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Abstract
The multi-channel Wiener filter (MWF) is a commonly used
speech enhancement technique for improving speech quality and
intelligibility in reverberant and noisy environments. The MWF
is typically implemented as a minimum variance distortionless
response (MVDR) beamformer followed by a single-channel
Wiener postfilter. Assuming that reverberation and ambient noise
can be modeled as diffuse sound fields, estimates of the relative
early transfer function (RETF) vector of the target speaker and of
the diffuse power spectral density (PSD) are required to implement
the MWF. RETF vector and diffuse PSD estimation methods are
often decoupled, i.e., one of the quantities is estimated assuming
that the other quantity is known. In this paper, we aim at jointly es-
timating the RETF vector and the diffuse PSD by minimizing the
Frobenius norm of an error matrix based on the presumed signal
model. To solve this minimization problem, we propose to use an
alternating least-squares approach. Simulation results using artifi-
cial and real data show that the proposed method leads to a better
performance than a state-of-the-art method based on covariance
whitening.

1 Introduction
In many hands-free speech communication applications such

as hearing aids and teleconferencing, the recorded microphone
signals are corrupted by reverberation and ambient noise. This
may result in a decreased speech quality and intelligibility and
in a performance deterioration of automatic speech recognition
systems. Hence, enhancement techniques are required that are
able to suppress both reverberation and ambient noise. To this
end, many single- and multi-channel techniques have been pro-
posed, with multi-channel techniques generally being preferred
since they are capable of exploiting spatial information. The multi-
channel Wiener filter (MWF) is a commonly used speech enhance-
ment technique, which minimizes the mean square error between a
target signal and the output signal [1–3]. The MWF can be imple-
mented as a minimum variance distortionless response (MVDR)
beamformer followed by a single-channel Wiener postfilter [4].
Assuming that reverberation and ambient noise can be modeled
as diffuse sound fields, the implementation of the MVDR beam-
former and the Wiener postfilter requires estimates of the relative
early transfer function (RETF) vector of the target speaker [6] and
of the diffuse power spectral density (PSD).

On the one hand, several RETF vector estimation procedures
have been proposed, e.g., based on the least-squares method [5, 6],
the covariance subtraction method [7–9], or the covariance
whitening (CW) method [8, 10, 11]. On the other hand, several
multi-channel diffuse PSD estimators have been proposed,
e.g., maximum likelihood-based estimators [12–14], Frobenius
norm-based estimators [14–16], or an eigenvalue decomposition
(EVD)-based estimator [17]. Many RETF vector and PSD
estimation methods are decoupled, i.e.: a) the RETF vector is
estimated either assuming that the diffuse PSD is known [6] or
without requiring knowledge of the diffuse PSD [5, 7–11]; b) the
diffuse PSD is estimated either assuming that the RETF vector
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is known [12, 13, 15, 16] or without requiring knowledge of the
RETF vector [17]. In [18] it has been shown that jointly estimating
both the RETF vector and the diffuse PSD based on CW results
in a high dereverberation and noise reduction performance. In
addition, in [19] a batch expectation-maximization method has
been proposed to jointly estimate the (time-invariant) RETF
vector, the diffuse PSD, and the spatial coherence matrix in a
maximum likelihood framework.

As an extension of the Frobenius norm-based PSD estimator
in [16], in this paper we present a method to jointly estimate
the (time-varying) RETF vector and diffuse PSD by minimizing
the Frobenius norm of an error matrix constructed from the
presumed signal model. Since no closed-form solution exists for
the RETF vector and the diffuse PSD, we propose to perform
the minimization in an iterative fashion using an alternating
least-squares approach. By coupling the RETF vector and PSD
estimation procedures we expect to obtain estimates which fit
the signal model more accurately. Experimental results based
on simulated data confirm a high RETF vector and diffuse PSD
estimation accuracy and demonstrate the robustness of the pro-
posed approach to deviations from the assumed signal model. In
addition, experimental results based on real data for two different
acoustic scenarios show that using the proposed RETF vector and
diffuse PSD estimates in an MWF yields a better performance
than using the estimates based on covariance whitening.

