check insuring that no utterance
would have been previously assigned to another session or as-
sessor. One clean speech utterance was randomly assigned to
each partition and used to generate signals, for the correspond-
ing combinations as described in Section III-A. Each partition
was appended with the clean signal, used as reference signal,
and two anchors, differing in the type of considered noise sig-
nal, either babble or fan noise. These anchors were generated
by convolving the clean signal with the first channel of RIR 3
(cf. Table I), and adding noise with a SNR of 5 dB measured
according to [38] and band-pass filtering the resulting noisy and
reverberant signal according to [50]. Once all signals were gen-
erated, the test procedure for each assessor was conducted as
follows.

The signals under test were normalized to have their max-
imum level, calculated over segments of 500 ms, equal to
65 dB SPL. Stimuli were diotically presented over headphones
(Senheiser HD200) in a soundproof booth. The speech material
presented to the assessor was first presented in a training phase
during which the assessor could listen to all stimuli in order
to become familiar with the material. Subsequently, the signals
corresponding to each partition of test conditions were presented
simultaneously on a screen. For each signal, there was a corre-
sponding slider that the assessor was prompted to use in order
to grade the overall quality of the material on an integer-valued
scale between 0 (poor) and 100 (excellent). The scores assigned
to the reference and anchor conditions were used to ensure that
the assessors conducted the taskreliably, i.e., that they assigned
the highest score to the hidden reference and a low score to the
anchor. The significance of differences between the 12 acous-
tic conditions was assessed using a repeated-measures analysis
of variance (ANOVA) and post-hoc analysis, whose details are
presented in Appendix A. An overview of the collected dataset
is presented in Table III and the scores for all combinations are
summarized in Fig. 4. In the remainder of this paper, we consider
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Fig. 4. MUSHRA scores after removing references and anchors, for all com-
binations of acoustic conditions, algorithms and settings. The mean, represented
by a red dot, is considered the ground truth.

the true perceived speech quality of a signal to be the mean of
the scores assigned by the assessors to all signals of the same
acoustic condition, algorithm and algorithm setting and refer to
it as the ground truth.

IV. EXPERIMENTS

A. Benchmark and Figures of Merit

The results presented in Section V compare the performance
of the proposed measure with several measures of the literature.
Though aiming at non-intrusive prediction of the speech qual-
ity, our benchmark includes three intrusive measures, namely
PESQ [15], POLQA [16], PEMO-Q [17] as they are commonly
used to evaluate speech enhancement algorithms. It should how-
ever be emphasized that, as the computation of these measures
requires the clean reference signal, they are not applicable in all
scenarios and have an advantage in terms of performance com-
pared to non-intrusive measures. Our benchmark includes four
non-intrusive measures, namely P.563 [20], ANIQUE+ [21],
SRMRnorm [23] and the combination of modulation energies
and model tree proposed by the author in [28] and denoted by
‘Tree’. It should be noted that both Tree and the proposed mea-
sure rely on predicting functions trained using machine-learning
techniques and that, contrary to the other considered measures,
their performance depends on the data included in the training
set.

We assess the performance of the proposed measure and of
the benchmark measures using four figures of merit. For each
measure, the linear relationship between the predicted quality
and the ground truth is quantified using the Pearson correlation
coefficient ρ, the ranking capability of each measure is quan-
tified by the Spearman rank correlation coefficient ρspear and
the correlation coefficient ρsig is computed similarly as ρ after
applying a sigmoidal mapping, whose parameters are computed
from the training set, to the predicted values. Finally, ε−RMSE
is used to represent the error between the predicted value and the

ground truth. This figure of merit is similar to the conventional
RMSE but takes the uncertainty of the subjective ratings into
account, i.e., ε−RMSE will be lower if the variance of the sub-
jective ratings is high. An ideal measure should yield correlation
values close to one and an ε−RMSE close to zero. Details on
the computation of ρsig and ε−RMSE can be found in [51].

