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ABSTRACT

Many multi-microphone speech enhancement algorithms require the
relative transfer function (RTF) vector of the desired speech source,
relating the acoustic transfer functions of all array microphones to a
reference microphone. In this paper, we propose a computationally
efficient method to estimate the RTF vector in a diffuse noise field,
which requires an additional microphone that is spatially separated
from the microphone array, such that the spatial coherence between
the noise components in the microphone array signals and the
additional microphone signal is low. Assuming this spatial coherence
to be zero, we show that an unbiased estimate of the RTF vector can
be obtained. Based on real-world recordings experimental results
show that the proposed RTF estimator outperforms state-of-the-art
estimators using only the microphone array signals in terms of
estimation accuracy and noise reduction performance.

Index Terms— Relative transfer function, external microphone,
acoustic sensor network, speech enhancement, MVDR

1. INTRODUCTION

In many hands-free speech communication systems such as hearing
aids, hearables or other assistive listening devices, the captured
speech signal is often corrupted by additive background noise,
such that speech enhancement methods are required to improve
speech quality and speech intelligibillity [1]. When more than
one microphone is available, it is not only possible to exploit the
spectro-temporal properties but also the spatial properties of the
sound field to extract the desired speech source at a certain position
from the noisy microphone signals. By using spatially distributed
microphones, e.g., one or more external microphones in addition to
the microphones on the hearing device, the spatial sampling of the
sound field can be increased [2–7].
A well-known multi-microphone speech enhancement method is
the minimum variance distortionless response (MVDR) beamformer
[1, 8]. In a reverberant environment the MVDR beamformer either
requires the acoustic transfer functions (ATFs) between the desired
speech source and the microphones, which are difficult to accurately
estimate in practice, or the relative transfer functions (RTFs) of the de-
sired speech source, which relate the ATFs to a reference microphone
[1,9]. Since RTFs can be exploited in many multi-microphone speech
enhancement methods [10–17], accurately estimating the RTFs of
one or more sources is an important task. In the literature several
methods for estimating the RTFs have been proposed [9–12, 18–21],

This work was supported by the Collaborative Research Centre 1330
Hearing Acoustics and the Cluster of Excellence 1077 Hearing4all, funded
by the German Research Foundation (DFG), and by the joint Lower
Saxony-Israeli Project ATHENA.

where most recent methods are based either on covariance subtrac-
tion (CS) or covariance whitening (CW). These methods usually
require an estimate of the microphone signal covariance matrix (e.g.,
estimated during speech-plus-noise periods) and the noise covariance
matrix (e.g., estimated during noise-only periods). Although an itera-
tive version of the CS and CW methods has been presented in [12,21],
the computational complexity of the CS-based and CW-based RTF
estimation methods is generally high due to the involved matrix
operations (possibly involving an eigenvalue decomposition (EVD)),
which is especially relevant for an online-implementation.
In this paper, we propose a computationally efficient method to
estimate the RTFs of a local microphone array (e.g., on a hearing
device) by exploiting the availability of an external microphone that
is spatially separated from the local microphone array. We consider a
diffuse noise field and assume that the distance between the external
microphone and the local microphone array is large enough such that
the spatial coherence (SC) between the noise components in the local
microphone signals and the external microphone signal is low. When
assuming this SC to be zero, we show that a simple RTF estimator can
be derived that only depends on the microphone signal covariance
matrix. Based on real-world recordings with (local) head-mounted
microphones and an (external) table microphone, we compare the
performance of the proposed RTF estimator and different CS-based
and CW-based RTF estimators (using only the local microphone
signals). Simulation results show that the proposed estimator yields
the best performance when used in an online implementation of the
binaural MVDR beamformer.

