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ABSTRACT

A well-known binaural noise reduction algorithm is the binaural
minimum variance distortionless response beamformer, which can
be steered using the relative transfer function (RTF) vectors of the
desired source. In this paper, we consider the recently proposed
spatial coherence (SC) method to estimate the RTF vectors, requir-
ing an additional external microphone that is spatially separated
from the head-mounted microphones. Although the SC method
provides a biased estimate of the RTF between the head-mounted
microphones and the external microphone, we show that this bias
is real-valued and only depends on the SNR in the external micro-
phone. We propose to use the SC method to estimate the extended
RTF vectors that also incorporate the external microphone, enabling
to filter the external microphone signal in conjunction with the
head-mounted microphones. Evaluation results using recorded sig-
nals of a moving speaker in diffuse noise show that the SC method
yields a slightly better performance than the widely used covariance
whitening method at a much lower computational complexity.

Index Terms— noise reduction, binaural cues, external micro-
phone, relative transfer function, MVDR beamformer

1. INTRODUCTION

Noise reduction algorithms for head-mounted assistive listening de-
vices (e.g., hearing aids) are crucial to improve speech intelligibility
and speech quality in noisy environments. Binaural noise reduction
algorithms are able to use the spatial information captured by all mi-
crophones on both sides of the head [1, 2]. Besides suppressing un-
desired sound sources, binaural noise reduction algorithms also aim
at preserving the listener’s spatial perception of the acoustic scene,
to reduce confusions due to a possible mismatch between acoustical
and visual information and to enable the listener to exploit the bin-
aural hearing advantage [3].
As shown in [1, 2, 4], the binaural minimum variance distortionless
response beamformer (BMVDR) beamformer is able to preserve the
binaural cues, i.e., the interaural level difference (ILD) and the in-
teraural time difference (ITD), of the desired source. The BMVDR
beamformer can either be implemented using the acoustic transfer
functions (ATFs) between the desired source and all microphones or
using the relative transfer functions (RTFs), relating the ATFs to a
reference microphone [5].
Aiming at improving the performance of (binaural) noise reduction
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and source localisation algorithms, recently the use of an external
microphone in combination with the head-mounted microphones has
been explored [6–13]. In this paper, we consider a recently proposed
computationally efficient RTF estimator exploiting the external mi-
crophone [11, 12]. This RTF estimator is based on a spatial coher-
ence (SC) assumption about the noise field, namely that the noise
component in the external microphone signal is uncorrelated with
the noise component in the head-mounted microphone signals. Since
the SC method provides a biased estimate of the RTF between the
head-mounted microphones and the external microphone, in [11,12]
the SC method was only used to estimate the RTF vector of the head-
mounted microphones and not the complete RTF vector including
the external microphone.
In this paper, we show that this bias is real-valued (hence not af-
fecting the phase of the RTF estimate) and only depends on the
SNR in the external microphone. Furthermore, we show that the
filter coefficients of the BMVDR beamformer are only scaled by
real-valued factors. Therefore, in this paper we explore the usage
of the SC method to estimate the complete RTF vector and com-
pare its performance to the widely used covariance whitening (CW)
method [14, 15], which is based on the eigenvalue decomposition
of the pre-whitened noisy covariance matrix and hence has a much
larger computational complexity than the SC method. Contrary to
the simulations in [11, 12] with a spatially stationary speaker, in
this paper we consider a highly dynamic scenario with a moving
speaker in a reverberant environment with diffuse noise. Simula-
tion results show that the performance of the SC method is similar
(even slightly better) than the CW method at a much lower com-
putational complexity. Moreover, simulation results show that the
RTF-steered BMVDR beamformers filtering all microphone signals
outperform the RTF-steered BMVDR beamformers filtering only the
head-mounted microphone signals, a fixed BMVDR beamformer
steered towards the frontal direction as well as the external micro-
phone signal.

