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Abstract
Several noise reduction algorithms have been proposed for
wireless acoustic sensor networks, which consist of spa-
tially distributed nodes that are connected via a wireless
link. To decrease the required bandwidth and computa-
tional complexity, in this paper we propose two iterative
distributed maximum a posteriori (MAP) estimators. In the
first scheme, each node sequentially updates its estimate,
whereas in the second scheme, all nodes simultaneously
update their estimates. Based on simulations in a reverber-
ant room with three nodes, we have compared the noise
reduction performance of the proposed distributed MAP
estimators with the centralized MAP estimator, where each
node has access to all signals, and the local MAP estimator,
where each node only has access to its own signals. The
simulation results show that the proposed distributed esti-
mators result in a good noise reduction performance, while
decreasing the computational complexity compared to the
centralized estimator.

1 Introduction
In order to improve speech quality and intelligibility, sev-
eral noise reduction algorithms have been proposed for wire-
less acoustic sensor networks (WASNs) [1–10]. WASNs
consist of several spatially distributed nodes, where each
node contains one or more microphones. Since the nodes
are connected via a wireless link, they are able to cover a
larger area and utilize more spatial information than tra-
ditional microphone arrays, which typically have a prede-
fined geometry.

In the context of WASNs, noise reduction algorithms
can be categorized into two main classes: centralized and
distributed algorithms [2, 3, 7]. In centralized algorithms,
all (noisy) microphone signals of the nodes are transmit-
ted to a fusion center (FC). Since the FC has direct ac-
cess to all recorded signals, typically a large noise reduc-
tion performance can be achieved. However, this requires
a large bandwidth of the wireless link and results in a large
computational complexity; in addition, the performance of
the WASN is rather sensitive to the FC. In order to enable
a trade-off between noise reduction performance and re-
quired bandwidth and computational complexity, several
distributed beamforming algorithms have been developed
for WASNs, which share signals directly between the nodes
without requiring an FC. A comprehensive survey on dis-
tributed beamforming algorithms in WASNs has been pre-
sented in [7], indicating that the main idea among most
algorithms is similar: to reduce the number of transmitted
signals, each node broadcasts only filtered versions of its
recorded signals instead of sending all signals to the other
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nodes. It has been shown that under some conditions, dis-
tributed algorithms converge to the centralized solution [7].

All aforementioned distributed algorithms have focused
on beamforming and to the best of our knowledge, there
has been no investigation on multi-microphone Bayesian
estimators in WASNs, which consider the statistical prop-
erties of the signals to perform noise reduction. In [11], a
multi-microphone maximum a posteriori (MAP) estimator
was proposed to estimate the clean speech amplitude from
the noisy (observed) signals. Since this estimator does not
require any assumption about the position of the nodes and
the desired speaker and relies only on second-order statis-
tical properties, it can be considered as a good choice to be
applied for noise reduction in WASNs.

The paper is organized as follows. After formulating
the problem in Section 2, we review the centralized MAP
estimator in Section 3. In Section 4, we derive two dis-
tributed MAP (DMAP) estimators (sequential and simul-
taneous update) and show similarities and differences be-
tween the proposed estimators and distributed beamform-
ing algorithms. In Section 5 the noise reduction perfor-
mance of the proposed DMAP estimators is compared with
the centralized and local MAP estimators.

2 Problem Formulation
Consider a WASN consisting of K nodes, where the k-th
node contains Mk microphones and the total number of
microphones is equal to M = ∑K

k=1Mk. In the short-time
Fourier transform (STFT) domain, the received signals at
the m-th microphone of the k-th node can be expressed as

Ym,k(l,n) =Xm,k(l,n)+Vm,k(l,n), m= 1, . . . ,Mk

(1)
where Ym,k(l,n), Xm,k(l,n) and Vm,k(l,n) denote the noi-
sy signal, the speech signal and the additive noise, respec-
tively, with l the frame index and n the discrete frequency
index. For conciseness we omit the frame and frequency
indices in the remainder of the paper wherever possible.

