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ABSTRACT
Multi-channel methods for estimating the late reverberation power
spectral density (PSD) generally assume that the reverberant PSD
matrix can be decomposed as the sum of a rank-1 matrix and a
scaled diffuse coherence matrix. To account for modeling or es-
timation errors in the estimated reverberant PSD matrix, in this
paper we propose to decompose this matrix as the sum of a low
rank (not necessarily rank-1) matrix and a scaled diffuse coherence
matrix. Among all pairs of scalars and matrices that yield feasi-
ble decompositions, the late reverberation PSD can then be esti-
mated as the scalar associated with the matrix of minimum rank.
Since rank minimization is an intractable non-convex optimization
problem, we propose to use a convex relaxation approach and esti-
mate the late reverberation PSD based on nuclear norm minimiza-
tion (NNM). Experimental results show the advantages of using the
proposed NNM-based late reverberation PSD estimator in a multi-
channel Wiener filter for speech dereverberation, significantly out-
performing a state-of-the-art maximum likelihood-based PSD esti-
mator and yielding a similar or better performance than a recently
proposed eigenvalue decomposition-based PSD estimator.

Index Terms— dereverberation, nuclear norm, convex opti-
mization, MWF, PSD estimation

1. INTRODUCTION

In hands-free communication applications the recorded microphone
signals are often corrupted by early and late reverberation, which
arises from the superposition of delayed and attenuated copies of
the anechoic speech signal. While early reverberation may be desir-
able [1], late reverberation may degrade the perceived quality and
hinder the intelligibility of speech [2]. Hence, speech enhance-
ment techniques which effectively suppress the late reverberation
are required. In the last decades many single-channel and multi-
channel dereverberation techniques have been proposed [3], with
multi-channel techniques being generally preferred since they are
able to exploit both the spectro-temporal and the spatial character-
istics of the received microphone signals. Many such techniques
require an estimate of the late reverberation power spectral den-
sity (PSD), e.g. [4–6].

The late reverberation PSD can be estimated either using single-
channel estimators based on a temporal model of reverberation [7,8]
or multi-channel estimators based on a (spatial) diffuse sound field
model of reverberation [9–17]. Most multi-channel PSD estima-
tors [9–15] require an estimate of the relative early transfer func-
tions (RETFs) of the target signal from the reference microphone
to all microphones, which may be difficult to accurately estimate,
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particularly in highly reverberant and noisy scenarios. Recently, we
proposed a multi-channel late reverberation PSD estimator based on
an eigenvalue decomposition (EVD), which does not require such
RETF estimates [16, 17]. Experimental results in [17] show the
advantages of using this EVD-based estimator in a multi-channel
Wiener filter (MWF) for speech dereverberation, outperforming the
maximum likelihood (ML)-based estimator in [10] both when the
RETFs are perfectly estimated as well as in the presence of RETF
estimation errors.

The EVD-based estimator in [17] relies on the assumption that
the reverberant PSD matrix is equal to the sum of a rank-1 matrix
(corresponding to the direct and early reverberation speech compo-
nent) and a diffuse coherence matrix scaled with the late reverbera-
tion PSD. However, since the late reverberation is not truly diffuse
and since the reverberant PSD matrix in practice is estimated using
one signal realization, the estimated reverberant PSD matrix can de-
viate from this assumption. In order to account for this deviation,
in this paper we propose to model the reverberant PSD matrix as
the sum of a low rank (not necessarily rank-1) matrix and a scaled
diffuse coherence matrix. Among all pairs of scalars and matrices
that yield feasible decompositions, the late reverberation PSD can
be estimated as the scalar associated with the matrix of minimum
rank. However, since the rank of a matrix is non-convex and non-
convex optimization problems are typically hard (if not impossible)
to solve, we propose to estimate the late reverberation PSD based
on nuclear norm minimization (NNM) [18–20] instead. The nuclear
norm is a convex relaxation of the rank, and hence, NNM-based
optimization problems can be efficiently solved [18]. Experimen-
tal results for several acoustic systems and configurations illustrate
the advantages of using the NNM-based PSD estimator in an MWF
for speech dereverberation, yielding a similar or better performance
than the ML-based and EVD-based PSD estimators.