2 Signal Model and Notation
We consider a noisy and reverberant acoustic scenario with one
speech source and M ≥ 2 microphones. In the short-time Fourier
transform (STFT) domain, the M -dimensional vector of the
microphone signals y(k,l) = [Y1(k,l),...,YM (k,l)]T , with k the
frequency bin index and l the frame index, is given by

y(k,l)=x(k,l)+d(k,l), (1)

where x(k, l) denotes the direct and early reverberation speech
component and d(k,l) denotes the diffuse component, represent-
ing both late reverberation as well as ambient noise. The vectors
x(k,l) and d(k,l) are defined similarly to y(k,l). Although no
non-diffuse noise (e.g., uncorrelated sensor noise) is present in
(1), in the simulations we will also consider non-diffuse noise.
Since processing is performed independently for each frequency
bin, in the remainder of this paper the index k is omitted wherever
possible.

The direct and early reverberation speech component x(l)
can be expressed as

x(l)=S(l)a(l)=S(l)[1, A2(l), ..., AM (l)]T , (2)

where S(l) is the target signal, i.e., the direct and early re-
verberation speech component in a reference microphone
(chosen to be the first microphone), and a(l) is a vector of
(possibly time-varying) RETFs between all microphones and
the reference microphone. Assuming that the direct and early
reverberation component x(l) is uncorrelated with the diffuse
component d(l), which is a common assumption, we can write
the M×M -dimensional microphone PSD matrix Φy(l) as

Φy(l)=E{y(l)yH(l)}=Φx(l)+Φd(l), (3)
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with E{·} the expected value operator, {·}H the Hermitian
operator, and Φx(l) and Φd(l) the PSD matrices of x(l) and d(l),
respectively. Using (2), the PSD matrix Φx(l) can be expressed as

Φx(l)=φs(l)a(l)a
H(l), (4)

withφs(l)=E{|S(l)|2} the target signal PSD. For a diffuse sound
field, the PSD matrix Φd(l) can be expressed as

Φd(l)=φd(l)Γ, (5)

withφd(l) the time-varying diffuse PSD and Γ the (assumed to be)
time-invariant spatial coherence matrix of a diffuse sound field,
which can be analytically computed based on the microphone
array geometry. Hence, using (4) and (5), the PSD matrix Φy(l)
can be expressed using the following signal model:

Φy(l)=φs(l)a(l)a
H(l)+φd(l)Γ. (6)

In order to achieve dereverberation and noise reduction,
the MWF can be applied to the microphone signals, i.e.,
Ŝ(l) = wH

MWF(l)y(l), with wMWF(l) the M -dimensional filter
vector. The MWF minimizes the mean square error between the
output signal Ŝ(l) and the target signal S(l) and can be decom-
posed as an MVDR beamformer wMVDR and a single-channel
Wiener postfilter G(l) [1, 4], i.e.,

wMWF(l)=
Γ−1a(l)

aH(l)Γ−1a(l)︸ ︷︷ ︸
wMVDR(l)

φs(l)

φs(l)+φd(l)/
(
aH(l)Γ−1a(l)

)︸ ︷︷ ︸
G(l)

.

(7)
As can be observed from (7), estimates of the RETF vector a(l)
and the PSDsφs(l) andφd(l) are required to implement the MWF.

In practice, the presumed signal model in (6) does not per-
fectly hold. First, the assumption of a diffuse sound field for the
reverberation and the ambient noise to compute Γ is not perfectly
true. Second, the microphone PSD matrix in (3) is estimated using
recursive averaging of a single realization of the microphone
signals, i.e.,

Φ̂y(l)=αΦ̂y(l−1)+(1−α)y(l)yH(l), (8)

with α a smoothing factor, such that the estimated PSD matrix
Φ̂y(l) will differ from the true PSD matrix. Third, in addition to
diffuse noise also uncorrelated noise, e.g., sensor noise, as well
as non-diffuse correlated noise, are typically present. In Sections
3 and 4, we will present an existing and a novel approach to
jointly estimate the RETF vector and the PSDs from the estimated
PSD matrix. In Section 5, we will compare the performance of
both approaches and their sensitivity to model deviations. For
conciseness, in the remainder of this paper also the frame index l
is omitted wherever possible.