In vector notation, (1) is given by yk = xk +vk, with
yk = [Y1,k, ..., YMk,k]

T , xk = [X1,k, ..., XMk,k]
T and

vk = [V1,k, ..., VMk,k]
T , where T denotes the transpose

operation.
Assuming that the speech and the noise signals are uncor-
related, the noisy correlation matrix of the k-th node can
be expressed as

Φykyk
= E

{
yky

H
k

}
=Φxkxk

+Φvkvk
, (2)

where E{.} denotes the expectation operator, and Φxkxk

and Φvkvk
are the speech and noise correlation matrices

of the k-th node, respectively.
In a centralized algorithm, the FC has access to all

noisy signals, and the M -dimensional centralized noisy
vector is given by

y = x+v, (3)
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with y= [yT
1 , ..., y

T
K ]T and x and v defined similarly. The

centralized noisy correlation matrix can be written as

Φyy = E
{
yyH

}
=Φxx+Φvv, (4)

where Φxx and Φvv denote the centralized speech and
noise correlation matrices, respectively.

In practice, the centralized noisy and noise correlation
matrices can be recursively estimated based on the noisy
signals as [12]

Φ̂yy(l,n) = λyΦ̂yy(l−1,n)+(1−λy)y(l,n)y
H(l,n),

(5)
Φ̂vv(l,n) = λvΦ̂vv(l−1,n)+(1−λv)y(l,n)y

H(l,n),
(6)

with λv = λn + (1 − λn)SPP(l,n), where SPP(l,n) de-
notes the speech presence probability [13] and λy and λn

denote forgetting factors for speech and noise, respectively.
The centralized speech correlation matrix can be estimated
as

Φ̂xx(l,n) = Φ̂yy(l,n)− Φ̂vv(l,n). (7)

Considering estimation errors in the centralized noisy and
noise correlation matrices, negative eigenvalues of Φ̂xx(l,n)
are set to zero to ensure that the resulting speech correla-
tion matrix is positive semidefinite.

2.1 Polar Representation
In polar representation, (1) can be written as

Ym,k =Rm,kejϑm,k =Am,kejαm,k +Vm,k, (8)

where Rm,k, ϑm,k, Am,k and αm,k denote the spectral am-
plitude and phase of the noisy signal and the speech signal
of the m-th microphone of the k-th node, respectively.

Assuming the real and imaginary parts of the speech
signal to be zero-mean independent Gaussian variables, the
amplitude and the phase of the speech signal are modeled
by a Rayleigh and a uniform distribution, respectively [11].
Assuming the noise signal to be Gaussian distributed, the
following probability density functions are obtained

p(Am,k) =
2Am,k

σ2
x(m,k)

exp

(
−A2

m,k

σ2
x(m,k)

)
,

p(αm,k) =
1

2π
−π < αm,k < π,

p(Am,k,αm,k) =
Am,k

πσ2
x(m,k)

exp

(
−A2

m,k

σ2
x(m,k)

)
,

p(Ym,k|Am,k,αm,k) =

1
πσ2

v(m,k)
exp

(
−|Ym,k−Am,kejαm,k |2

σ2
v(m,k)

)
,

(9)

where σ2
x(m,k) and σ2

v(m,k) denote the variances of the
speech and the noise signal of the m-th microphone of the
k-th node, respectively.