2. CONFIGURATION AND NOTATION

Consider a reverberant and noisy acoustic system with a sin-
gle speech source and M ≥ 2 microphones, as depicted in
Fig. 1. In the short-time Fourier transform (STFT) domain,
the M -dimensional vector of the microphone signals y(k, l) =
[Y1(k, l) . . . YM (k, l)]T at frequency index k and frame index l is
given by

y(k, l) = xe(k, l) + xr(k, l)︸ ︷︷ ︸
x(k,l)

+v(k, l), (1)

with x(k, l) the speech component, v(k, l) the noise component,
xe(k, l) the direct and early reverberation speech component, and
xr(k, l) the late reverberation speech component. For simplicity,
in the following we assume that the noise component is equal to
zero, i.e., y(k, l) = x(k, l). However, the late reverberation PSD
estimator proposed in this paper can also be used in noisy scenarios,
cf. Section 3.3.
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Figure 1: Acoustic system configuration.

The direct and early reverberation speech component xe(k, l)
can be expressed as

xe(k, l) = S(k, l)d(k), (2)

with S(k, l) the target signal (i.e., direct and early reverberation
speech component) received by the reference microphone and
d(k) = [D1(k) . . . DM (k)]T the vector of RETFs of the target
signal from the reference microphone to all microphones. The late
reverberation speech component xr(k, l) is commonly modeled
as a diffuse sound component and is assumed to be uncorrelated
with the direct and early reverberation speech component xe(k, l)
[9–17]. Hence, the reverberant PSD matrix can be written as

Φx(k, l) = E{x(k, l)xH(k, l)} (3)

= E{xe(k, l)xH
e (k, l)}+ E{xr(k, l)x

H
r (k, l)}, (4)

with E the expectation operator. Based on (2) and on a diffuse sound
field model for the late reverberation, the PSD matrix Φx(k, l) can
be expressed as the sum of a rank-1 matrix and a scaled diffuse
coherence matrix, i.e.,

Φx(k, l) = Φs(k, l)d(k)dH(k) + Φr(k, l)Γ(k), (5)

with Φs(k, l) = E{|S(k, l)|2} the (time-varying) PSD of the target
signal, Φr(k, l) the (time-varying) PSD of the late reverberation,
and Γ(k) the (time-invariant) coherence matrix of a diffuse sound
field, which can be analytically computed based on the microphone
array geometry [21]. In practice, an estimate of the PSD matrix
Φx(k, l) is obtained using recursive averaging with a smoothing
factor α, i.e.,

Φ̂x(k, l) = αx(k, l)xH(k, l) + (1− α)Φ̂x(k, l − 1). (6)

Given the filter vector w(k, l) = [W1(k, l) . . . WM (k, l)]T , the
output signal Z(k, l) of the speech enhancement system in Fig. 1
can be computed as

Z(k, l) = wH(k, l)x(k, l) = wH(k, l)xe(k, l)+wH(k, l)xr(k, l).
(7)

Speech dereverberation techniques aim at designing the filter
w(k, l) such that the output signal Z(k, l) is as close as possi-
ble to the target signal S(k, l). Many such techniques require an
estimate of the late reverberation PSD Φr(k, l), e.g. [4–6].

3. LATE REVERBERATION PSD ESTIMATOR

In this section, the ML-based estimator [10] and the EVD-based
estimator [17] are briefly reviewed and a novel nuclear norm
minimization-based estimator is proposed. Since the estimation
is performed independently in each frequency bin, the frequency
index k will be omitted in the remainder of this paper.

3.1. Maximum likelihood-based estimator

In order to derive the ML-based estimator in [10], the early and
late reverberation speech components are assumed to be circularly-
symmetric complex Gaussian distributed. These distributions are
then used to construct and maximize a likelihood function, yielding
the ML-based late reverberation PSD estimate

Φ̂ml
r (l) =

1

M − 1
tr

{(
I− d

dHΓ−1

dHΓ−1d

)
Φ̂x(l)Γ−1

}
, (8)

where I denotes the M ×M -dimensional identity matrix and tr{·}
denotes the matrix trace operator. Note that the PSD estimate in (8)
requires knowledge of the RETF vector d, which may be difficult
to estimate accurately.

3.2. Eigenvalue decomposition-based estimator

To remove the dependency of the PSD estimate on the RETF
vector d, we recently proposed to estimate the late reverberation
PSD using the EVD of the prewhitened reverberant PSD matrix
Γ−1Φ̂x(l) [17]. Based on the model in (5), the EVD-based late
reverberation PSD estimate is computed as

Φ̂evd
r (l) =

1

M − 1

(
tr{Γ−1Φ̂x(l)} − λmax{Γ−1Φ̂x(l)}

)
, (9)

where λmax{Γ−1Φ̂x(l)} denotes the maximum eigenvalue of the
prewhitened reverberant PSD matrix. Unlike the ML-based esti-
mate in (8), the EVD-based estimate in (9) does not require knowl-
edge of the RETF vector d, which is advantageous in order to avoid
propagation of RETF estimation errors into the PSD estimate. As
has been experimentally validated in [17], using the EVD-based
PSD estimate in an MWF yields a better dereverberation perfor-
mance than the ML-based estimate, both for perfectly estimated
RETFs as well as in the presence of RETF estimation errors.