3 Estimation Based on

Covariance Whitening (CW)
In this section, we briefly review the baseline CW-based method
to jointly estimate the RETF vector and the diffuse PSD.

Using the Cholesky decomposition of the spatial coherence
matrix Γ = LLH and (6), the prewhitened microphone PSD
matrix is given by

Φw
y =L−1ΦyL

−H =φs(L
−1a)(L−1a)H+φdI. (9)

The EVD of Φw
y is equal to

Φw
y =UΛUH , (10)

where U and Λ are M × M -dimensional matrices containing
the eigenvectors and the eigenvalues of Φw

y , respectively. The
RETF vector a is equal to a scaled version of the inversely rotated
principal eigenvector Lu1. Furthermore, all eigenvalues except
the principal eigenvalue λ1 are equal to the diffuse PSD. Hence, as
shown in [17, 18], an estimate of the RETF vector and the diffuse
PSD can be obtained as⎧⎪⎨

⎪⎩
âCW =Lû1/

(
eTLû1

)
φ̂d,CW=

(
trace{Φ̂w

y }−λ̂1

)
/(M−1),

(11)

(12)

with u1 and λ1 denoting the principal eigenvector and eigenvalue
of the prewhitened estimated PSD matrix Φ̂w

y , and e a selection
vector containing zeros and one element equal to 1, i.e., e(1)=1.

4 Frobenius Norm-Based Estimation
In this section, we propose an alternative approach to jointly
estimate the time-varying RETF vector and the diffuse PSD by
minimizing the Frobenius norm of the error matrix, constructed
by subtracting the signal model in (6) from the estimated PSD
matrix in (8), i.e.,

E=Φ̂y−(φsaa
H+φdΓ). (13)

We now define the PSD vector φ := [φs, φd]
T , containing the

target signal and the diffuse PSD. Assuming the RETF vector to
be equal to a, in [16] it has been proposed to estimate the PSD
vector φ by minimizing the Frobenius norm ‖·‖F of the error
matrix in (13), i.e.,

φ̂LS=argmin
φ

∥∥∥Φ̂y−
(
φsaa

H+φdΓ
)∥∥∥2

F
. (14)

It has been shown in [16] that φ̂LS can be computed as φ̂=A−1b
with

A=

[(
aHa

)2
aHΓa

aHΓa trace{ΓHΓ}

]
, b=

[
Re

{
aH Φ̂ya

}
Re{trace{Φ̂yΓH}}

]
.

(15)
As an extension of this method, we propose to jointly estimate the
RETF vector a and the PSD vector φ, i.e.,

(
âLS, φ̂LS

)
=argmin

a, φ

∥∥∥Φ̂y−
(
φsaa

H+φdΓ
)∥∥∥2

F
. (16)

To the best of our knowledge, no closed-form solution for the
optimization problem in (16) exists. Hence, we propose to per-
form this minimization in an iterative fashion using an alternating
least-squares approach.

In the first step, the minimization is performed w.r.t. the PSD
vector φ, assuming that the RETF vector is fixed to the estimate
from the i-th iteration â(i). Since this is similar to the assumption
made in [16], the PSD vector can be estimated as

φ̂
(i)
LS =

(
A(i)

)−1
b(i), (17)

where A(i) and b(i) are constructed similarly to (15) by replacing
a with â(i).