B. Training Framework

The training of the predicting functions used by the proposed
approach and of Tree, as well as the linear mapping used in the
computation of ρsig require a training set of signals for which
the ground truth value of pŝ is known. Additionally, a testing
set is needed to assess the performance of these trained mea-
sures and of the benchmark measures listed above. The network
described in Section II was set with L0

h = L1
h = 128 and was

trained using Keras [52] and the Adam algorithm [53]. During
training, zero padding was applied to ensure that all sequences
had same length and a masking layer was added before the first
LSTM layer to ignore time frames containing only zeros. Each
training epoch computed as many iterations as needed to take
the entire training set into account using a batch size of 128 se-
quences. In our implementation Dropout [54] was applied both
to the input of the network and to the output of each LSTM layer,
i.e., 30% of the values input to the network and output by each
LSTM layer were randomly selected and replaced by zeros at
each iteration. At each iteration, the model, i.e., weight matrices
and bias vectors, was updated to minimize the mean squared er-
ror (MSE) between the predicted and ground truth value of the
speech quality assigned to each file of the training set. In order
to avoid overfitting, 10% of the training set was set aside prior
to each training phase to be used as a validation set. The training
algorithm computed 500 epochs and testing was done using the
model that yielded the lowest MSE over the validation set.

We conducted three experiments that differ in the training and
testing sets constructed from the dataset presented in Section III.
In all experiments, anchors and reference signals were discarded
before training and testing. The first experiment aims at assess-
ing the ability of the proposed measure to predict the speech
quality from signals processed using a single category of algo-
rithms, e.g., SC, but different settings, e.g., SCa and SCb. For this
purpose, the dataset was divided into 4 subsets containing only
files processed with the same category of algorithm (UN, SC,
MVDR and GWPE-MVDR). For each subset, we used 5-folds
cross validation, proceeding as follows. The 20 assessors have
been randomly divided into 5 equally-sized disjoint groups. For
each fold, the signals in one of these groups were considered as
the test set, while the data corresponding to the remaining groups
were used for training. Using this folding, assessors, speech
stimuli and noise segments always differ between training and
testing. The second experiment aims at assessing the ability of
the proposed measure to predict the speech quality from signals
processed with a variety of algorithms categories. For this pur-
pose, we use the same 5-folds validation procedure but apply it
to the entire collected dataset. We used the same training sets
and folds for the proposed approach, Tree, and learning of the
parameters of the sigmoid used in the computation of ρsig.
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Fig. 5. Performance of the considered measures in terms of ρsig (top) and ε−RMSE (bottom). The labels along the x-axis denote the category of algorithms
included in training and testing sets. Numbers in bold typeface denote the best attained performance (statistically indifferent) per considered category of algorithm.

The third experiment examines the behavior of the proposed
approach in case of mismatch between the algorithms included
in the training and the testing set. For this purpose, all signals
processed with a single category of algorithms are included in
the testing set while all others are included in the training set. It
should be noted that using such partition yields a larger training
set than for the previous experiments.

The figures of merit reported for the first and second exper-
iments in Section V are averaged over all folds. In the case of
the correlation measures, a Fisher Z-test, at a significance level
of 0.05, has been conducted before averaging to ensure that the
values did not differ significantly between folds [55]. A similar
Fisher Z-test has been used to determine if the difference be-
tween the correlations measures yielded by the considered mea-
sures were significant. In the case of ε−RMSE, significance
was determined using the F-measure criteria suggested by ITU-
T in [56] and detailed, e.g., in [51].

V. RESULTS

This section reports the results obtained considering the differ-
ent training and testing sets previously described. As the three
measures of correlation showed similar behavior at all of the
considered measures we only report ρsig and ε− RMSE. The
performance obtained when training and testing the proposed
measure for a single category of algorithms at a time are de-
picted in Fig. 5 along with the performance of the considered
benchmark measures on the same testing sets. With the excep-
tion of the proposed measure, non-intrusive measures are con-
sistently outperformed by intrusive measures, as could be ex-
pected. The proposed measure, however, yields similar perfor-
mance as the intrusive measures for all considered categories

of algorithms and, when training and testing on either unpro-
cessed signals (UN) or signals processed using the MVDR beam-
former, there is no significant difference between the proposed
measure and the intrusive measures (indicated by bold typeface
in Fig. 5). Although for SC and GWPE-MVDR the proposed
measure yields a slightly poorer performance than the intrusive
measures, it outperforms all non-intrusive measures in terms
of both ρsig and ε− RMSE, except for GWPE-MVDR where
the proposed measure yields a slightly higher ε− RMSE than
the benchmark measures. The non-intrusive benchmark mea-
sures yield similar performance for unprocessed signals but per-
form inconsistently across the other categories of algorithms.
Notably, ANIQUE+, SRMRnorm and Tree yield low ρsig (0.2
to 0.4) and high ε− RMSE (0.2 to 0.3) in the case of SC. As
both SRMRnorm and Tree use ME features which are, contrary
to the case of the proposed measure, averaged over time, this
suggests that taking into account the time-dependency is bene-
ficial. It can be noted than the difference in performance along
different categories of algorithms is coherent with the results
from previous works such as [25], in which it appeared that ex-
isting quality measures are often reliable when considering only
one category of algorithms.

