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Abstract
Besides suppressing all undesired sound sources, an important ob-
jective of a binaural noise reduction algorithm for hearing devices
is the preservation of the binaural cues, aiming at preserving the
spatial perception of the acoustic scene. A well-known binaural
noise reduction algorithm is the binaural minimum variance dis-
tortionless response beamformer, which can be steered using the
relative transfer function (RTF) vector of the desired source, relat-
ing the acoustic transfer functions between the desired source and
all microphones to a reference microphone. In this paper, we pro-
pose a computationally efficient method to estimate the RTF vector
in a diffuse noise field, requiring an additional microphone that is
spatially separated from the head-mounted microphones. Assum-
ing that the spatial coherence between the noise components in the
head-mounted microphone signals and the additional microphone
signal is zero, we show that an unbiased estimate of the RTF vec-
tor can be obtained. Based on real-world recordings, experimental
results for several reverberation times show that the proposed RTF
estimator outperforms the widely used RTF estimator based on co-
variance whitening and a simple biased RTF estimator in terms of
noise reduction and binaural cue preservation performance.

1 Introduction
Noise reduction algorithms for head-mounted assistive listening

devices (e.g., hearing aids, cochlear implants, hearables) are cru-
cial to improve speech intelligibility and speech quality in noisy
environments. Binaural noise reduction algorithms are able to use
the spatial information captured by all microphones on both sides
of the head [1, 2]. Besides suppressing undesired sound sources,
binaural noise reduction algorithms also aim at preserving the lis-
tener’s spatial perception of the acoustic scene to assure spatial
awareness, to reduce confusions due to a possible mismatch be-
tween acoustical and visual information, and to enable the listener
to exploit the binaural hearing advantage [3].
As shown in [1, 2, 4], the binaural minimum variance distortion-
less response beamformer (BMVDR) beamformer is able to pre-
serve the binaural cues, i.e., the interaural level difference (ILD)
and the interaural time difference (ITD), of the desired source. The
BMVDR beamformer can either be implemented using the acous-
tic transfer functions (ATFs) between the desired source and all
microphones or using the relative transfer functions (RTFs), relat-
ing the ATFs to a reference microphone [5]. Since estimating the
RTFs (unlike the ATFs) is feasible in practice, RTF estimation has
become an important task in the field of multichannel speech en-
hancement [6–13].
Aiming at improving the performance of (binaural) noise reduc-
tion algorithms, recently the use of an external microphone in com-
bination with the head-mounted microphones has been explored
[14–21]. It has, e.g., been shown that using an external micro-
phone is able to improve performance in terms of noise reduction
[14, 16, 18–21], source localisation [17] and binaural cue preser-
vation [16, 18].
In this paper, we propose a computationally efficient method to
estimate the RTF vector in a diffuse noise field using the exter-
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Figure 1: Top-view of the considered acoustic scenario and
microphone configuration (M=2).

nal microphone. This method requires the external microphone to
be located far enough from the head-mounted microphones, such
that the spatial coherence between the noise components in the
head-mounted microphone signals and the external microphone
signal is low. Assuming this spatial coherence to be zero, we show
how an unbiased RTF estimator can be derived. Using real-world
recordings, we compare the proposed RTF estimator to a simple
biased RTF estimator and to the widely used RTF estimator based
on covariance whitening (CW) [7–11] for several reverberation
times and signal-to-noise ratios (SNRs). The results show that the
proposed RTF estimator yields a larger SNR improvement and re-
duced binaural cue errors compared to the existing RTF estimators.
When comparing the proposed RTF estimator to an oracle RTF
estimator (using the clean speech signal as external microphone
signal), only a small performance difference can be observed.

