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ABSTRACT

In this paper, we present novel strategies for stationary/transient

signal separation in audio signals in order to exploit the basic ob-

servation that stationary components are sparse in frequency and

persistent over time whereas transients are sparse in time and per-

sistent across frequency. We utilize a multi-resolution STFT ap-

proach which allows to define structured shrinkage operators to

tune into the characteristic spectrotemporal shapes of the station-

ary and transient signal layers. Structure is incorporated by con-

sidering the energy of time-frequency neighbourhoods or modu-

lation spectrum regions instead of individual STFT coefficients,

and shrinkage operators are employed in a dual-layered Iterated

Shrinkage/Thresholding Algorithm (ISTA) framework. We further

propose a novel iterative scheme, Iterative Cross-Shrinkage (ICS).

In experiments using artificial test signals, ICS clearly outperforms

the dual-layered ISTA and yields particularly good results in con-

junction with a dynamic update of the shrinkage thresholds. The

application of the novel algorithms to recordings from acoustic

musical instruments provides perceptually convincing separation

of transients.

1. INTRODUCTION

Among the primitives that constitute music signals, quasi-station-

ary sinusoidal components and short-lived transients are of prime

importance. This becomes intuitively clear when considering spec-

trograms of music signals, which oftentimes feature horizontal

and vertical lines, corresponding to stationary components that are

sparse in frequency and persistent over time and transient compo-

nents that are sparse in time and persistent over frequency. Whereas

modeling sinusoidal components is a well-established field [1],

transient estimation as such remains relatively unexplored, despite

its numerous applications. Examples include audio restoration

where short clicks and crackles must be removed from signals [2],

beat tracking where the availability of a transient layer may im-

prove onset detection algorithms [3], or psychoacoustics where

robust transient separation could allow for refined investigations

into the role of acoustic features in musical timbre perception [4].

The goal of this study is to exploit the distinctive properties of

sparsity and persistence in order to propose robust schemes for

stationary/transient separation.

It is important to note that stationary/transient separation is

a different if not more fine-grained problem than drum separa-
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tion or harmonic/percussive separation [5, 6]. Although sounds

from drums and percussive instruments are mostly impulsively

excited and often inharmonic, percussive sounds may comprise

components that extend over similar time scales as those of non-

percussive musical instruments (think of the sustained and tonal

portions of a snare drum or an open bass-drum sound). This dis-

tinction also illustrates the problem that transients are notoriously

hard to define in semantic terms, because defining features such as

short-livedness and stochastic nature can be easily contested in the

context of complex audio mixtures. Consequently, ground truth for

the stationary/transient separation task is only available for synthe-

sized test signals.

In order to individually characterize stationary and transient

components, our approach is related to several studies using multi-

layered (or hybrid) audio representations that decompose the sig-

nal with at least two distinct dictionaries [7]. Early research used

orthogonal bases [8]. More recently, a combination of a Modified

Discrete Cosine Transform (MDCT) and a wavelet basis was pro-

posed in [9, 10, 11], and Févotte and colleagues further modelled

dependencies between coefficients of dual-layered MDCT expan-

sions using a Bayesian framework for the simultaneous estimation

of both layers [12]. Our current approach has the same goals as the

aforementioned work, utilizing sparsity and inter-coefficient de-

pendencies, but takes a different formal pathway. Here we follow

up on the well-known Iterative Shrinkage/Thresholding Algorithm

(ISTA) for solving ℓ1-regularized minimization problems [13], gen-

eralized to multi-frame mixed-norm regularization in [14, 15]. Fur-

ther work extended the involved shrinkage operators with neighbor-

hood-weighting in order to take into account the correlation be-

tween adjacent time-frequency coefficients [16, 17]. However, the

structured shrinkage framework has not yet been applied to dual-

layer signal decomposition with redundant STFT dictionaries.

The goal of the current study is to explore several strategies

for structured shrinkage as part of a dual-layered framework with

STFT dictionaries of different resolutions. Within each layer, the

structured shrinkage operators are tailored towards the distinct spec-

trotemporal orientations of the stationary and transient compo-

nents. In order to increase separation robustness, we further pro-

pose a novel iteration scheme and update rule for the threshold

parameters. In Sec. 2, we provide a framework that allows us to

formulate the structured shrinkage operators. Iteration rules are

described in Sec. 3, before a comprehensive evaluation of the algo-

rithmic variants using both artificial test signals as well as record-

ings is provided in Sec. 4 and Sec. 5.
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2. STRUCTURED SHRINKAGE

This section provides a background on structured shrinkage. We

outline the basic signal model in Sec. 2.1, before Sec. 2.2 re-

views the idea of extending shrinkage operators with neighbour-

hood weighting, and Sec. 2.3 reformulates this as an operation in

the modulation domain.