In the second step, the minimization is performed w.r.t.
the RETF vector a, assuming that the PSD vector is fixed to

φ̂
(i)
LS = [φ̂

(i)
s,LS, φ̂

(i)
d,LS]

T . By defining Φ̂(i)
x = Φ̂y − φ̂

(i)
d,F Γ, the

RETF vector can be estimated as

â
(i)
LS =argmin

a

∥∥∥Φ̂(i)
x −φ̂

(i)
s,LSaa

H
∥∥∥2

F
, (18)
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which can be interpreted as the best rank-1 approximation of the
matrix Φ̂(i)

x . Based on the Eckart-Young-Mirsky theorem [20]

and assuming that Φ̂(i)
x is positive definite, the best rank-1 approx-

imation of Φ̂(i)
x is equal to λ̂

(i)
1 û

(i)
1 û

(i),H
1 , with λ̂

(i)
1 and û

(i)
1 the

principal eigenvalue and eigenvector of Φ̂(i)
x . Hence, the solution

to (18) is equal to a scaled version of the principal eigenvector, i.e.,

â
(i)
LS =

√√√√ λ̂
(i)
1

φ̂
(i)
s,LS

û
(i)
1 . (19)

Algorithm 1 describes the complete implementation of the
proposed alternating least-squares approach. In the first frame,
the RETF vector estimate is initialized, e.g., with complex-valued
components and the first element set to 1. For each time-frequency
bin, an estimate of the RETF vector â(k, l) and the PSD vector
φ̂(k, l) is obtained by performing N iterations. The resulting
RETF vector â(N)(k,l) is then normalized w.r.t. the first element
and used as the initial estimate for the next frame. Since PSDs can
only assume positive values, the PSD estimates are lower-bounded
by the machine precision eps. Furthermore, since neither the
diffuse nor the target PSD can be larger than the microphone
signal PSD, also an upper bound is applied, i.e.,

eps≤{φ̂s,φ̂d}≤
1
M

yHy. (20)

Algorithm 1: Alternating least-squares approach to
jointly estimate the RETF vector and PSDs.

Input: Γ(k), Φ̂y(k,l), num. iterations N, init. â(1)(k,1)
Output: â(k,l), φ̂LS=[φ̂s,LS, φ̂d,LS]

T

for all k do

for all l do

for i=1:N do

compute A(i)(k,l) and b(i)(k,l) using (15)

φ̂
(i)
(k,l)=

(
A(i)

)−1
(k,l)b(i)(k,l) (17)

constrain φ̂
(i)
(k,l) using (20)

Φ̂(i)
x (k,l)=Φ̂y(k,l)−φ̂

(i)
d (k,l)Γ(k)

Φ̂(i)
x (k,l)=U(i)(k,l)Λ(i)(k,l)U(i),H (k,l) (EVD)

â(i)(k,l)=

√
λ
(i)
1 (k,l)/φ̂

(i)
s (k,l)u

(i)
1 (k,l) (19)

end

â(1)(k,l+1)= â(N)(k,l)/(eT â(N)(k,l))
(for next frame)

end

end

5 Experimental Validation
In this section, the performance of the proposed method is
validated, both using simulated artificial data (Section 5.1) and
using real recordings (Section 5.2).

5.1 Artificial Data

To evaluate the estimation accuracy and the convergence speed
of the proposed method, artificial data is generated according
to the assumed signal model in (6), such that oracle information
is available. In total, M = 4 microphones are simulated for
K = 513 frequency bins and L = 100 time frames. Specifi-
cally, the target and diffuse PSDs at each time-frequency bin
are drawn from a scaled and squared normal distribution, i.e.,
φs(k,l), φd(k,l)∼ 10−7(N (μ=0, σ=1))2. The RETF vectors
a(k) are assumed to be time-invariant and are generated using
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Figure 1: Diffuse PSD and RETF vector estimation errors vs. the
iteration index (M=4, DNR = 0 dB).
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Figure 2: Diffuse PSD and RETF vector estimation errors vs.
input DNR for different numbers of iterations (M=4).

normally distributed complex-valued components, and the first
element is set equal to 1. For the spatial coherence matrix Γ(k),
a random positive-definite matrix is added to a random diagonal
matrix with positive values, and the resulting matrix is scaled such
that the diagonal elements are equal to 1.