3.3. Nuclear norm minimization-based estimator

The EVD-based PSD estimator in (9) relies on the assumptions that
1) the late reverberation can be modeled as a diffuse sound field, 2)
the components xe(l) and xr(l) are uncorrelated, and 3) the esti-
mated PSD matrix Φ̂x(l) in (6) is equal to the PSD matrix Φx(l)
in (5). However, the late reverberation is not perfectly diffuse. Fur-
thermore, even if the components xe(l) and xr(l) were truly uncor-
related, the PSD matrix Φ̂x(l) in (6) estimated using a realization
of x(l) will likely contain non-zero contributions of the cross-terms
xe(l)xH

r (l) and xr(l)x
H
e (l). As a result, in practice Φ̂x(l) differs

from Φx(l), i.e.,

Φ̂x(l) = E(l) + Φx(l) = E(l) + Φs(l)ddH︸ ︷︷ ︸
∆(l)

+Φr(l)Γ, (10)

with E(l) an M ×M -dimensional Hermitian error matrix and the
matrix ∆(l) = E(l) + Φs(l)ddH defined to simplify the notation.
Assuming that the matrix ∆(l) can be modeled as a low rank (how-
ever, not necessarily rank-1) matrix, we propose to estimate the late
reverberation PSD Φr(l) by decomposing the estimated PSD matrix
Φ̂x(l) into the sum of an unknown low rank Hermitian matrix and
a scaled diffuse coherence matrix. This corresponds to solving the
constrained minimization problem

min
Φr(l),∆(l)

R{∆(l)} subject to


Φ̂x(l) = ∆(l) + Φr(l)Γ,

Φr(l) ≥ 0,

∆(l) = ∆H(l),
(11)
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where R{∆(l)} denotes the rank of ∆(l), defined as the number
of nonzero singular values σp{∆(l)}, p = 1, . . . , M . Rank min-
imization problems arise in many statistical modeling and signal
processing applications such as in robust principal component anal-
ysis [19] and subspace segmentation [20]. However, the matrix rank
is non-convex and it is well known that non-convex optimization
problems are typically hard (if not impossible) to solve. A common
alternative to rank minimization problems is to use a convex relax-
ation approach and replace the non-convex rankR{∆(l)} with the
convex nuclear norm ‖∆(l)‖∗ [18–20], defined as

‖∆(l)‖∗ =

M∑
p=1

σp{∆(l)}. (12)

Whereas the rank counts the number of nonzero singular values,
the nuclear norm sums the amplitude of the singular values. It can
be shown that under certain conditions low rank solutions can be
perfectly recovered via nuclear norm minimization [22]. Hence,
we propose to estimate the late reverberation PSD by solving the
nuclear norm minimization problem

Φ̂nnm
r (l)= arg min

Φr(l),∆(l)

‖∆(l)‖∗ subject to


Φ̂x(l)=∆(l) + Φr(l)Γ,

Φr(l)≥0,

∆(l)=∆H(l).
(13)

Since the optimization problem in (13) is convex, it can be effi-
ciently solved using existing optimization tools, e.g. the MATLAB
software CVX [23].

It should be noted that although a noise-free scenario is as-
sumed in this paper, the proposed NNM-based estimator can also
be used in a noisy scenario, as long as an estimate of the PSD ma-
trix Φx(l) can be obtained. An estimate of Φx(l) can in practice be
computed by, e.g., subtracting an estimate of the noise PSD matrix
from the noisy signal PSD matrix. However, if the noise can also be
modeled as a diffuse sound field, the NNM-based estimator can be
readily used to estimate the joint late reverberation and noise PSD.