2.1. Formal framework

We assume the observed time-domain audio signal y ∈ R
M of

length M to be an additive combination of a stationary layer sS
and a transient layer sT . We further posit that each layer can

be sparsely represented using appropriately chosen time-frequency

dictionaries Φ and Ψ (practically realized below via STFTs with

long and short analysis window lengths, respectively). That is, the

layers are of the form sS = Φα and sT = Ψβ with only few

non-zero elements in the coefficient vectors α and β. Specifically,

the layer sS (analogous for sT ) can be written as

sS = Φα =
∑

γ

αγϕγ (1)

where for the sake of notational convenience γ = (k, l) denotes

a double labelling with k = 1, . . . ,K and l = 1, . . . , L as fre-

quency and time indices, respectively. The collection of time-

localized atoms ϕγ ∈ R
M constitute the dictionary Φ ∈ R

(M,K×L),

and αγ are the STFT expansion coefficients. Here we use regular

STFTs Φ and Ψ with perfect reconstruction, corresponding to one

form of tight Gabor dictionaries [18].

Because there is no access to the separate layers, the general

problem is to estimate the coefficients α and β from an additive

mixture with Gaussian white noise e (e.g., corresponding to mea-

surement error):

y = sS + sT + e = Φα+Ψβ + e, (2)

which can be stated as a dual-layer sparse regression problem [14],

min
α,β

{1

2
‖y −Φα−Ψβ‖22 + λ‖α‖1 + µ‖β‖1

}

, (3)

with sparsity parameters λ, µ > 0 . The solution of this prob-

lem is approximated by the Iterative Shrinkage/Thresholding Al-

gorithm (ISTA) [13, 19], and more specifically its multi-layered

extension [14, 15]:

{

α(n+1) = Sλ

(

α(n) −Φ∗(y −Φα(n) −Ψβ(n))
)

β(n+1) = Sµ

(

β(n) −Ψ∗(y −Φα(n) −Ψβ(n))
)

,
(4)

with iteration index n and initializations α(0) = β(0) = 0. Here

and in the following, the notation (x)+ = max(x, 0) denotes

the positive part of any x ∈ R and all operations are understood

component-wise, i.e., per time-frequency index γ = (k, l). For a

complex-valued vector α, the operator S then refers to a shrinkage

operation that is usually called soft-thresholding,

Sλ(α) =

{

ei argα(|α| − λ) : |α| ≥ λ
0 : |α| < λ

}

= α
(

1−
λ

|α|

)

+
,

(5)

Whereas the optimization problem in (3) together with ISTA

in (4) provide a theoretical footing for sparse multilayer decompo-

sition, this approach has several drawbacks in practical situations.

Most importantly, the independent handling of time-frequency co-

efficients does not utilize the full gamut of structure of stationary

and transient layers. This is where the idea of social sparsity be-

comes useful.

2.2. Structured shrinkage via neighbourhoods

The approach of social sparsity extends classical shrinkage opera-

tors by the aspect of neighbourhood dependencies, yielding solu-

tions of low computational cost that respect structural dependen-

cies but are not strictly attached to known minimization functionals

any more [17]. By generalizing the soft-thresholding operator in

(5), we here focus on shrinkage operators of the form,

Sλ,⋆(α) = α

(

1−

[

λ

‖α‖⋆

]τ )

+

(6)

The placeholder ⋆ refers to a norm that allows to take into account

neighbourhood structures and thus helps to orient the shrinkage

operator towards stationary or transient components (e.g., by let-

ting neighbourhoods extend across time for stationary components

or frequency for transient components). By choosing a vector of

non-negative time-frequency neighbourhood weights w = wγ,γ′ ,

we can define the neighbourhood-based norm as

‖α‖⋆ =
(

‖α‖⋆
)

γ
=

√

∑

γ′

wγγ′ |αγ′ |2 (7)

In practice we use sliding neighbourhoods, i.e., wγ,γ′ = w0,γ−γ′ ,

such that the norm ‖ · ‖⋆ can be efficiently computed via convolu-

tion:
‖α‖2⋆ =

∑

γ′ wγ,γ′ |αγ′ |2

=
∑

γ′ w0,γ−γ′ |αγ′ |2

=
(

w ∗ |α|2
)