2. CONFIGURATION AND NOTATION

We consider an acoustic scenario with one desired source S(ω)
and diffuse background noise in a reverberant environment. More-
over, we consider a binaural configuration, consisting of a left and
a right device (each containing M microphones), and an external
microphone that is spatially separated from the head-mounted mi-
crophones, cf. Figure 1. The m-th microphone signal of the left
device YL,m(ω) can be written in the frequency-domain as

YL,m(ω) = XL,m(ω) +NL,m(ω) , m ∈ {1, . . . ,M} , (1)

where XL,m(ω) denotes the desired speech component, NL,m(ω)
denotes the noise component and ω denotes the angular frequency.
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Fig. 1. Binaural hearing device configuration with a spatially sepa-
rated external microphone.

For conciseness we will omit ω in the remainder of the paper. The
m-th microphone signal of the right device YR,m and the external
microphone YE are defined similarly as in (1). The stacked vector of
all head-mounted microphone signals is defined as

y = [YL,1, . . . , YL,M , YR,1, . . . , YR,M ]T ∈ C2M , (2)

with (·)T denoting transpose, which can be written as

y = x + n , (3)

where x and n are defined similarly as in (2). For a single desired
source, the speech vector x is equal to

x = aS , (4)

where the vector a = [AL,1, . . . , AL,M , AR,1, . . . , AR,M ]T

contains the ATFs between the desired source S and all micro-
phones. Without loss of generality, we choose the first microphone
on each device as reference microphone. The RTF vectors aL and
aR of the desired source are defined by relating the ATF vector a to
both reference microphones, i.e.,

aL =
a

eT
La

=
a

AL
, aR =

a

eT
Ra

=
a

AR
, (5)

where eL and eR are selection vectors consisting of zeros and one
element equal to 1, i.e., eL(1) = 1 and eR(M+1) = 1. The speech
covariance matrix Rx ∈ C2M×2M and the noise covariance matrix
Rn ∈ C2M×2M are defined as

Rx = E{xxH} = Psaa
H , Rn = E{nnH} , (6)

where E{·} denotes the expectation operator, (·)H denotes the con-
jugate transpose, and Ps = E{|S|2} denotes the power spectral den-
sity (PSD) of the desired source. Assuming statistical independence
between the desired speech and noise components, the noisy covari-
ance matrix is equal to

Ry = E{yyH} = Rx + Rn . (7)

The output signals at the left and the right hearing device are ob-
tained by filtering and summing all microphone signals using the
complex-valued filter vectors wL and wR, respectively, i.e.,

ZL = wH
L y , ZR = wH

R y . (8)

All aforementioned quantities will be referenced to as extended when
the external microphone signal is included and will be denoted by a
bar above the respective variable, e.g., the extended RTF vectors

āL =

[
aL

AE/AL

]
, āR =

[
aR

AE/AR

]
. (9)

3. BINAURAL MVDR BEAMFORMER

The BMVDR beamformer [2, 16] minimizes the output noise PSD
while preserving the desired speech component in the reference mi-
crophones, hence preserving the binaural cues of the desired source.
The optimization problem for the left filter vector wL is given by

min
wL

E{|wH
L n|2} subject to wH

L aL = 1 . (10)

The optimization problem for the right filter vector wR is defined
similarly. The filter vectors are equal to [1, 2, 5]

wL =
R−1

n aL

aH
L R−1

n aL

, wR =
R−1

n aR

aH
RR−1

n aR

, (11)

hence, requiring an estimate of the noise covariance matrix Rn and
the RTF vectors aL and aR. Usually, the noise covariance matrix
Rn is either estimated during speech pauses or approximated using
an appropriate model. Similarly, the RTF vectors aL and aR are ei-
ther estimated from the microphone signals or approximated using
– simulated or measured – anechoic RTFs corresponding to the as-
sumed position of the desired source.
Please note that the extended BMVDR beamformer (w̄L and w̄R),
incorporating the external microphone, needs an estimate of the ex-
tended noise covariance matrix R̄n and the extended RTF vectors āL

and āR [10, 13].