4. EXPERIMENTAL RESULTS

In this section, the dereverberation performance of an MWF using
the proposed NNM-based PSD estimator is investigated and com-
pared to the ML-based [10] and EVD-based [17] PSD estimators,
both for perfectly as well as for erroneously estimated RETFs. The
MWF is implemented as an MVDR beamformer wMVDR followed
by a single-channel Wiener postfilter G(l), i.e.,

wMWF (l) =
Γ−1d

dHΓ−1d︸ ︷︷ ︸
wMVDR

Φ̂s(l)

Φ̂s(l) + Φ̂r(l)

dHΓ−1d︸ ︷︷ ︸
G(l)

, (14)

with Φ̂s(l) and Φ̂r(l) the estimated target signal and late reverber-
ation PSDs. When using the ML-based late reverberation PSD es-
timate Φ̂ml

r (l), the target signal PSD Φ̂s(l) is estimated within the
ML framework as proposed in [10], whereas when using the EVD-
based and NNM-based late reverberation PSD estimates Φ̂evd

r (l)

and Φ̂nnm
r (l), the target signal Φ̂s(l) is estimated using the decision

directed approach [24]. It should be noted that independently of the
late reverberation PSD estimator used, the MWF implemented ac-
cording to (14) is sensitive to estimation errors in the RETF vector
d due to the sensitivity of the MVDR beamformer to RETF errors.
However, as will be illustrated in Section 4.3, a significantly higher
sensitivity of the MWF is observed when the late reverberation PSD
estimator is also affected by RETF errors.

4.1. Setup

We consider two multi-channel acoustic systems with a single
speech source and M ∈ {2, 4, 6} microphones. The first acoustic
system consists of a uniform linear microphone array with an inter-
microphone distance of 8 cm, placed in a room with reverberation
time T60 ≈ 0.61 s [25]. The speech source is located at an angle
θ = 45◦ to the microphone array and the direct-to-reverberant ratio
(DRR) is 2.1 dB. The second acoustic system consists of a uniform
linear microphone array with an inter-microphone distance of 6 cm,
placed in a room with reverberation time T60 ≈ 1.25 ms [26].
The speech source is located at an angle θ = −65◦ to the micro-
phone array and the DRR is 0.8 dB. The sampling frequency is
fs = 16 kHz and the received reverberant signals are generated by
convolving clean speech signals from the HINT database [27] with
measured RIRs.

The signals are processed using a weighted overlap-add STFT
framework with a frame size of 1024 samples and an overlap of
75% between successive frames. The first microphone is arbitrar-
ily selected as the reference microphone. The RETF vector d is
computed from the truncated RIRs containing only the direct path
and early reflections (up to 10 ms). The diffuse coherence matrix
Γ is computed based on the microphone array geometry, assuming
a spherically diffuse sound field. To estimate the reverberant PSD
matrix Φ̂x(l), recursive averaging with a smoothing factor α corre-
sponding to a time constant of 40 ms is used, cf. (6). The minimum
gain of the single-channel Wiener postfilter G(l) in (14) is−20 dB.

The performance is evaluated in terms of the improvement in
PESQ (∆PESQ) [28] and cepstral distance (∆CD) [29] between
the output signal and the reference microphone signal. The PESQ
and CD measures are intrusive measures comparing the signal being
evaluated to a reference signal. The reference signal used in this pa-
per is the anechoic speech signal. It should be noted that a positive
∆PESQ and a negative ∆CD indicate a performance improvement.

The performance of the MVDR beamformer and the MWF im-
plemented according to (14) using the ML-, EVD-, and proposed
NNM-based PSD estimators is investigated for

i) both acoustic systems with different number of microphones
M ∈ {2, 4, 6} assuming perfectly estimated RETFs, i.e., d is
computed from the truncated RIRs measured for the true direc-
tion of arrival (DOA) θ of the speech source (Section 4.2),

ii) the first acoustic system with M = 4 microphones assum-
ing erroneously estimated RETFs, i.e., d is computed from the
truncated RIRs measured for DOAs θ̂ which differ from the
true DOA θ (Section 4.3).

Exemplary sound samples for each experimental part can be found
at bit.ly/nnmpsd.

4.2. Perfectly estimated RETFs

In this section, the performance of the MVDR beamformer and
the MWF using the considered late reverberation PSD estimators
is investigated for perfectly estimated RETFs. Fig. 2 depicts the
∆PESQ and ∆CD obtained for all considered acoustic systems and
configurations. As expected, it can be observed that for all acous-
tic systems and configurations, the MWF using any of the consid-
ered PSD estimators improves the performance in comparison to
the MVDR beamformer in terms of both instrumental measures. In
terms of ∆PESQ, Fig. 2(a) shows that the proposed NNM-based
PSD estimator typically results in the best performance (except for
T60 ≈ 0.61 s and M = 2 microphones), yielding a ∆PESQ in-
crease of up to 0.2 in comparison to the ML-based and EVD-based
PSD estimators. In terms of ∆CD, Fig. 2(b) shows that for the first
acoustic system all considered PSD estimators yield a similar per-
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Figure 2: Performance of the MVDR beamformer and the MWF
using different late reverberation PSD estimators with perfectly es-
timated RETFs: (a) ∆PESQ and (b) ∆CD.