2 Configuration and Notation
We consider an acoustic scenario with one desired source S(ω)
and diffuse background noise (e.g., cylindrically or spherically
isotropic noise) in a reverberant enclosure. Moreover, we consider
a binaural configuration, consisting of a left and a right device
(each containing M microphones), and an external microphone
that is spatially separated from the head-mounted microphones,
cf. Figure 1. The m-th microphone signal of the left hearing
device YL,m(ω) can be written in the frequency-domain as

YL,m(ω)=XL,m(ω)+NL,m(ω), m∈{1,...,M}, (1)

whereXL,m(ω) denotes the desired speech component,NL,m(ω)
denotes the noise component andω denotes the angular frequency.
For conciseness we will omit ω in the remainder of the paper,
wherever possible. The m-th microphone signal of the right
hearing deviceYR,m and the external microphoneYE are similarly
defined by substituting R and E for L, respectively. The micro-
phone signals of the hearing devices can be stacked in a vector, i.e.,

y=
[
YL,1, ...,YL,M ,YR,1, ...,YR,M

]T ∈C
2M , (2)

with (·)T denoting the transpose of a vector. Using (1), the vector
y can be written as

y=x+n, (3)
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where the speech vector x and the noise vector n are defined
similarly as in (2). Without loss of generality, we choose the first
microphone on each hearing device as reference microphone, i.e.,

YL=eTL y, YR=eTR y, (4)

where eL and eR are selection vectors consisting of zeros and one
element equal to 1, i.e., eL(1)=1 and eR(M+1)=1. In the case
of a single desired source, the speech vector x is equal to

x=aS, (5)

where the vector a∈C
2M contains the ATFs between the desired

source S and all microphones, including reverberation, micro-
phone characteristics and head-shadowing. The RTF vectors aL
and aR of the desired source are defined by relating the ATF vector
a to both reference microphones, i.e.,

aL=
a

eTL a
, aR=

a

eTR a
. (6)

The speech covariance matrix Rx ∈ C
2M×2M and the noise

covariance matrix Rn∈C
2M×2M are defined as

Rx=E {xxH}=φx,LaLa
H
L =φx,RaRa

H
R , (7)

Rn=E {nnH}, (8)

where E {·} denotes the expectation operator, (·)H denotes the
conjugate transpose, and φx,L =E {|XL|2} and φx,R =E {|XR|2}
denote the power spectral density (PSD) of the desired source
in the reference microphones. Assuming statistical indepen-
dence between the desired speech and noise components, the
microphone signal covariance matrix is equal to

Ry=E {yyH}=Rx+Rn. (9)

The output signals at the left and the right hearing device are
obtained by filtering and summing all microphone signals using
the complex-valued filter vectors wL and wR, respectively, i.e.,

ZL=wH
L y, ZR=wH

R y. (10)

3 Binaural MVDR Beamformer
In this section, we briefly review the well-known BMVDR
beamformer [2, 22, 23]. The BMVDR beamformer minimizes the
output noise PSD while preserving the desired speech component
in the reference microphones, hence preserving the binaural cues
of the desired source. The constrained optimization problem for
the left filter vector is given by

min
wL

E {|wH
L n|2} subject to wH

L aL=1. (11)

The constrained optimization problem for the right filter vector is
defined similarly by substituting R for L. The solutions of these
optimization problems are equal to [1, 2, 5]

wL=
R−1

n aL

aHL R−1
n aL

, wR=
R−1

n aR

aHR R−1
n aR

. (12)

Hence, to calculate the BMVDR beamformer an estimate of the
noise covariance matrix Rn and the RTF vectors aL and aR of the
desired source is required. Usually, the noise covariance matrix
Rn is either estimated by recursively updating the matrix during
speech pauses or approximated by using an appropriate model,
e.g., assuming a spherically isotropic noise field. Similarly, the
RTF vectors aL and aR are either estimated from the microphone
signals or approximated by using – simulated or measured –
anechoic RTFs corresponding to the assumed position of the
desired source (e.g., in front of the user). In the following sections
we will consider data-dependent RTF estimation approaches to
steer the BMVDR beamformer in (12).