γ

(8)

The generic choice τ = 1 leads to the Windowed Group Lasso [16],

which constitutes a natural extension of the classic Least Absolute

Shrinkage/Selection Operator (LASSO) [20], for which ‖ · ‖⋆ =
| · |. Here, we focus on τ = 2, which withdraws less energy

from the signal compared to τ = 1 and has been called empirical

Wiener operator [21] or non-negative garotte shrinkage [22]. For

single-layered expansions, previous research has shown that both

the inclusion of neighbourhoods that extend across a few coeffi-

cients in time and the choice of τ = 2 significantly improve audio

noise removal [23] and declipping [24].

2.3. Structured shrinkage via modulation-filtering

Instead of defining the neighbourhood weights directly, they can

also be defined in terms of their effect on the modulation spectrum

of the shrinkage operation in (6) [25]. Let F2 denote the two-

dimensional discrete Fourier transform on C
K×L, then (8) can be

directly reformulated as

‖α‖2⋆ =
[

F−1
2

(

F2(w) · F2(|α|2)
)]

(9)

The x-axis of the resulting modulation spectrum F2(|α|2) corre-

sponds to temporal modulation measured in Hz, the y-axis to spec-

tral modulation with unit cycles per Hz. This means the choice of

the neighborhood w is equivalent to the choice of desired tem-

poral and spectral modulation frequencies to be captured by the
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modulation filter W := F2(w). For example, the usage of a rect-

angular neighbourhood corresponds to modulation filtering with

a two-dimensional sinc-function centered at zero, i.e., a form of

modulation low-pass filtering.

We here follow previous suggestions [26] and use an addi-

tional log-nonlinearity for computing the modulation spectrum:

‖α‖∼ := exp
(

F−1
2

[

W · F2

(

log(|α|+ κ)
)

])

− κ (10)

with a compression constant κ = 1. The log-nonlinearity may be

justified by its resemblance to cepstral analysis, potentially sepa-

rating the contributions of a signal’s source and filter into additive

contributions [26]. In conclusion, instead of shrinking coefficients

in dependence of their neighbourhood’s energy, an alternative per-

spective is to shrink these coefficients according to the energy re-

tained by the modulation filter.

3. ALGORITHMS FOR STATIONARY/TRANSIENT

SEPARATION

3.1. Iterative shrinkage/thresholding and cross-shrinkage

The point of departure of this study was to use structured shrinkage

operators in iterative schemes such as the multilayered ISTA (4)

for stationary/transient separation. Although a fast version of this

algorithm, FISTA, has been proposed in [19], we could not observe

improvements over ISTA for the considered application, and thus

here only report on the regular ISTA.

When using ISTA in practice, we often encountered the prob-

lem that the transient layer was swallowed by the stationary layer,

unless tedious tuning of the thresholds λ and µ was undertaken.

For that reason, we also explored a related scheme, which follows

a simple rationale: Assuming the estimate of the stationary layer

(α) is accurate, the residual y − Φα = Ψβ + e mainly com-

prises components from the transient layer (β) and thus allows

for a more precise estimation of β than from the mixture. Due

to the iterative estimation from the residual of the respective al-

ternate layer, this yields a novel scheme which we call Iterative

Cross-Shrinkage (ICS):

{

α(n+1) = Sλ

(

Φ∗
(

y −Ψβ(n)
))

β(n+1) = Sµ

(

Ψ∗
(

y −Φα(n)
)) (11)

with initializations α(0) = β(0) = 0. Essentially, this corresponds

to ISTA with zero contribution of the respective previous iterate of

each layer (e.g., with α(n) set to zero in the estimation of α(n+1)).

3.2. Choice of thresholds

The right selection of the thresholds λ and µ is critical in ap-

plications. In scenarios with strong additive noise, the optimal

thresholds naturally depend on the noise level [27]. In the sta-

tionary/transient separation scenario, however, additive noise does

not play a similarly as crucial role such that alternative strategies

for selecting the thresholds can be sought. In addition to using

fixed thresholds, we here explored so-called warm-start strate-

gies [28, 24]. These strategies start out conservatively with rel-

atively high thresholds which are successively reduced and thus

allow for more liberal estimates towards the end.

