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Abstract
A single-ended method for the prediction of perceived 
listening effort based on an automatic speech recognition 
system was adopted from the literature and modified to 
evaluate a near-end listening enhancement (NELE) 
scheme. The listening effort prediction method employs a 
deep time delay neural network (TDNN) that was trained 
as part of an automatic speech recognizer. The TDNN 
computes phoneme posterior probabilities (or “posterior-
grams”), which degrade in the presence of noise or other 
distortions. The degree of posteriorgram degradation is 
quantified by a performance measure and serves as a pre-
dictor for mean subjective listening effort ratings of nor-
mal-hearing listeners. The modification of the original 
method consists of the usage of a TDNN (in contrast to a 
regular feed-forward DNN used before), which was 
trained on a much bigger speech corpus. Without any 
task-specific training or optimization, the modified meth-
od achieves a very high correlation with subjective listen-
ing effort ratings from the used test data set of 
unprocessed and NELE-processed speech in two types of 
background noise (r = 0.98), generalizes to unseen noise 
conditions, and produces consistent predictions across 
these conditions that can be directly compared. 

1 Introduction  
The evaluation of speech enhancement schemes usually 
involves subjective listening tests to measure a possible 
improvement of speech intelligibility or a reduction of 
listening effort, respectively. In contrast to speech intelli-
gibility, listening effort can still be affected by further re-
duction of noise levels at such SNRs (e.g., [1, 2]). 
Consequently, Rennies et al. [2] conclude that “intelligi-
bility is an insensitive measure to evaluate many every-
day listening conditions”. In principle, the assessment of 
listening effort allows for the evaluation of algorithm per-
formance even at SNRs where speech intelligibility is at 
ceiling already in the unprocessed reference condition, 
i.e., at SNRs at which little or no room to quantify algo-
rithm benefit in terms of intelligibility is possible. How-
ever, the measurement of speech intelligibility or 
listening effort by means of formal subjective listening 
tests is time consuming and costly and cannot be used 
for, e.g., online-monitoring. Hence, instrumental methods 
to predict speech intelligibility or perceived listening ef-
fort would be valuable tools for the automatic evaluation 
of speech enhancement schemes. Moreover, such tools 

could be used for online-steering of speech enhancement 
schemes, being a “model in the loop”. 

Signal-based instrumental methods for the pre-
diction of, e.g., speech quality, speech intelligibility or 
listening effort can be classified into single-ended (or 
“reference-free”, “non-intrusive”) and double-ended (or 
“reference-based”, “intrusive”) methods. Double-ended 
methods (such as [3, 4] for speech/audio quality assess-
ment) typically achieve more accurate predictions than 
single-ended methods (such as [5, 6]), but have the disad-
vantage that they need a clean or nearly clean reference 
signal, which is often not available. Consequently, we 
want to focus on single-ended methods for the prediction 
of perceived listening effort in the following. 
In a recent paper [7], Huber et al. introduced a single-
ended approach for listening effort prediction from acous-
tic parameters (LEAP) based on an automatic speech 
recognition (ASR) system. The ASR system employs a 
deep neural network (DNN) to compute phoneme poste-
rior probabilities (or “posteriorgrams”) of input speech. 
Distortions or additive noise increase the uncertainty of 
the ASR system, which is reflected by smeared posterior-
grams. The degree of posteriogram degradation is quanti-
fied by a performance measure, i.e., the M-Measure 
proposed by Hermansky et al. [8]. It has been found that 
the M-Measure correlates well with measured listening 
effort data of several data sets [7]. In related work, this 
modeling approach was also explored in the context of 
speech quality prediction [9, 10]. One limitation of the 
original method presented in [7] was that the ASR system 
was trained on the specific background noises of the test 
data sets. This issue is addressed with a modified LEAP 
model [11], which investigates diverse training data sets 
and multiple noise types with the aim of generalizing to 
unseen noise conditions during testing. The average cor-
relation for three different databases was found to be high 
(r = 0.88) although not as high as for the original ap-
proach with known test noises (r = 0.96). These models 
exhibit different output values for different conditions. 
When pooling the data points from different acoustic sce-
narios, lower correlations are obtained, which prevents 
them from being directly applied as model-in-the-loop 
since they would need to know the specific acoustic scene 
a priori. In this study, we investigate deep time delay 
neural networks (TDNNs) trained with a much bigger 
speech corpus with speaker-independent training and 
mismatched noises (see Section 2.2 for details). The test 
data consist of noisy speech signals, with clean speech 
signal components being either unprocessed or processed 
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by an adaptive, non-linear algorithm employing frequen-
cy-shaping and dynamic range compression (AdaptDRC) 
[12] before mixing them with noises. The AdaptDRC al-
gorithm aims at improving the intelligibility of speech in 
noise by increasing the local SNRs in the frequency 
bands most important for intelligibility, while preserving 
the broadband SNR (see Section 2.1.3 or [12] for details). 