2. SIGNAL MODEL

We consider an acoustic scenario with one desired speech source and
diffuse noise (e.g., babble noise) in a reverberant environment. The
m-th microphone signal Ym(k,l) of an M -element local microphone
array can be written in the short-time Fourier transform (STFT)
domain as

Ym(k,l)=Xm(k,l)+Nm(k,l), m∈{1,...,M}, (1)

where Xm(k,l) denotes the speech component, Nm(k,l) denotes the
noise component, and k and l denote the frequency and frame indices,
respectively. For the sake of brevity, we will omit these indices in the
remainder of the paper wherever possible. All microphone signals
can be stacked in a vector, i.e.,

y=[Y1,Y2, ...,YM ]T ∈C
M , (2)

which can be written as
y=x+n, (3)

where the speech vectorx and the noise vectorn are defined similarly
asy in (2). Without loss of generality, we choose the first microphone
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as the reference microphone. The RTF vector of the desired speech
source is then given by

h=

[

1,
A2

A1
, ...,

AM

A1

]T

, (4)

where Am is the ATF between the desired speech source and the
m-th microphone. Using (4), the speech vector can be written as

x=X1h. (5)

The speech covariance matrix Rx∈C
M×M and the noise covariance

matrix Rn∈C
M×M are given by

Rx=E{xxH}=Φx1hh
H , (6)

Rn=E{nnH}, (7)

where (·)H denotes complex conjugation, E{·} denotes the expec-
tation operator and Φx1 is the speech power spectral density (PSD)
in the first microphone. Assuming statistical independence between
the speech and the noise components, the covariance matrix of the
microphone signals Ry=E{yyH} is equal to

Ry=Rx+Rn. (8)

When applying a filter-and-sum beamformer w ∈ C
M to the

microphone signals, the output signal Z is given by

Z=w
H
y. (9)

The MVDR beamformer [1, 9] aims at minimizing the output
noise PSD while preserving the speech component in the reference
microphone signal and is hence given by

w=argmin
w

w
H
Rnw subject to w

H
h=1,

=
R−1

n h

hHR−1
n h

.
(10)

From (10) it is clear that the MVDR beamformer only requires
knowledge about the noise covariance matrix Rn and the RTF vector
of the desired speech source h.

3. RTF VECTOR ESTIMATION

In this section, we briefly review two commonly used methods to
estimate the RTF vector h, namely the CS method [18,19,22] and the
CW method [11,22]. For both methods, we also discuss iterative ver-
sions based on the power iteration method [10, 12, 21]. All methods
require an estimate of the microphone signal covariance matrix Ry

and the noise covariance matrix Rn, where R̂y is estimated during

speech-plus-noise frames and R̂n is estimated during noise-only
frames, assuming a voice activity detector (VAD) is available. The
computational complexity of the CS-based and CW-based methods
depends on the required matrix operations, where especially matrix
inversion or EVD will result in a large computational complexity.

3.1. Covariance subtraction (CS)

By using the rank-1 model in (6), the RTF vector h can be calculated
as any column of the speech correlation matrix Rx, normalised by
the entry corresponding to the reference microphone, i.e.,

hCS=
Rxe

eTRxe
, (11)

where e= [1, 0, ..., 0]T is a selection vector consisting of zeros with
one element equal to 1. Usually, the speech covariance matrix Rx is

estimated as R̂x=R̂y−R̂n.
Although the CS method has a relatively low computational complex-
ity, its performance is not always very good since due to estimation

errors the estimated speech covariance matrix R̂x typically does not
have rank-1 [19, 22]. Hence, the RTF vector can also be estimated
as the principal eigenvector (corresponding to the largest eigenvalue)

of R̂x normalising by the entry corresponding to the reference
microphone. We denote this estimate as hR1. It has been shown
in [22] that hR1 outperforms hCS when used in a multichannel
Wiener filter (MWF), but obviously has a larger computational
complexity due to the EVD.