The performance obtained when training and testing the pro-
posed measure for all categories of algorithms are depicted in
Fig. 6 along with the performance of the considered benchmark
measures on the same testing sets. Unsurprisingly, for all mea-
sures, correlations are lower than when considering a single cat-
egory at a time and, still with the exception of the proposed
measure, non-intrusive measures are consistently outperformed
by intrusive measures. The measure Tree performs poorly sug-
gesting that, though it had been shown to yield high correlations
in [28], it is not suitable to predict the speech quality in various
acoustic conditions or with algorithms that might produce high
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Fig. 6. Performance of the considered measures in terms of ρsig (top) and
ε−RMSE (bottom). All considered categories of algorithms were included in
both training and testing sets. Numbers in bold typeface denote the best attained
performance (statistically indifferent).

Fig. 7. Scatter plot of the predicted speech quality over ground truth data for
SRMRnorm and the proposed measure when trained and tested for all con-
sidered algorithm categories, for all signals. Values corresponding to signals
processed using SCa and SCb are highlighted, for readability, scores are nor-
malized to range between 0 and 1.

levels of distortions. Similarly as in the case of SC showed in
Fig. 5, SRMRnorm performs poorly with ρsig = 0.09, while the
proposed measure outperforms all measures, including the in-
trusive ones, in terms of both ρsig and ε− RMSE. This behavior
is better illustrated in Fig. 7. In terms of ground truth, a clear
divide appears between SCa and SCb, illustrating the clear pref-
erence of assessors for the well tuned single-channel scheme
(SCa) over the purposefully poorly tuned (SCb). It appears as
well that SRMRnorm largely overestimates the speech quality
for signals processed with SCb while the proposed measure is
able to adequately reflect the difference in performance between
the two settings. This behavior is to be expected as, by averaging
features over time, SRMRnorm effectively discards information
about time-varying distortions (such as musical noise) while the
proposed measure is designed to model such time-dependent
effects.

As the RNN used as predicting function for the proposed
measure is dependent on a training phase, one might want to
consider the performance obtained in case of mismatch between
the algorithms included in the training and the testing set. The
performance of Tree and of the proposed measure in the presence
of such mismatch is depicted in Fig. 8. It appears that when

Fig. 8. Performance of the considered measures in terms of ρsig (top) and ε−
RMSE (bottom). The labels along the x-axis denote the category of algorithms
included in testing sets while other categories were included in training.

Fig. 9. Scatter plot of the predicted speech quality over ground truth data
for Tree (left) and the proposed measure (right) when using a testing set of
signals processed using either generalized weighted prediction error and MVDR
beamformer (GWPE-MVDR) (top) or SC (bottom). Scores are normalized to
range between 0 and 1.

using a testing set composed of signals processed using either
UN or MVDR, both Tree and the proposed measure yield similar
performance as in the previous experiments in terms of ρsig and
an even lower ε− RMSE. Such behavior can be explained by
the fact that MVDR, even misteered, does not introduce large
amount of distortions and that the predicting functions were
trained on a larger training set. However, mismatch between
algorithms included in training and testing greatly deteriorates
performance of both Tree and the proposed measure when the
testing set is composed of signals processed using either GWPE-
MVDR or SC.

In the case of GWPE-MVDR, for the proposed measure,
correlation decreases only slightly in comparison with previ-
ous experiments, ρsig = 0.75. However, the variance is high,
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ε− RMSE = 0.31. In the case of SC, both Tree and the pro-
posed measure fail in their prediction, with low correlations
ρsig = 0.30 and ρsig = 0.25 for Tree and the proposed mea-
sure, respectively. This difference in performance between the
two measures and algorithms considered for testing is better
illustrated in Fig. 9.

It appears that in the case of GWPE-MVDR, Tree does not
yield an accurate prediction for any of the settings, i.e., GWPE-
MVDRa and GWPE-MVDRb, while the proposed measure
seems to overestimate the quality of signals processed with
GWPE-MVDRa. It the case of SC, Tree fails similarly as in the
GWPE-MVDR case but the poor performance of the proposed
measure seems to come from an overestimation of the quality
of signals processed using SCb. This behavior is unsurprising
considering that the distortions introduced by spectral suppres-
sion, e.g., musical noise, differ greatly from the ones introduced
by the other algorithms and that using this mismatch training
set the predicting functions could not take them into account.
Consequently, the proposed measure cannot be reliably used if
the algorithm category under test is not included in the training
set.