2 Methods

2.1 Listening effort data 
The set of signals with corresponding subjective listening 
effort ratings was adopted from a study of Pusch et al. 
[13] and will be described briefly in the following. 

2.1.1 Stimuli
German sentences were used as speech material, which 
were taken from the Oldenburg sentence test [14]. The 
speech was either unprocessed or processed by the 
AdaptDRC algorithm [12]. While the speech level was 
fixed at 60 dB SPL, the noise levels were varied to obtain 
the desired SNRs. Two different noise types were used: A 
stationary, speech-shaped noise, which had the same 
long-term spectrum as the average unprocessed speech 
material (OLNOISE), and a cafeteria noise, which con-
tained more envelope fluctuations. Based on a pilot 
measurement, a wide range of SNRs was chosen 
(-15, -10, -5, 0, 2.5, 5, 7.5, 10 dB). The signals were pre-
sented diotically to the subjects via Sennheiser HD650 
headphones in a sound-attenuated booth.  

2.1.2 AdaptDRC algorithm 
For enhancing speech intelligibility in given noisy condi-
tions, speech can be pre-processed by speech enhance-
ment algorithms before it is played back via loudspeakers 
(e.g., when playing back an announcement in a noisy 
room). This is commonly referred to as near-end listening 
enhancement (NELE). The AdaptDRC algorithm is one 
of these algorithms. It processes the speech by applying 
frequency-shaping and dynamic range compression 
(DRC) in time frames of 20 ms length. First, each time 
frame is split into eight octave subbands centered at 
125 Hz to 16 kHz using a non-decimating filterbank. 
Based on a simplified version of the Speech Intelligibility 
Index (SII) [15], the subbands are weighted. For low SII 
values, the weighting leads to an increase of energy in 
high frequencies bands, whereas for SII values close to 1, 
the spectral shape is not modified. The DRC stage aims at 
increasing the audibility of softer parts. For low subband 
SNRs, a higher compression ratio is applied than for high 
SNRs. A typical constraint for NELE algorithms is to 
maintain the broadband RMS power of the input speech 
signal. To ensure this, a normalization of the processed 
speech signal is applied. This normalization implies that 
both unprocessed and processed speech are presented at 
the same broadband SNR in a given background noise.  

2.1.3 Subjects and procedure 
Eleven normal-hearing subjects (nine male and two fe-
male) participated in the experiment. Their median age 

was 25.5 years (ranging from 24 to 36 years). All had 
normal audiograms with pure-tone averages lower than 
25 dB HL. The subjects listened to the stimuli and rated 
their perceived listening effort on a scale with 13 catego-
ries ranging from “no effort” (1 Effort Scaling Categori-
cal Unit, ESCU) to “extreme effort” (13 ESCU) [1]. In 
addition, a 14th category ('only noise') was available for 
conditions in which subjects could not detect any speech. 
For each subject and trial, a randomly selected noise start 
sample and sentence were used. Each combination of 
noise type, processing type, and SNR was measured six 
times by each subject, and the combinations were ran-
domly spread in the experiment. 