4. RTF ESTIMATION APPROACHES

In this section, we consider two different methods to estimate the
(extended) RTF vectors of the desired source. The well-known CW
method [15, 17] requires an estimate of the (extended) noisy and
noise covariance matrices to estimate the (extended) RTF vectors.
The recently proposed SC method [11, 12] assumes that the spatial
coherence between the noise components in the head-mounted mi-
crophone signals and the external microphone signal is zero. Al-
though the SC method only provides an unbiased estimate of the
RTF vectors aL and aR, in this paper we explore the usage of the
biased estimate of the extended RTF vectors āL and āR. In Section
4.2 the bias on the RTF estimate and the extended filter vectors w̄L

and w̄R is analyzed, showing that the bias is real-valued and only
depends on the SNR in the external microphone signal.

4.1. Covariance Whitening (CW) method

Using a square-root decomposition (e.g., Cholesky decomposition)
of the noise covariance matrix Rn, i.e.,

Rn = RH/2
n R1/2

n , (12)

the pre-whitened noisy covariance matrix is equal to

Rw
y = R−H/2

n RyR
−1/2
n . (13)

The RTF vectors aL and aR can then be estimated as [15]

aCW
L =

R
1/2
n v

eT
LR

1/2
n v

, aCW
R =

R
1/2
n v

eT
RR

1/2
n v

, (14)

with v the principal eigenvector of Rw
y , i.e., the eigenvector corre-

sponding to the largest eigenvalue. Due to the eigenvalue decompo-
sition, this method is computationally rather complex. Additionally,
an estimate of the noise covariance matrix Rn is required, although
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this estimate is required anyway for the BMVDR beamformer.
The extended RTF vectors āCWE

L and āCWE
R can be estimated by

simply applying the CW method on the extended microphone signal,
i.e., based on the principal eigenvector of the pre-whitened extended
noisy covariance matrix R̄w

y . This method will be denoted as CWE.

4.2. Spatial Coherence (SC) method

The SC method [11, 12] assumes that the noise components in the
head-mounted microphone signals are uncorrelated with the noise
component in the external microphone signal, i.e.,

E{nN∗
E} = 02M×1 . (15)

This can be assumed, e.g., for a diffuse noise field when the spatial
separation between the external microphone and the head-mounted
microphones is large enough. Using (7) and (15), the extended noisy
covariance matrix can be written as

R̄y = R̄x + R̄n =

[
Ry E{xX∗

E}
E{xHXE} Py,E

]
, (16)

with the PSD of the external microphone signal Py,E = Ps|AE|2 +
Pn,E, where Pn,E denotes the noise PSD in the external microphone.
Using (4) and (5), an unbiased estimate of the RTF vectors can then
be obtained as the normalized first M entries of the last column of
R̄y [11, 12], i.e.,

aSC
L = [I2M , 02M×1]

R̄yeE

eT
L R̄yeE

, aSC
R = [I2M , 02M×1]

R̄yeE

eT
RR̄yeE

.

(17)
Here, we propose to use the SC method to estimate the extended RTF
vectors, including the external microphone as

āSCE
L =

R̄yeE

eT
L R̄yeE

, āSCE
R =

R̄yeE

eT
RR̄yeE

(18)

This method will be denoted as SCE. Compared to the CW and CWE
methods, note that the SC and SCE methods do not need an estimate
of the (extended) noise covariance matrix and have a lower compu-
tational complexity.
By using (16) in (18), it can be shown that the last element of āSCE

L

is biased, i.e.,

eT
E ā

SCE
L =

Ps|AE|2 + Pn,E

PsALA∗
E

= eT
E āL (1 + β) , (19)

with

β =
Pn,E

Ps|AE|2
(20)

The same holds for the last element of āSCE
R . It can be observed

that the bias factor β corresponds to the inverse of the SNR of the
external microphone signal. Since this factor is real-valued only the
amplitude but not the phase of the RTF estimate between the refer-
ence microphones and the external microphone is affected.
Using (11), (15) and (18), the extended filter vector of the left device
using the SCE method can be written as

w̄SCE
L =

[
R−1

n aL

Pn,Ee
T
E āL(1 + β)

]
aH
L R−1

n aL + Pn,E|eT
E āL|2(1 + β)2

. (21)

left device

HATS

right device

external microphone

loudspeaker

Fig. 2. Experimental setup. The loudspeaker was moved from its
initial position in front of the listener to the right side.