3.2. Covariance whitening (CW)

By using a square-root decomposition (e.g., Cholesky decomposi-
tion) of the noise covariance matrix Rn, i.e.,

Rn=R
H/2
n R

1/2
n , (12)

the pre-whitened microphone signal covariance matrix is given by

R
w
y =R

−H/2
n RyR

−1/2
n . (13)

The EVD of (13) is equal to

R
w
y =VΛV

H, (14)

where V ∈ C
M×M contains the eigenvectors and the diagonal

matrix Λ∈R
M×M contains the eigenvalues. Based on the principal

eigenvector vmax, the RTF vector can be estimated as [19]

hCW=
R

1/2
n vmax

eTR
1/2
n vmax

. (15)

3.3. Iterative methods

Iterative CS-based and CW-based methods for RTF estimation
have been proposed, which aim at reducing the computational
complexity of the EVD by using the power iteration method (or
von-Mises-Iteration) to calculate the principal eigenvector vmax.
Using the power iteration method on the pre-whitened microphone
signal covariance matrix Rw

y [12] or the speech covariance matrix
Rx [21] yields the power method (PM) estimators hPM−CW and
hPM−CS, respectively. As mentioned in [12, 21], one iteration per
frame is typically sufficient for an online implementation.

4. INCORPORATION OF AN EXTERNAL MICROPHONE

In addition to the local microphone array, we now assume the
presence of an external microphone that is spatially separated from
the local microphones. The extended microphone signal vector,
containing the microphone signals of the local microphone array and
the external microphone signal, is given by

ȳ=

[

y

YE

]

∈C
M+1, (16)

where YE denotes the external microphone signal. The extended
speech and noise vectors are defined similarly as x̄ = [x,XE]

T and

n̄=[n,NE]
T

, respectively. Similarly to (4), the extended RTF vector
is given by

h̄=

[

h

AE/A1

]

∈C
M+1, (17)

whereAE denotes the ATF between the desired speech source and the
external microphone. Similarly to (6) and (7), the extended speech co-
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variance matrix and the extended noise covariance matrix are equal to

R̄x=E{x̄x̄H}=Φx1 h̄h̄
H ∈C

(M+1)×(M+1), (18)

R̄n=E{n̄n̄H}∈C
(M+1)×(M+1). (19)

Similarly to (8), the extended microphone signal correlation matrix
is equal to R̄y = R̄x + R̄n. We assume that the distance between
the external microphone and the local microphones is large enough
such that the noise components in the local microphone signals
are spatially uncorrelated with the noise component in the external
microphone signal, i.e.,

E{nN∗

E}=0M , (20)

where 0M is an M -element zero vector. Hence, the extended noise
covariance matrix R̄n in (19) can be written as

R̄n=

[

R̄n 0M

0T
M ΦnE

]

, (21)

where ΦnE
= E{|NE|

2} denotes the noise PSD in the external
microphone signal. For a diffuse, i.e., spherically isotropic, noise
field, the SC between the noise component in the external microphone
signal and the noise component in a local microphone signal is equal
to (neglecting head shadow effects)

γ=sinc(dω/c), (22)

with d the distance between the external microphone and the local
microphone, ω the angular frequency and c the speed of sound.
Hence, the assumption in (20) already holds well even for relatively
small distances (especially at high frequencies).
Based on the assumption in (20), it can be easily shown that the
covariance between the local microphone signals and the external
microphone signal is equal to the covariance between the speech
components in these microphone signals, i.e.,

E{yY ∗

E}=E{(x+n)(X∗

E+N∗

E)}=E{xX∗

E}. (23)

Using the CS method described in Section 3.1, the extended RTF
vector h̄ in (17) can be estimated as the last column of the ex-
tended speech covariance matrix R̄x, normalized by the first entry
(corresponding to the reference microphone), i.e.,

h̄=
R̄xēE

ēT R̄xēE

(24)

with the (M+1)-dimensional selection vectors ē= [1,0,...,0]T and
ēE=[0,...,0,1]T . Using (21), it can easily be shown that