2.2 Posteriorgram generation 
An acoustic model for automatic speech recognition 
(ASR) was trained prior to the extraction of context-
dependent triphone posteriograms. For ASR training, we 
used about 1.000 hours of unprocessed German speech 
data of an in-house training data set and inflated it up to 
about 8.000 hours in a multi-condition training setup. A 
deep time-delay neural network (TDNN) [16, 17], which 
is also known as a one-dimensional temporal convolu-
tional neural network, was trained with the lattice-free 
maximum mutual information (LF-MMI) criterion [18]. 
To save computational time, the LF-MMI trained neural 
network modeled output posterior probabilities at one 
third of the frame rate of conventional acoustic ASR 
models, which usually run at a 100 Hz frame rate. The 
TDNN topology was similar to a setup described in [19] 
that had a total context size of +/- 15 input feature frames 
(equal to 310 ms), which were analyzed over 7 hidden 
neural network layers of 700 rectified linear units (ReLU) 
dimensions each. The dimensionality of the final output 
layer amounted to 6448, which was the result of decision 
tree clustering of context-dependent Hidden Markov 
Model output distributions. As acoustic features input to 
the TDNN, we used 40-dimensional log-Mel filterbank 
energies. Note that during training, the TDNN used here 
had two output layers, one that followed the LF-MMI ob-
jective function and one that followed a cross-entropy 
(CE) objective function. The latter one is usually used to 
regularize training only, while the former one is used for 
ASR purposes. In this work we used the CE output layer 
for generating posteriorgrams instead, due to better re-
sults. 

2.3 Performance measure 
From the posteriorgrams, the mean temporal distance (or 
M-Measure) as proposed by Hermansky et al. [8] was 
computed. The M-Measure computes the average differ-
ence between two vectors of phoneme posteriors pt t and 
pt (i.e., two columns of the posteriorgram) with a tem-
poral distance t:  

with T being the temporal length of the analyzed posteri-
orgram (which is equal to the length of the analyzed 
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speech file, i.e. around 3s in the present study), and D be-
ing the symmetric Kullback-Leibler divergence between 
two vectors x and y with components x(i) and y(i): 

In the present study, N equals the dimensionality of the 
TDNN output layer (6448) and M was computed for  

t =350 to 800 ms (in 50 ms steps) and averaged to yield 
the final listening effort predictor . 

2.4 SNR estimator 
As the perceived listening effort might be dominated by 
the SNR of the noisy speech signals used in this study, an 
SNR estimator was also applied as a baseline measure. 
For a fair comparison with the single-ended ASR-based 
approach, the SNR estimator had to be “blind” in the 
sense that it only works on the mixed signal and does not 
have access to the separate clean speech and noise signal. 
The SNR estimation method employed here was pro-
posed by Denk et al. [20]. Their method performs an iter-
ative, threshold-based combined Voice Activity 
Detection (VAD) and broadband SNR estimation. From a 
first threshold (using the dynamics of the signal) the 
speech is estimated. From this estimation, the SNR is cal-
culated, and is then used to define a new speech threshold 
leading to a new speech detection to serve as basis for a 
new SNR estimation. This is continued until two consec-
utive SNR estimates do not differ more than a certain 
value (for details, see [20]).  

 

Fig. 1: Comparison of measured listening effort (mean 
subjective ratings over trials and subjects – LE-MOS) 
with corresponding averaged M-Measure values . Black 
circles: unprocessed speech with cafeteria noise; black 
stars: speech processed by the AdaptDRC algorithm, 
mixed with cafeteria noise; gray circles: unprocessed 
speech with speech simulating OLNOISE; gray stars: 
speech processed by the AdaptDRC algorithm, mixed 
with OLNOISE. Dotted line: linear regression fit. r: linear 
correlation coefficient after Pearson. rs: rank correlation 
coefficient after Spearman. SD: standard deviation (in 
LE-MOS units) from linear fit.  