formance. For the second acoustic system, Fig. 2(b) shows that the
NNM-based PSD estimator outperforms the ML-based PSD esti-
mator and results in a similar or slightly better performance than
the EVD-based PSD estimator. Informal listening tests suggest that
the NNM-based PSD estimator typically yields a larger suppression
of the late reverberation, introducing as a result slightly more signal
distortions than the ML-based and EVD-based PSD estimators. It
should be noted that the proposed NNM-based PSD estimator has
a higher computational complexity than the ML-based and EVD-
based PSD estimators. While the NNM-based estimator requires
10−1 s to estimate the late reverberation PSD for an STFT bin on
a machine with a 3.4 GHz Intel CPU and 16 GB of main memory,
the ML-based and EVD-based estimators require 10−4 s.

In summary, instrumental measures show that the proposed
NNM-based PSD estimator generally yields a better performance
than the ML-based and EVD-based PSD estimators when used in
an MWF with perfectly estimated RETFs.

4.3. Erroneously estimated RETFs

In this section, the performance of the MVDR beamformer and
the MWF using the considered late reverberation PSD estimators
is investigated for erroneously estimated RETFs. Fig. 3 depicts the
∆PESQ and ∆CD obtained for the first acoustic system andM = 4
microphones when the RETF vector d is computed from the trun-
cated RIRs measured for several erroneous DOAs. For complete-
ness, the performance obtained for the perfectly estimated RETF
vector d (i.e., θ̂ = 45◦) is also depicted. As expected, Fig. 3 shows
that the performance of the MVDR beamformer deteriorates in the
presence of RETF estimation errors in terms of both instrumental
measures. Since the MWF is equivalent to an MVDR beamformer
followed by a single-channel Wiener postfilter, cf. (14), it can be
observed that RETF estimation errors yield a performance deteri-
oration also for the MWF using any of the considered PSD esti-
mators. However, since the ML-based PSD estimator additionally
relies on the RETF vector, Fig. 3 shows that the ML-based PSD es-
timator even worsens the performance in comparison to the MVDR
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Figure 3: Performance of the MVDR beamformer and the MWF us-
ing different late reverberation PSD estimators with erroneously es-
timated RETFs: (a) ∆PESQ and (b) ∆CD (T60 ≈ 0.61 s,M = 4).

beamformer, resulting in a significantly faster and larger perfor-
mance deterioration than the EVD-based or the proposed NNM-
based PSD estimators. When comparing the EVD-based and NNM-
based PSD estimators, Fig. 3(a) shows that in terms of ∆PESQ, the
proposed NNM-based PSD estimator typically results in a similar
or slightly better performance than the EVD-based estimator (ex-
cept for θ̂ = −30◦ and θ̂ = −15◦). Fig. 3(b) shows that in terms of
∆CD, the proposed NNM-based PSD estimator yields a very sim-
ilar performance as the EVD-based PSD estimator. Informal lis-
tening test suggest that in the presence of RETF estimation errors,
using the NNM-based PSD estimator in an MWF yields a larger
suppression of the late reverberation than using the EVD-based PSD
estimator.

In summary, instrumental measures show that the proposed
NNM-based PSD estimator results in a significantly better perfor-
mance than the ML-based PSD estimator and a similar or slightly
better performance than the EVD-based PSD estimator when used
in an MWF with erroneously estimated RETFs.

5. CONCLUSION

In this paper a multi-channel late reverberant PSD estimator based
on nuclear norm minimization has been proposed, which does not
require an estimate of the RETFs. In order to account for model-
ing or estimation errors in the estimated reverberant PSD matrix,
this matrix is modeled as the sum of a low rank matrix and a scaled
diffuse coherence matrix. Among all pairs of scalars and matrices
which yield feasible decompositions, the late reverberation PSD is
estimated as the scalar associated with the matrix of minimum rank.
Instead of minimizing the non-convex matrix rank, it has been pro-
posed to use a convex relaxation approach and estimate the late re-
verberation PSD by minimizing the nuclear norm. Experimental
results have shown that using the proposed NNM-based PSD es-
timator in an MWF for speech dereverberation yields a similar or
better performance than the ML-based and EVD-based estimators.
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