4 RTF Estimation Approaches
In this section, we discuss different approaches to estimate the
RTF vectors aL and aR of the desired source. First, we consider
a biased estimator, which only requires an estimate of the mi-
crophone signal covariance matrix Ry. Second, we consider the
CW estimator [8, 10], which requires estimates of the microphone
signal covariance matrix Ry and the noise covariance matrix Rn.
Third, we present an RTF estimator that exploits the external
microphone signal YE, assuming the spatial coherence between
the noise components in the head-mounted microphone signals
and the external microphone signal is zero.

4.1 Biased Estimator (B)

Using (6) and (7), it can be easily shown that the RTF vectors are
equal to

aL=
RxeL

eTL RxeL
, aR=

RxeR

eTR RxeR
, (13)

i.e., a column of the speech covariance matrix Rx normalized
with the element corresponding to the respective reference micro-
phone. When no reliable estimate of the speech covariance matrix
Rx is available, a simple but biased RTF estimate can be obtained
by using the (noisy) microphone signal covariance matrixRy [24]

aB
L =

RyeL

eTL RyeL
, aB

R=
RyeR

eTR RyeR
. (14)

The biased estimator in (14) obviously does not lead to the same
solution as (13), especially for low input SNRs.

4.2 Covariance Whitening (CW)

A frequently used (unbiased) RTF estimator is based on covari-
ance whitening [7–11]. Using a square-root decomposition (e.g.,
Cholesky decomposition), the noise covariance matrix Rn can be
written as

Rn=R
H/2
n R

1/2
n . (15)

The pre-whitened microphone signal covariance matrix is then
equal to

Rw
y =R

−H/2
n RyR

−1/2
n , (16)

which can be decomposed using the eigenvalue decomposition
(EVD) as

Rw
y =VΛVH , (17)

where the matrix V ∈ C
2M×2M contains the eigenvectors and

the diagonal matrix Λ ∈ R
2M×2M contains the corresponding

eigenvalues. Using the principal eigenvector vmax, i.e., the
eigenvector corresponding to the largest eigenvalue, the RTF
vectors can be estimated as [11]

aCW
L =

R
1/2
n vmax

eTL R
1/2
n vmax

, aCW
R =

R
1/2
n vmax

eTR R
1/2
n vmax

. (18)

Due to the EVD, this estimator has a larger computational
complexity than the biased estimator. Additionally, an estimate
of both the microphone signal covariance matrix Ry and the
noise covariance matrix Rn is required, although this estimate is
required anyway for the BMVDR beamformer, cf. (12).

4.3 Spatial Coherence (SC)

Considering a spherically isotropic noise field as an example for
a diffuse noise field, the magnitude-squared coherence (MSC)
between the noise components in two different microphones
(neglecting head-shadowing) is equal to [25]

MSC=

∣∣∣∣sinc
(
ωd

c

)∣∣∣∣
2
, (19)
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Figure 2: Analytical inter-microphone magnitude-squared
coherence in a spherically isotropic noise field.

where d denotes the distance between the two microphones and
c denotes the speed of sound. Figure 2 depicts the MSC for
d∈{0.01,0.1,1}m and c=343ms−1. It can be seen that for large
distances between the microphones the MSC tends to be very
small, especially for high frequencies.
For now, let us assume that the external microphone is sufficiently
far away from the head-mounted microphones, such that

E {nN∗
E}=0, (20)

i.e., the noise components in the head-mounted microphone
signals are spatially uncorrelated with the noise component in the
external microphone signal. Using (20) yields

E {yY ∗
E }=E {xX∗

E}+E {nN∗
E}=E {xX∗

E}. (21)

Using (21) and x=XLaL =XRaR, the spatial-coherence-based
RTF estimator (SC) is equal to

aSC
L =

E {yY ∗
E }

E {YLY
∗

E }
, aSC

R =
E {yY ∗

E }
E {YRY

∗
E }

(22)

Of course, in practice the assumption made in (20) does not
perfectly hold. Hence, in the experimental evaluation in Section 5
we also consider an oracle version of the estimator in (22), which
uses the clean speech signal S as the external microphone signal,
such that (20) perfectly holds, i.e.,

a
SCopt
L =

E {yS∗}
E {YLS∗} , a

SCopt
R =

E {yS∗}
E {YRS∗} . (23)

Compared to the CW estimator, the SC estimator does not need
an estimate of the noise covariance matrix Rn and has a lower
computational complexity, but obviously requires an external
microphone to be available.