3 Results

3.1 Results obtained with the M-Measure 
The noisy speech signals of the test data set were fed into 
the ASR system described earlier and the averaged M-
Measure was calculated for all resulting 2112 posteri-
orgrams (2 noise types x 8 SNRs x 2 processings 
(AdaptDRC/unprocessed) x 11 subjects x 6 trials per 
condition). Subsequently, was averaged across all tri-
als per SNR and processing condition (i.e. unprocessed 
vs. processed by AdaptDRC) and across all subjects. The 
subjective listening effort ratings were averaged in the 
same way to yield the Listening Effort Mean Opinion 
Score (LE-MOS). The scatter plot shown in Fig. 1 com-
pares the subjective LE-MOS values with corresponding 
objective mean  values. In the plot, the correlation be-
tween subjective and objective data is quantified by the 
Pearson correlation coefficient r and the Spearman rank 
correlation coefficient rs. Additionally, the standard devi-
ation (SD) of the LE-MOS data from a linear regression 
fit is given. The scatter plot and correlation coefficients 
show that a very high correlation between measured  
LE-MOS and the computed  data is achieved  
(r = 0.98). The relation between LE-MOS and  data is 
independent of the noise type. There is no systematic dif-
ference between the –LE-MOS relations with regard to 
whether the speech signals were processed by the  
AdaptDRC algorithm or not. This means that the effect of 
the AdaptDRC processing in terms of listening effort re-
duction is correctly predicted. 

 

Fig. 2: As Fig. 1, but for the SNR estimator. Dotted line: 
3rd-order polynomial regression fit. 

3.2 Results obtained with the SNR estimator 
The relation between LE-MOS data and corresponding 
SNR estimates is shown in Fig. 2. A floor effect of the 
SNR estimate at about -4 dB is apparent (remember that 
the actual SNRs ranged down to -15 dB). As a conse-
quence, the regression curve (dotted line) becomes much 
steeper at lower SNRs. Moreover, the effects of back-
ground noise type and of processing type on the per-
ceived listening effort are not accounted for by the SNR 
estimate. This is particularly apparent at positive SNRs: 
While subjective listening effort ratings of the four dif-

0 5 10 15 20 25 30
2

4

6

8

10

12

14

r = 0.98
rs = 0.98

SD = 0.63

M

LE
-M

O
S

unproc. cafeteria
proc. cafeteria
unproc. OLNOISE
proc. OLNOISE

-5 0 5 10
2

4

6

8

10

12

14
r = 0.91

rs = 0.93
SD = 1.47

SNR estimate / dB

LE
-M

O
S

unproc. cafeteria
proc. cafeteria
unproc. OLNOISE
proc. OLNOISE

ITG-Fachbericht 282: Speech Communication  10. – 12. Oktober 2018 in Oldenburg

ISBN  978-3-8007-4767-2 ©  VDE VERLAG GMBH  Berlin  Offenbach88



ferent conditions (processed / unprocessed, OLNOISE / 
cafeteria noise) spread across a certain LE-MOS range 
per SNR condition, the corresponding SNR estimates are 
nearly constant. Hence, the overall correlation with the 
subjective data is clearly smaller for the SNR estimate 
than for the averaged M-Measure: When a 3rd-order poly-
nomial regression fit is applied, the Pearson correlation 
coefficient amounts to r = 0.91.

4 Discussion
The presented results confirm the qualification of the 
ASR-based, single-ended method proposed earlier [7] to 
predict the perceived listening effort of noisy speech in 
the presence of different maskers with current deep learn-
ing algorithms. It appears that deep systems trained with 
an appropriate amount of data have become robust 
enough to be similarly affected by speech distortions as 
human listeners are, which is supported by their use for 
conversational telephone speech [21] or their use for pre-
dicting speech intelligibility of normal-hearing listeners 
[22]. For listening effort, correct predictions are obtained 
without any task-specific training or optimization of the 
method, the influences of the SNR, the noise type and the 
non-linear speech enhancement processing in the used da-
taset. In contrast to the original method [7], the system 
investigated here used a deep TDNN that was trained 
with a larger dataset (several thousand hours of data) for 
speaker-independent and noise-mismatched recognition.  
In related work [11], it was shown before that the general 
approach is principally suited to predict listening effort in 
unknown noise scenarios. However, the comparison of 
results with the current net (8000 hours of training data,  
r = 0.98) with the one from [11] (80 hours of training da-
ta, r = 0.88) suggests that our model produces good re-
sults with comparatively small ASR training sets, but the 
predictive power is increased when increasing the amount 
of speech seen during training. 