Since in typical acoustical scenarios the late reverberation and
the ambient noise are not perfectly diffuse and since the early re-
verberation and diffuse components are not perfectly uncorrelated,
the signal model in (6) is typically violated. In order to evaluate
the robustness of the proposed method to model mismatches, an
M×M -dimensional scaled error matrix Ξ is added, i.e.,

Φy(k,l)=φs(k,l)a(k)a
H(k)+φd(k,l)Γ(k)+δΞ(k,l), (21)

where δ= 10−7

10input DNR / 10 determines the model mismatch, with DNR
representing the diffuse-to-noise ratio, which can be computed
intrusively, since the data are generated artificially and hence all
components are available. The error matrix Ξ(k, l) is generated
as Ξ(k, l) = n(k, l)nH(k, l), with n(k, l) an M -dimensional
vector with normally distributed complex-valued components.
The considered DNR values range from -50 dB to 50 dB.

The PSD estimation accuracy is evaluated using the average
PSD estimation error over all time-frequency bins [21], i.e.,

ε=
1

KL

K

∑
k=1

L

∑
l=1

10log10
φ(k,l)

φ̂(k,l)
, (22)

The RETF vector estimation accuracy is evaluated using the
average Hermitian angle between the oracle vector a(k,l) and the
RETF vector estimate â(k,l) as [9]

Δθ=
1

KL

K

∑
k=1

L

∑
l=1

arccos

( ∣∣âH(k,l)a(k)
∣∣

‖â(k,l)‖2‖a(k)‖ 2

)
360◦

2π
, (23)

which is a measure disregarding the length difference of both
vectors. Figure 1 depicts the diffuse PSD estimation error and the
Hermitian angle versus the number of iterations for a DNR of 0 dB.
In addition, the performance of the CW method is depicted. It can
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ΔPESQ ΔfwsSNR
uncorrelated noise SNR / dB 0 10 20 30 0 10 20 30

CW 0.0547 0.1632 -0.0561 -0.1037 1.7112 2.2500 3.6697 3.4651
LS 0.3823 0.5264 0.1818 0.2331 4.5457 4.9639 4.7897 3.7432

Table 1: Performance on measured data, averaged over both considered acoustical systems in terms of ΔPESQ and ΔfwsSNR.

be observed that while there is no significant change in the Hermi-
tian angle for an increasing number of iterations, the diffuse PSD
estimation error is decreased by about 2 dB after convergence,
which is reached after approximately 5 iterations. Furthermore, it
can be observed that using the proposed method, lower PSD and
RETF vector estimation errors are obtained than using CW.

For different DNRs, Figure 2 compares the diffuse PSD
and RETF vector estimation accuracy of the CW method and
the proposed LS method for different numbers of iterations
(N = 1, 2, 50). In terms of the diffuse PSD estimation error
it can be observed that for only a few iterations (i.e., 1 or 2),
the proposed method performs significantly worse than the CW
method. After convergence, however, the LS method clearly
outperforms the CW method for low input DNRs, while resulting
in a similar estimation accuracy at high input DNRs. In terms of
the Hermitian angle, there is no significant difference between
the methods for all considered DNRs. Hence, the alternating
least-squares approach improves the PSD estimation accuracy
with increasing number of iterations, while one iteration seems to
suffice in terms of RETF vector estimation accuracy.

In summary, the proposed method exhibits a large robustness
to model noise in artificial data, outperforming the CW method in
terms of diffuse PSD estimation accuracy, while leading to a com-
parable performance in terms of RETF vector estimation accuracy.

5.2 Recorded Data

array geometry d/cm θ/◦ T60/s
AS1 [22] linear 8 45 0.61
AS2 [23] linear 6 −15 1.25

Table 2: Configuration of considered acoustic scenarios;
d: inter-microphone distance, θ: speaker direction of arrival.