R̄yēE=R̄xēE+R̄nēE=R̄xēE+ΦnE
ēE, (25)

ē
T
R̄yēE= ē

T
R̄xēE+ē

T
R̄nēE= ē

T
R̄xēE, (26)

such that, using (24),

R̄yēE

ēT R̄yēE
=

R̄xēE+ΦnE
ēE

ēT R̄xēE
= h̄+

ΦnE

ēT R̄xēE
ēE. (27)

Hence, an unbiased estimation for the RTF vector h can be obtained
as the first elements of the vector in (27), i.e.,

hSC=[IM ,0M ]
R̄yēE

ēT R̄yēE
(28)

where IM is the identity matrix of size M and which requires an
estimate of the extended microphone covariance matrix R̄y and no
estimate of any noise covariance matrix. The proposed estimator has

a low computational complexity (similar to the CS estimator using
only the local microphone signals), but obviously requires an external
microphone signal to be transmitted to the local microphone array
(synchronization aspects are outside the scope of this paper). Assum-
ing the availability of a VAD that outputs 1 if speech is present and 0
if speech is absent, the proposed RTF estimation algorithm is summa-
rized in Algorithm 1, where the extended microphone signal covari-
ance matrix is recursively updated during speech-plus-noise frames.

Algorithm 1 Proposed RTF estimation algorithm

Input: ȳ(l), R̄y(l−1), VAD(l)
Parameter: smoothing factor α

For each frequency bin:
Estimation of the extended microphone signal covariance matrix:

1: if (VAD(l)==1) then

2: R̄y(l)=αR̄y(l−1)+(1−α)ȳ(l)ȳH(l)
3: else

4: R̄y(l)=R̄y(l−1)
5: end if

Estimation of the RTF vector:

6: hSC(l)=[IM ,0M ]
R̄y(l)ēE

ēT R̄y(l)ēE

Output: hSC(l)

5. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed RTF
estimator (using the local and the external microphones) with all RTF
estimations discussed in Section 3 (using only the local microphone
signals). Section 5.1 describes the experimental setup and the algo-
rithmic parameters. Section 5.2 and 5.3 evaluate the RTF estimation
accuracy and the noise reduction performance when using the RTF
estimates in an MVDR beamformer.

5.1. Experimental setup

For the simulations we used the database of real-world recordings
(sampling frequency fs = 16kHz) described in [23]. The room di-
mensions were about 12.7×10×3.6 m3 with a reverberation time of
about 620ms. The local microphone array consisted ofM =4micro-
phones mounted to the ears of a listener (two microphones per ear).
As reference microphone we chose the front microphone mounted to
the left ear. The external microphone was located on a table in front of
the desired speaker with about 60cm distance to the reference micro-
phone. The desired speaker was an English-speaking female talker
who sat to the right of the listener at an angle of about 45◦. Both the
listener and the desired speaker were seated at a circular table with
a diameter of 106 cm. In addition, 56 other talkers which were also
seated at tables, generated a realistic babble noise. The noise field
hence contained mainly diffuse but also directional components from
temporally dominant interfering talkers. Separate recordings of the
babble noise and the desired speaker were used to mix them together
at different input signal-to-noise ratios (SNRs){−10,−5,0,5,10}dB.
The SNR in the external microphone signal was about 13 dB higher
than in the reference microphone signal (due to distance and head
shadow effect). We calculated all SNRs using the intelligibility-

weighted SNR [24]. The total signal length was about 23 s.
We used an STFT framework with a frame length Lf =512 samples
and a frame-shift of Lo=Lf/2 samples and a square-root Hann win-
dow. To estimate the covariance matrices R̄y and Ry using speech-
plus-noise frames and the noise covariance matrix Rn using noise-
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Fig. 1. Hermitian angle Θ between the reference RTF vector hREF

and the estimated RTF vectors (averaged over frequency and time) for
different input SNRs and different time constants τy.