In the current study, very high correlations  
were obtained in unseen noise types which were pooled 
over different noise conditions. The latter point is espe-
cially important since it implies that consistent model 
predictions were obtained across the acoustic scenes in-
vestigated here. In [7] and [11], different mapping func-
tions between the averaged M-Measure and measured 
listening effort data were observed for different noise 
conditions, i.e., the acoustic scene needed to be known a
priori for accurate predictions. This a priori knowledge 
seems not to be required by the TDNN model presented 
in this paper, which could make it attractive for listening 
effort predictions of processed and unprocessed signals 
for assisted hearing. In future work, the model will be 
tested in a wider range of noise types and processing 
strategies.  

The correlation between subjective and objective 
data achieved in the present study appears to be close to 
the theoretical maximum determined by the reliability of 
the subjective data. The average inter-individual standard 
deviation of the subjective listening effort data amounts 
to 1.5 Effort Scaling Categorical Units (ESCUs), which 
has to be compared to the standard deviation of  
0.7 ESCUs between the subjective LE-MOS and the fit-
ted objective  data. If the subjective data are divided in-

to two randomly selected subsets consisting of ratings av-
eraged across three of the total six trials per condition and 
subject (which can be interpreted as test and retest da-
tasets), the (test-retest) correlation between these two 
subsets is r = 0.995.  

A possible shortcoming of the ASR-based listen-
ing effort prediction method could be an underestimation 
of listening effort due to interfering speech. First own ex-
periences indicate that phoneme activations are hardly 
smeared by interfering speech. Instead, the phoneme den-
sity in the posteriorgrams increases, but this does not af-
fect the M-Measure. A possible remedy for this short-
coming could be the development and usage of a detector 
of background speech, which could be implemented by 
collecting few data points from the target or background 
speaker to perform a speaker-specific adaptation of the 
model during runtime. Whenever background speech is 
detected, a correction factor could be applied to increase 
the listening effort estimate. 

So far, no alternative single-ended measures for 
listening effort prediction with similar prediction accura-
cies are known to the authors. The blind SNR estimator 
investigated in the present study fails to estimate the true 
SNRs, at least for negative SNRs. Moreover, even if it 
could, the influence of the type of background noise and 
of the speech enhancement processing on the perceived 
listening effort would not be taken into account, which 
can be seen in the results at positive SNRs presented in 
this study (Fig. 2). In [7], two standard single-ended 
speech quality measures (i.e., ITU-T P.563 [5] and 
ANIQUE+ [6]) were tested for comparison as well and 
showed high correlations for one of the three tested da-
tasets, although not as high as the ones achieved with the 
ASR-based method. However, the prediction accuracies 
for the other two datasets were poor. 

5 Conclusions
The single-ended prediction method for perceived listen-
ing effort based on an ASR-based DNN was adopted 
from [7] and modified using an extensively trained deep 
TDNN. This allowed the method to better generalize with 
regard to unknown noise types as well as across noise 
types, i.e., it produced accurate listening effort predic-
tions without using the test noise during training (a limi-
tation of the study presented in [7]) or by using individual 
fits that are required for each test noise as reported in 
[18]. The method was applied to human listening test data 
obtained from an evaluation study [13] of a speech en-
hancement scheme (AdaptDRC [12]). A very high corre-
lation between subjective and objective listening effort 
ratings was found (r = 0.98). This proves the qualification 
of the proposed method to be used as an instrumental tool 
for the evaluation of, e.g., adaptive and nonlinear speech 
enhancement schemes or as a “model in the loop” for 
online steering of speech enhancement algorithms. 
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