3 Centralized MAP Estimator
In [11], a (direction-independent) MAP estimator was pro-
posed that estimates the speech amplitude from the am-
plitudes of the noisy signals. In the case of a single speech
source, this estimator aims at maximizing the posterior dis-
tribution of the amplitude of the reference speech signal

conditioned on the amplitudes of the noisy signals. With-
out loss of generality, in each node the first microphone is
considered as the reference microphone. In a fully con-
nected WASN, where each node has access to the all noisy
signals (i.e., each node acts as an FC), the optimization
problem for the k-th node can be expressed as

Â1,k = argmax
A1,k

p
(
A1,k|[rT1 , . . . ,rTk , . . . ,rTK ]T

)
, (10)

with rk = [R1,k, ..., RMk,k]
T . The solution of (10) is

Â1,k =G1,kR1,k, where the gain G1,k is equal to [11]

G1,k =

√
ζ1,k

γ1,k

2+2∑K
k=1 ∑Mk

m=1 ζm,k

Re

{
K

∑
k=1

Mk

∑
m=1

√
ζm,kγm,k+

√√√√(
K

∑
k=1

Mk

∑
m=1

√
ζm,kγm,k

)2

+(2−M)

(
1+

K

∑
k=1

Mk

∑
m=1

ζm,k

)}
,

(11)

where the a priori and a posteriori signal-to-noise ratios
(SNRs) are given by

ζm,k =
σ2
x(m,k)

σ2
v(m,k)

, γm,k =
R2

m,k

σ2
v(m,k)

. (12)

The variances σ2
x(m,k) and σ2

v(m,k) can be computed as
the diagonal elements of the centralized speech and noise
correlation matrices in (7) and (6), respectively, and Rm,k

can be directly computed from the noisy (observed) sig-
nals. The enhanced speech signal of the k-th node is esti-
mated using the noisy phase as

X̂1,k =G1,kR1,kejϑ1,k = Â1,kejϑ1,k . (13)

4 Distributed MAP Estimators
In the centralized MAP estimator, all noisy signals of the
nodes need to be transmitted, introducing a large compu-
tational complexity and requiring a large bandwidth. In
addition, some nodes may be located at a large distance
from the desired speaker, leading to signals with a low
SNR. To decrease the required bandwidth and to increase
the SNR of the received signals in each node, in this paper
we propose two distributed MAP estimators, either with
sequential update or with simultaneous update. Similar to
distributed beamforming algorithms, in the proposed MAP
estimators each node broadcasts a filtered signal instead of
all signals.

For the distributed MAP estimators, we introduce the
K-dimensional vector x̂ = [X̂1,1, X̂1,2, . . . , X̂1,K ]T , con-
taining the estimated speech signals of all nodes. In ad-
dition, we define the (K − 1)-dimensional vector x̂−k by
excluding X̂1,k from the vector x̂. Since the proposed dis-
tributed estimators require iterative updates, we will use
the superscript i to indicate the iteration index. For each
node k, we define the distributed noisy vector, consisting
of its own local noisy signals yi

k and the received signals
x̂i
−k from the other nodes, as

ỹi
k =

[
yi
k

x̂i
−k

]
(14)
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Each node hence has access to Mk +K − 1 signals, i.e.,
Mk local noisy signals and K−1 compressed signals from
the other nodes. The distributed noisy correlation matrix is
given by

Φi
ỹkỹk

= E
{
ỹi
kỹ

iH
k

}
=Φi

x̃kx̃k
+Φi

ṽkṽk
, (15)

where Φi
x̃kx̃k

and Φi
ṽkṽk

denote the distributed speech and
noise correlation matrices, respectively. Similarly to (5)-
(7), the distributed correlation matrices can be recursively
estimated in practice. Compared to the centralized case,
for the distributed MAP estimators the number of trans-
mitted signals is decreased from M(K−1) to K(K−1).

The aim of distributed MAP estimators is to maximize
the posterior distribution of the amplitude of the reference
speech signal at each node conditioned on the received dis-
tributed amplitude vector, i.e.