VI. CONCLUSION

Aiming at non-intrusively predicting the quality of processed
signals, in this paper, we proposed a combination of modulation
energies and of an RNN with LSTM cells that takes the time-
dependency of the target signal into account. For this purpose,
we collected a large dataset of perceptually evaluated signals
representing a wide range of acoustic conditions and various
categories of algorithms with different settings. We conducted
several experiments, differing in terms of training and testing
sets used to train and evaluate the proposed measure. The aim of
these experiments was to evaluate the reliability of the proposed
measure when trained and tested for either a single category
of algorithms or several categories, and to investigate the per-
formance of the measure in case of a mismatch between the
algorithms included in the training and the testing sets.

Experimental results show that when trained and tested for
a single category of algorithms, the proposed measure outper-
forms the considered non-intrusive benchmark measures and
yields a similar performance as the intrusive benchmark mea-
sures. When trained and tested for several categories of algo-
rithms, the proposed measure outperforms both intrusive and
non-intrusive benchmark measures. However, as could be ex-
pected, the proposed measure can be unreliable in case of a mis-
match in terms of algorithms between the training and testing
sets. Consequently, the proposed measure might not be suitable
to assess the performance of completely new categories of algo-
rithms, but could be a useful approach for the real-time selection
of algorithms or algorithm parameters.

APPENDIX A
STATISTICAL ANALYSIS OF PERCEPTUAL SCORES

A repeated-measures analysis of variance (ANOVA) and post-
hoc analysis was applied to the perceptual scores presented in
Subsection III-B in order to assess the significance of differences

between the 12 acoustic conditions. This analysis indicated that
all three acoustic factors, i.e., RIR, noise type and SNR, signif-
icantly affected the rating scores.

First, there was a significant effect of RIR (F (2, 38) =
11.4, p = 0.0013, η2p = 0.376) which was mainly due to sig-
nificantly lower scores for RIR 2 (mean M = 37.2) compared
to RIR 1 (M = 42.8) and RIR 3 (M = 41.6, paired t(19) >
3.6, p < 0.002) but no significant differences between RIR 1 and
RIR 3 (t(19) = 0.82, p = 0.42). Second, there was a significant
effect of noise type (F (1, 19) = 23.2, p < 0.001, η2p = 0.55)
and fan noise (M = 43.2) was rated significantly higher com-
pared to babble noise (M = 37.9). Third, there was a significant
of SNR (F (1, 19) = 204.4, p < 0.001, η2p = 0.91) and the 5 dB
condition (M = 33.0) was rated significantly lower compared
to 15 dB condition (M = 48.0).

In addition, there was a significant interaction between RIR
and SNR (F (2, 38) = 40.9, p < 0.001, η2p = 0.68). At 5 dB this
was associated with significantly lower scores of RIR 1 (M =
32.6) and RIR 2 (M = 28.6) compared to RIR 3 (M = 38.0,
paired t(19) > 3.4, p < 0.018, Bonferroni-corrected for mul-
tiple comparisons, n = 6) and only marginal differences be-
tween RIR 1 and RIR 2 (t(19) = 2.8, p = 0.0624). At 15 dB
this was associated with significantly higher scores of RIR
1 (M = 53.1) compared to RIR 2 (M = 45.8) and RIR 3
(M = 45.2, paired t(19) > 4.0, p < .001) but no significant dif-
ferences between RIR 2 and RIR 3 (t(19) = 0.4, p = 0.72).
The above two-way interaction appears to be partially driven
by the significant three-way interaction of RIR, noise type,
and SNR (F (2, 38) = 5.0, p = 0.0119, η2p = 0.21). This inter-
action was due to insignificant differences of RIR 1 at 5 dB fan
noise (M = 33.2) compared to babble noise (M = 32.0, paired
t(19) = 0.53, p = 0.59) and insignificant differences of RIR 3
at 15 dB fan noise (M = 47.6) compared to babble noise (M =
42.9, t(19) = 2.2, p = 0.23) but at least marginally significant
differences between the two noise types in all other combina-
tions of conditions (t(19) > 2.8, p < 0.065, using Bonferroni-
correction for multiple comparisons, n = 6).
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