To evaluate the performance in realistic acoustic scenarios,
we consider a spatially stationary speech source in the presence
of reverberation and diffuse babble noise. The reverberant
multi-channel speech signals are obtained by convolving an 8.8 s
long anechoic speech signal with measured room impulses (RIRs)
with different reverberation times (described in Table 2). As for
the simulated data, M = 4 microphones are used. Diffuse babble
noise is generated as described in [24] and added at 0 dB input
SNR w.r.t. the reference microphone.

As already mentioned, it should be noted that in realistic
acoustic scenarios, deviations from the signal model in (6) are to
be expected, since the perfectly diffuse sound field model is gener-
ally violated and since the individual components are not perfectly
uncorrelated. To investigate the impact of additional model
mismatch, spatially uncorrelated noise is added to the microphone
signals at different input SNRs ranging from 0 dB to 30 dB.

The signals are processed in the STFT domain at a sampling
frequency of 16 kHz, using a frame length of 1024 samples (cor-
responding to 64 ms), an overlap of 75 %, and using a Hamming
window. The estimated microphone PSD matrix Φ̂y(l) is obtained
using (8) with a smoothing constant α = 0.67, corresponding
to approximately 40 ms. Note that the uncorrelated noise PSD
matrix is not estimated and subtracted from the microphone
PSD matrix, as, e.g., done in [15–17], such that the sensitivity to
uncorrelated noise can be evaluated.

For the realistic scenario, we compare the performance of the
LS method and the CW method when using the obtained RETF

vector and diffuse PSD estimates in an MWF. The performance
of the MWF output signal is evaluated using the perceptual eval-
uation of speech quality [25] (PESQ) and the frequency-weighted
segmental SNR [26] (fwsSNR), using the target signal as reference
signal.

It was shown in [16, 27] that using the decision-directed
approach [28] to obtain an estimate of the a-priori SNR results in
a better MWF performance than directly utilizing the Frobenius
norm-based target signal PSD estimate. For this reason, the target
signal PSD estimation accuracy has not been evaluated in Section
5.1, and the decision-directed approach is used to implement the
MWF in this section. However, the target signal PSD estimate
obtained in (17) is not disregarded completely, since it is utilized
in the iterative process (cf. (19)). The a-priori SNR ξ(l) is
estimated as

ξ̂(l)=ρ
|X̂(l−1)|2
φ̂d(l−1)

+(1−ρ)max
{ |X̂(l)|2

φ̂d(l)
−1, 0

}
, (24)

with the smoothing constant ρ = 0.98. The MVDR beamformer
coefficients wMVDR(l) are computed as in (7) and the postfilter
G(l) is computed using the a-priori SNR estimate as

G(l)=
ξ̂(l)

1+ξ̂(l)
. (25)

A minimum gain of -20 dB is used for the postfilter.
The MWF performance is presented in Table 1 for several

SNRs, where the average performance over both considered
acoustical systems is presented. It can be observed that the LS
method outperforms the CW method for all considered SNRs
in terms of both performance measures. In terms of PESQ, a
better performance of up to 0.36 is obtained using the LS method,
whereas in terms of fwsSNR, a better performance of up to 2.83 dB
is obtained. In terms of fwsSNR, the performance difference
between both methods becomes smaller for larger SNRs, which is
in line with the results from Figure 2. In terms of PESQ, the CW
method is not able to achieve a large performance improvement,
while the LS method leads to a significant improvement.

In summary, the proposed LS method yields a significantly
better performance than the CW method when used in an MWF,
confirming the advantages of coupling the RETF vector and
diffuse PSD estimation in an alternating least-squares approach.

6 Conclusions & Outlook
In this paper an alternating least-squares approach has been
proposed, in which both the RETF vector and the diffuse PSD
are iteratively estimated by minimizing the Frobenius norm of an
error matrix constructed based on the assumed signal model. It is
shown that the proposed method yields a higher PSD estimation
accuracy and a similar RETF vector estimation accuracy than the
CW method. In addition, it is shown that using the proposed es-
timates in an MWF significantly outperforms using the estimates
obtained with the CW method. For future research, it will be
investigated how to extend the proposed approach to also jointly
estimate non-diffuse noise PSDs.
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