It can be shown that the coefficients of the extended filter vector in
(21) are equal to the coefficients of the extended BMVDR beam-
former w̄L, scaled by a real-valued scaling factor α, i.e.,

w̄SCE
L =

[
α · [I2M , 02M×1] w̄L

α(1 + β) · eT
Ew̄L

]
(22)

with

α =
aH
L R−1

n aH
L + Pn,E|eT

E āL|2

aH
L R−1

n aH
L + Pn,E|eT

E āL|2(1 + β)2
. (23)

The same can be shown for the extended filter vector of the right
device w̄R.

5. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation for a moving
speaker of the (extended) BMVDR beamformer using the RTF es-
timators discussed in Section 4. In Section 5.1 the recording setup
is described, while detailed information about the implementation is
provided in Section 5.2 and the results are presented in Section 5.3.

5.1. Recording setup

All signals were recorded in a laboratory located at the University
of Oldenburg, where the reverberation time can be varied using ab-
sorber panels mounted on the walls and the ceiling. The room di-
mensions are about (7×6×2.7) m3 and the reverberation time was
set to approximately 350 ms. The experimental setup is depicted
in Fig. 2. A KEMAR head-and-torso simulator (HATS) was placed
approximately in the centre of the laboratory. Two behind-the-ear
hearing aid dummies with two microphones each, i.e., M = 2, with
inter-microphone distance of about 7 mm, were placed on the ears
of the HATS. The external microphone was placed at about 1.5 m in
front of the HATS, which corresponds to, e.g., a table microphone or
a smartphone that is connected to the binaural hearing device.
The desired source was a male German speech signal played back
by a loudspeaker placed at about 2 m from the HATS at same height.
Initially, the loudspeaker was placed at an angle of 0°, i.e., in front of
the HATS (at a distance of about 0.5 m to the external microphone).
During the first 10 s the loudspeaker was moved (by hand) to an
angle of about 75° to the right side of the HATS (at a distance of
about 1.5 m to the external microphone), where it remained for an-
other 5 s. To generate pseudo-diffuse background noise, we placed
four loudspeakers facing the corners of the laboratory, playing back
different multi-talker recordings. The desired source and the back-
ground noise were recorded separately and mixed afterwards to an
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average intelligibility-weighted SNR (iSNR) [18] of 0 dB in the ref-
erence microphone on the right hearing aid. The average iSNR in the
external microphone was equal to about 14 dB. The complete signal
had a length of 15 s with 0.5 s of noise-only at the beginning. All
signals, i.e., the head-mounted microphone signals and the external
microphone signal, were recorded synchronously, thereby neglect-
ing synchronization and latency aspects.

5.2. Implementation and performance measures

We considered five different versions of the BMVDR beamformer in
(11), either using the RTF vectors aL and aR (i.e., filtering only the
head-mounted microphone signals but not the external microphone
signal) or the extended RTF vectors āL and āR (i.e., filtering all
available microphone signals), i.e.,

• FIX: Fixed BMVDR beamformer using anechoic RTFs aL

and aR calculated from measured impulse responses [19] cor-
responding to a position in front of the listener.

• CW and CWE: RTF-steered BMVDR beamformer using the
RTF estimation method in (14), without and with incorporat-
ing the external microphone.

• SC and SCE: RTF-steered BMVDR beamformer using RTF
estimation methods in (17) and (18).