only frames we used a simple broadband energy-based VAD calcu-
lated from the speech component in the reference microphone signal.
To recursively estimate these covariance matrices, we used the time
constants τy and τn, respectively. The corresponding smoothing fac-

tor (cf. Algorithm 1) is equal to α=exp(−Lf−Lo

fsτ
). Please note that

a smaller time constant corresponds to a smaller smoothing factor and
hence to a faster adaptation to possible changes, but may also lead to
less accurate estimates of the covariance matrices. Especially in a sce-
nario where the microphones or the desired speaker may change their
position, a small time constant is desireable to be able to track changes
fast enough. Because the background noise can be assumed to be
rather stationary we set the corresponding time constant τn=500ms.
The time constant used to recursively estimate the covariance matri-
ces R̄y and Ry was chosen as τy ∈ {50, 100, 150, 200} ms. All
covariance matrix estimates were initialised using the corresponding
long-term estimate.

5.2. RTF estimation accuracy

As suggested in [21], to evaluate the RTF estimation accuracy we
used the Hermitian angle between a reference RTF vector hREF and

the estimated RTF vector ĥ, i.e.,

Θ(k,l)=arccos
|hH

REF(k,l)ĥ(k,l)|

‖hREF(k,l)‖2‖ĥ(k,l)‖2
. (29)

The reference RTF vectorhREF was calculated as the principal eigen-
vector of the oracle speech covariance matrixRx (estimated using all
available speech frames), normalised by its first element (correspond-
ing to the reference microphone). Figure 1 depicts the results (aver-
aged over all frequencies and frames) for different time constants over
different input SNRs. As expected, the performance of all estimators
improves by increasing the input SNR and the time constant. It can be
observed that the proposed SC-based estimator generally outperforms
the other estimators for all input SNRs and time constants. The CS
method showed worse performance, in line with the literature [19].
Only for a time constant of τy=50ms and a high input SNR of 10 dB
the R1 and PM-CS estimators slightly outperform the proposed
estimator. For an exemplary input SNR of 0dB and a time constant
of 50ms Figure 2 depicts the Hermitian angles (averaged over all
frequencies) for the first 100 frames. The proposed estimator starts

10 20 30 40 50 60 70 80 90 100

0

0.5

1

Fig. 2. Hermitian angle Θ between the reference RTF vector hREF

and the estimated RTF vectors (averaged over frequency) for an input
SNR of 0 dB and τy=50ms.
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Fig. 3. SNR improvement ∆SNR of an MVDR beamformer steered
by using the estimated RTF vectors for different time constants τy.

to adapt after about 22 frames because this is the first frame where
the speaker is active. All other estimators rely on estimates of both
the noisy and the noise covariance matrices and hence adapt during
noise-only and speech-plus-noise frames. The R1 and CW estimators
both seem to benefit from the long-term initializations in the first
frames but perform worse than the proposed estimator afterwards.

5.3. Noise reduction

We evaluated the noise reduction performance when using the

estimated RTFs to steer an MVDR beamformer, i.e., using ĥ(k, l)
and the time-varying estimate of Rn(k,l) in (10). Please note, that
for all estimators the MVDR beamformer is M -dimensional. Figure
3 depicts the SNR improvement (∆SNR) calculated by applying the
beamformer to the desired speech and noise components separately.
As can be seen, the proposed SC estimator clearly outperforms all
other estimators for all input SNRs and time constants.

6. CONCLUSION

In this paper, we proposed an RTF estimation method exploiting low
spatial coherence between the noise components in local microphone
signals and an external microphone signal. We derived a simple
and computational efficient RTF estimator that yields an unbiased
estimate of the RTF vector corresponding to the local microphone
array. Evaluation results in terms of the RTF estimation error and the
noise reduction performance using real-world signals in an online
implementation showed that the proposed estimator outperforms
existing estimators using only the local microphone signals.
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