Âi
1,k = argmax

Ai
1,k

p(Ai
1,k|r̃ik), (16)

where r̃ik corresponds to the amplitude of the distributed
noisy vector. Similarly to (11), the solution of the dis-
tributed MAP estimator is Âi

1,k =Ri
1,kG

i
1,k, where the gain

Gi
1,k is equal to

Gi
1,k =

√
ζ̃i1,k
γ̃i

1,k

2+2∑M̃
m=1 ζ̃

i
m,k

Re

{
M̃

∑
m=1

√
ζ̃m,kγ̃m,k+

√√√√(
M̃

∑
m=1

√
ζ̃im,kγ̃

i
m,k

)2

+(2−M̃)

(
1+

M̃

∑
m=1

ζ̃im,k

)}
,

(17)

where M̃ = Mk +K − 1. The distributed a priori and a
posteriori SNRs are given by

ζ̃im,k =
(σ̃i

x(m,k))2

(σ̃i
v(m,k))2 , γ̃i

m,k =
(R̃i

m,k)
2

(σ̃i
v(m,k))2 , (18)

where the distributed variances can be computed as the di-
agonal elements of the distributed speech and noise corre-
lation matrices.

Motivated by [2]-[3], we now introduce a sequential
update and a simultaneous update DMAP estimator.

4.1 Sequential Update DMAP Estimator
In the first scheme, at each iteration one specific node up-
dates its estimate. The proposed sequential distributed MAP
estimator hence runs as follows (cf. block diagram de-
picted in Fig. 1):
1. The algorithm is initialized with iteration index i = 0

and node index u= 1. Gi
1,k is initialized with a random

positive number between 0 and 1 ∀k ∈K.
2. For each node k∈K, the following steps are performed:

• Compute the amplitude Âi
1,k =Gi

1,kR
i
1,k.

• Broadcast X̂i
1,k = Âi

1,kejϑ1,k to the other nodes.
• Collect the vector x̂i

−k.
• Construct the vector ỹi

k using (14).

Node 1 Update G1,1

G1,1
X̂1,1

Node 2 Update G1,2

G1,2
X̂1,2

Node 3 Update G1,3

G1,3
X̂1,3

Y1,1

y1

Y1,2

y2

Y1,3

y3

Figure 1: Proposed DMAP estimator with three nodes.
Each node uses its own noisy signals and the compressed
signals from the other nodes to update a gain.

• Update the distributed correlation matrices for ỹi
k,

ṽi
k and x̃i

k.
• Compute the a priori and a posteriori SNRs using

(18).
• Update the node-specific gain

Gi+1
1,k =

{
Eq. (17) if k = u

Gi
1,k if k �= u

(19)

3. i← i+1
4. u← (u mod K)+1
5. return to step 2.

4.2 Simultaneous Update DMAP Estimator
Although applying the sequential update DMAP estimator
reduces the required bandwidth and computational com-
plexity, it may increase the convergence time, especially
in the case of a large number of nodes. To increase the
convergence speed, motivated by the algorithm presented
in [3], we propose a simultaneous update DMAP estima-
tor, where all nodes simultaneously update their estimates.
The only difference between the sequential and the simul-
taneous update DMAP estimators is the step to update the
node-specific gain

Gi+1
1,k =

1
i
Gi

1,k+(1− 1
i
)Eq. (17). (20)

5 Simulation Results
In this section, we evaluate the noise reduction performance
of the proposed DMAP estimators with two baseline meth-
ods: 1) the local MAP estimator, where each node only has
access to its own local noisy signals, and 2) the centralized
MAP estimator, where all nodes have access to all noisy
signals in a fully connected network (see Section 3).