5 Experimental Results
In this section, an experimental evaluation is presented of the
BMVDR beamformer in (12) using the RTF estimators discussed
in Section 4. In Section 5.1 the recording setup is described,
while detailed information about the implementation is provided
in Section 5.2 and the results are presented in Section 5.3.

5.1 Recording setup

All signals were recorded in a laboratory located at the University
of Oldenburg where the reverberation time can be easily changed
by closing and opening absorber panels mounted to the walls
and the ceiling. The room dimensions are about (7×6×2.7) m,
where the reverberation time was set approximately to the three
different values T60 ∈ {250, 500, 750}ms. The reverberation
times were measured using the broad band energy decay curve
of measured impulse responses. At the center of the room a
KEMAR head-and-torso simulator (HATS) was placed. Two
behind-the-ear hearing aid dummies with two microphones each,
i.e., M=2, were placed on the ears of the HATS.
The desired source was a male English speaker played back by

Figure 3: Measured long-term magnitude-squared coherence
between the recorded noise in the left reference microphone and
the external microphone.

a loudspeaker placed at about 2 m from the center of the head at
the same height and at an angle of 35◦, i.e., on to the right side of
the HATS (cf. Figure 1). The external microphone was placed at
about 0.5 m from the desired source, leading to a distance of about
1.5 m to the HATS, which refers to, e.g., a table microphone or a
smartphone that is connected to the binaural hearing device. To
generate the background noise, we used four loudspeakers facing
the corners of the laboratory, playing back different multi-talker
recordings. Figure 3 shows the long-term magnitude-squared co-
herence between the recorded noise in the reference microphone
of the left hearing aid and the external microphone. It can be
observed that the assumption in (20) obviously does not perfectly
hold, but the coherence is fairly small. The desired source and
the background noise were recorded separately in order to be able
to mix them together at different input SNRs ∈ {−5, 0, 5} dB.
The SNR in the external microphone signal was about 9.6 dB
higher than in the head-mounted microphone signals. Please note,
that streaming and directly using the external microphone signal
would not include any binaural cues. The complete signal had a
length of 20 s with 0.5 s of noise-only at the beginning.

5.2 Implementation and Performance Mea-

sures

All signals were processed at a sampling rate of 16 kHz. We
used the short-time Fourier transform (STFT) with frame length
T = 256, corresponding to 16 ms, overlapping by R = 128
samples, e.g., for the left reference microphone signal

YL(k,l)=
T−1

∑
t=0

yL(l·R+t)w(t)e−j2πkt/T , (24)

=XL(k,l)+NL(k,l), (25)

with k the frequency bin index, l the time frame index, yL(t)
the left reference microphone signal in the time-domain, w(t) a
square-root Hann window of length T and j=

√−1.
To distinguish between speech-plus-noise and noise-only frames
we used an oracle broad band voice activity detection (VAD),
based on the energy of the speech component in the right reference
microphone signal. Using this VAD, the microphone signal
covariance matrix R̂y(k, l) and the noise covariance matrix
R̂n(k,l) were recursively estimated as

R̂y(k,l)=αyR̂y(k,l−1)+(1−αy)y(k,l)y
H(k,l), (26)