In addition, we considered the external microphone (EM) signal
without applying any noise reduction.
All signals were processed at a sampling frequency of 16 kHz and
transformed to the short-time Fourier transform domain using a
32 ms square-root Hann window with 50% overlap. To distinguish
between speech-plus-noise and noise-only bins, we thresholded
a speech presence probability estimate in every time-frequency
bin [20]. The noisy covariance matrix R̂y(k, l) and the noise co-
variance matrix R̂n(k, l) were then recursively estimated as

R̂y(k, l) = αyR̂y(k, l − 1) + (1− αy)y(k, l)yH(k, l) , (24)

R̂n(k, l) = αnR̂n(k, l − 1) + (1− αn)y(k, l)yH(k, l) , (25)

during detected speech-plus-noise bins and noise-only bins, respec-
tively. The forgetting factors were chosen as αy = 0.852 and αn =
0.984, corresponding to time constants of 100 ms and 1 s, respec-
tively. The extended covariance matrices where estimated using the
same procedure. The (time-varying) estimates of the covariance ma-
trices were then used in the different RTF estimators and in the cal-
culation of the (time-varying) BMVDR beamformers.
As performance measure for noise reduction we used the iSNR im-
provement (∆iSNR) in blocks of 1 s between the reference micro-
phone signal on the right hearing aid and the output signal on the
right hearing aid or the external microphone signal. As performance
measure for binaural cue preservation we used the reliable binaural
cue errors of the desired speech component, i.e., ∆ILD and ∆ITD,
based on an auditory model [21] and averaged over time and fre-
quency.

5.3. iSNR improvement and binaural cues

Figure 3 depicts the iSNR improvement for all considered BMVDR
beamformers and the EM. As expected, FIX leads to the worst per-
formance (even negative ∆iSNR) of all beamformers since it does
not track the movement of the desired source. The RTF-steered CW
and SC beamformers both, not filtering the external microphone sig-
nal, show a similar iSNR improvement between 2 and 9 dB. Aver-
aging the iSNR improvements over time shows that SC outperforms
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Fig. 3. Intelligibility-weighted SNR improvement (plotted over
time) for all considered BMVDR beamformers and the external mi-
crophone.
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Fig. 4. Reliable binaural cue errors (averaged over time) for all con-
sidered BMVDR beamformers.

CW by about 0.31 dB. The RTF-steered CWE and SCE beamformers
(both filtering all available microphone signals) outperform all other
considered beamformers and the EM. At the initial position of the
desired source (0-5 s, close to EM), the CWE and SCE beamform-
ers outperform the CW and SC beamformers by about 14 dB and
the EM by about 2 dB. At the final position of the desired source
(10-15 s, far from EM), the CWE and SCE beamformers outperform
the CW and SC beamformers by about 6 dB and the EM by about
3 dB. Averaging the iSNR improvement over time shows that SCE
outperforms CWE by about 0.30 dB.
Figure 4 depicts the ILD and ITD errors for all considered beam-
formers. It should be stressed that directly using the EM signal does
not provide any binaural cues to the user, hence leading to in-head lo-
calization. As expected, FIX shows worst performance, i.e., highest
binaural cue errors. All RTF-steered BMVDR beamformers show
small binaural cue errors, indicating that the desired source is per-
ceived as coming from the correct direction. In conclusion, these
results show that the biased SCE estimator can be used for differ-
ent positions of the desired source and yields a similar (even slightly
better) iSNR improvement and similar binaural cues as the CWE es-
timator at much lower complexity.

6. CONCLUSIONS

In this paper, we proposed to use the SC method to estimate the ex-
tended RTF vector including all microphones of a binaural hearing
device and an external microphone. We showed, that the last ele-
ment of the estimate is biased, but also that this bias is real-valued
and hence not affecting the phase of the RTF estimate. Experimen-
tal evaluation in a highly dynamic scenario with a moving speaker
showed that the SC estimator can be used for different positions of
the desired source despite this bias and yields similar noise reduction
and cue preservation performance as the widely-used CW method at
much lower complexity.
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