All signals were recorded in an acoustic laboratory lo-
cated at the University of Oldenburg with dimensions (x=
7 m, y = 6 m, z = 2.7 m) and reverberation time RT60 �
350 ms. For the simulations we consider a WASN consist-
ing of three nodes (K = 3). The first node corresponds to
a hearing aid with 2 microphones, mounted on a dummy
head placed approximately in the middle of the laboratory.
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The distance between the microphones is about 7.6 mm.
The second node consists of two microphones located at
(x = 4.64 m, y = 4.13 m, z = 2 m) and (x = 4.64 m,
y= 2.63 m, z = 2 m), respectively, and the third node con-
sists of one microphone located at (x = 2.36 m, y = 4.13
m, z = 2 m). The desired source was a male English
speaker of duration 20 seconds, played back by a loud-
speaker located at a distance of 2 m at the same height and
at an angle of 35◦ on the right side of the dummy head.
To generate background noise, four loudspeakers facing
the corners of the laboratory were used, playing back dif-
ferent realizations of operation room noise. All signals
were recorded at a sampling frequency fs = 16 kHz. The
STFT processing is implemented using NFFT=512 with
half-overlapping frames and using a Hamming window as
the analysis window. The forgetting factors to update the
noisy and noise correlation matrices are λy = λn = 0.92.
For each node, the SPP was computed using the method
proposed in [13]. We used a threshold G1,k,max = 1 to
ensure that the estimated signal sounds natural.

In this paper, we don’t consider the batch implementa-
tion, where iterations are performed on the complete sig-
nal, but only the recursive implementation where the itera-
tion index is replaced by the frame index.

Fig. 2 depicts the performance of the considered MAP
estimators in terms of the PESQ [14] improvement be-
tween the enhanced signal and the noisy reference signal
at the first node for several input SNRs. The speech signal
at the first microphone of the first node has been used as
the reference signal. As expected, it can be observed that
the PESQ improvement for the centralized MAP estimator
is considerably larger than the PESQ improvement for the
local MAP estimator, especially at large input SNRs. In
addition, it can be observed that the PESQ improvement
for the proposed DMAP estimators is similar to the PESQ
improvement for the centralized MAP estimator, where the
simultaneous update DMAP estimator consistently outper-
forms the sequential update DMAP estimator.

Fig. 3 depicts the performance of the considered MAP
estimators in terms of the segmental noise reduction (segN-
R), the segmental speech SNR (segSSNR) and the segmen-
tal SNR (segSNR) improvement, as proposed in [13]. The
segSSNR measure has been defined as a measure for spee-
ch distortion, where larger segSSNR values indicate lower
speech distortion. As expected, it can be observed from

Figure 2: PESQ improvement for the proposed DMAP
estimators, the local MAP estimator and the centralized
MAP estimator between the enhanced signal and the noisy
reference signal at the first node for several input SNRs.

(a) (b)

(c)

Figure 3: Performance of the proposed DMAP estimators,
the local MAP estimator and the centralized MAP estima-
tor in terms of (a) segmental noise reduction, (b) segmental
speech SNR and (c) segmental SNR improvement for sev-
eral input SNRs.

Fig. 3 that the centralized MAP estimator outperforms the
local MAP estimator in terms of segSNR improvement,
which considers both noise reduction as well as speech dis-
tortion. This can be mainly explained by the lower segNR
values for the local MAP estimator. Moreover, it can be
observed that both proposed DMAP estimators result in a
similar segSNR improvement as the centralized MAP esti-
mator, where the proposed DMAP estimators seem to re-
sult in slightly larger segNR values (i.e. more noise reduc-
tion) and slightly lower segSSNR values (i.e. more speech
distortion) than the centralized MAP estimator.

In conclusion, the experimental results show that the
performance of the proposed DMAP estimators is similar
to the performance of the centralized MAP estimator at a
lower computational complexity.

6 Conclusion
In order to decrease the computational complexity and re-
quired bandwidth, in this paper we proposed two distributed
MAP estimators (sequential and simultaneous update). Each
node uses a vector consisting of its local signals and com-
pressed signals from the other nodes, where the compressed
signals estimate the speech signal at these nodes. We com-
pared the performance of the proposed distributed MAP es-
timators with the local and the centralized MAP estimators
for a network with 3 nodes, showing that the performance
of the DMAP estimators is similar to the performance of
the centralized MAP estimator at a lower computational
complexity.
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