R̂n(k,l)=αnR̂n(k,l−1)+(1−αn)y(k,l)y
H(k,l), (27)

during detected speech-plus-noise frames and noise-only frames,
respectively. The forgetting factors were chosen as αy = 0.8521
and αn = 0.9841, corresponding to time constants of 50 ms
and 500 ms, respectively. As initialization the corresponding
long-term estimates of the covariance matrices were used.
The (time-varying) estimates of the covariance matrices were
then used in the biased RTF estimator (B) in (14), the covariance-
whitening-based RTF estimator (CW) in (18), the oracle
spatial-coherence-based RTF estimator (SCopt) in (23) and the
spatial-coherence-based (SC) RTF estimator in (22). We then
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Figure 4: Binaural cue errors and intelligibility-weighted SNR improvement for the RTF estimators for different reverberation times
(250 ms, 500 ms, 750 ms) and different input SNRs (-5 dB, 0 dB, 5 dB).

computed the (time-varying) BMVDR beamformer in (12) using
the estimated RTF vectors and the estimated noise covariance
matrix R̂n(k, l). The resulting BMVDR beamformer was then
applied to the head-mounted microphone signals, i.e.,

ZL(k,l)=wH
L (k,l)y(k,l), ZR(k,l)=wH

R (k,l)y(k,l). (28)

The performance was evaluated in terms of noise reduction and
binaural cue preservation. As a measure for noise reduction per-
formance we used the intelligibility-weighted SNR improvement
(ΔiSNR) [26] between the right reference microphone signal and
the output of the right hearing aid. As a measure for binaural cue
preservation performance we used the reliable binaural cue errors
of the direct sound of the desired speech component, i.e., ΔILD
and ΔITD, based on an auditory model [27] and averaged over
frequency.

5.3 Results

Figure 4 depicts the results for all four considered RTF estimators
for different reverberation times and input SNRs. As expected,
B generally shows worst performance in terms of binaural cue
preservation and noise reduction performance.
Considering the ILD error, it can be observed for all estimators the
ILD errors generally increase for increasing T60 and decreasing
input SNR. In addition it can be observed that the SC estimator
consistently outperforms the CW estimator, especially for large
T60. Moreover, almost no difference can be observed between the
SC estimator and the oracle SCopt estimator, for all T60 and input
SNRs.
Considering the ITD errors, it can be observed that for all
estimators the ITD errors generally increase for increasing T60
and decreasing input SNRs. Contrary to the ILD error, the SC
estimator typically leads to larger ITD errors than the oracle SCopt
estimator, especially for T60 = 250 ms and 500 ms. Informal
listening tests showed that when using SC (and SCopt) the desired
source is perceived as a point source and sounded slightly less
reverberated than the input of the reference microphones. For B

and CW the binaural cue error sometimes showed large variations
over frequency, which may lead to strange sounding artefacts,
such that some frequencies are perceived as coming from another
direction and the desired source sounds slightly diffuse.
Considering the iSNR improvement, it can be observed that for all
estimators the SNR improvement generally decreases for increas-
ing T60 and decreasing input SNR. In addition, it can be observed
that the SC estimator consistently outperforms the CW estimator
for all T60 and input SNRs. Moreover, almost no difference can be
observed between the SC estimator and the oracle SCopt estimator.
From these results it can be concluded that the SC estimator outper-
forms the CW estimator. Moreover, for the considered scenario,
i.e., the external microphone about 0.5 m from the desired source
and about 1.5 m from the head-mounted microphones, the overall
performance of the (practically implementable) SC estimator is
very similar to the oracle SCopt estimator, showing that the spatial
coherence assumption in (20) is valid for the considered scenario.
It can be expected that placing the external microphone closer to
the desired source would slightly improve the performance of the
SC estimator, especially in terms of binaural cue preservation.

6 Conclusions
In this paper we have shown how an external microphone signal
can be exploited to estimate the RTF vectors of a desired source in
a diffuse noise field. We assumed the spatial coherence between
the noise components in the head-mounted microphone signals
and the noise component in the external microphone signal to
be zero to derive an unbiased RTF estimator. An experimental
evaluation using real-world signals for several reverberation times
and input SNRs showed that a better noise reduction performance
and binaural cue preservation can be obtained when using the
proposed RTF estimator compared to an RTF estimator based on
covariance whitening and a simple biased RTF estimator.
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