In the first warm-start strategy, we chose λ(n) = λ and µ(n) =
µ as piece-wise constant sequences that decreased after every 10th

iteration. Specifically, the thresholds were set equal to the P%
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Figure 1: Exemplary test signal. Transients varied according to

duration and level. Stationary parts varied by the number of sinu-

soidal components of their carrier.

quantiles qP of the distribution of the magnitudes of the initial

analysis coefficients of the respective layer, i.e., λ(n) = qP (|Φ
∗y|)

and µ(n) = qP (|Ψ
∗y|). P was set equal to 99% and linearly de-

creased after every 10th iteration by around 2.11 percentage points,

reaching 80% at iteration no. 91 (yielding 100 iterations in total).

See Fig. 4 (right panel) for an example trajectory.

A shortcoming of this strategy is that it is based on an inher-

ently imperfect estimate of the magnitude distribution of the ex-

pansion coefficients of individual layers, because |Φ∗y| = |Φ∗sS+
Φ∗sT | obviously contains both layers. Say we were aiming to

adjust the threshold λ according to the true underlying magni-

tude distribution qP (|Φ
∗sS |), it should be beneficial to update this

threshold according to presumably more precise estimates of the

individual layers that only arise at later iterations. For that reason,

we also tested a second warm-start strategy where the thresholds

were adjusted dynamically. That means, λ(n) and µ(n) were up-

dated after every 10th step according to the magnitude of the ar-

gument of the shrinkage operators in ISTA (4) and ICS (11). For

ICS, for instance, this would correspond to λ(n) = qP (|Φ
∗
(

y −

Ψβ(n))|). As before, P started at 99% and linearly decreased af-

ter every 10th iteration to reach 80% for the last 10 iterations (see

Fig. 4).

4. EXPERIMENTS WITH SYNTHESIZED SOUNDS

In this section, we describe simulation experiments with signals

for which the stationary and transient parts were artificially syn-

thesized. We tested the ISTA and ICS algorithms in conjunction

with three types of threshold selection strategies (cf., Sec. 3.2) and

three ways of incorporating inter-coefficient structure (cf., Sec. 2.2

and 2.3).

4.1. Test stimuli and factors

We synthesized a set of fixed-frequency sinusoids and Gamma-

shaped noise bursts as test components. For the stationary com-

ponent, sinusoidal frequencies were randomly and uniformly cho-

sen between 100 and 10,000 Hz and shaped with an Gamma-type

amplitude envelope of 245 ms effective duration. The transient

components were generated with white Gaussian noise, which was

shaped by a much shorter Gamma-envelope. Specifically, we var-

ied three factors (using four levels for each of them):

i) The transient Gamma-shaped white noise bursts had effec-

tive durations between 4.9 and 49 ms.
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ii) The level of the transient relative to the stationary compo-

nent was adjusted between -30 and 0 dB.

iii) For the stationary component, harmonic tone complexes

comprised 1 to 50 sinusoids (i.e., corresponding to the spar-

sity of the stationary signal).

The Gamma-envelope was of the form

e(t) = t(Q−1) exp(−2πbt),

where the order Q = 4 was fixed and t denotes time in seconds.

The scale parameter b was set as b = Q − 1/(2πη), where η
is the underlying Gamma distribution’s mode (or the tone’s rise

time). From this, it can be inferred that the effective duration of

any resulting sound (with a threshold of −60 dB) amounts to 4.9η.

Transients were delayed by 10 ms in order to ensure even for

short transients a significant overlap with the energy of the slower

rising envelope of the stationary components (i.e., to prohibit the

possibility of overly simplistic separation). The additive combina-

tion of the stationary and transient components was used in con-

junction with a white Gaussian noise floor at a signal-to-noise ra-

tio of 40 dB. Throughout all numerical simulations reported in this

paper, audio signals were sampled at 44.1 kHz. Fig. 1 shows an

illustration of the stationary and transient components of a test sig-

nal.

4.2. Algorithm settings

We chose Gabor dictionaries with a tight Hann (raised cosine) win-

dow and a hop size of a quarter of the window length. In order

to capture stationary components, Φ was chosen with a window

length of 2048 samples (46 ms). For capturing transient compo-

nents, Ψ was chosen with a window length of 128 samples (3 ms).

All simulations were performed with shrinkage exponent τ = 2.

As outlined in Sec. 3.2, three strategies for choosing the thresh-

olds λ(n) and µ(n) were considered: i) A fixed threshold at the

80% quantile of each layer’s initial analysis coefficients (denoted

as fix), ii) a sequence of quantiles, linearly decreasing from the

99% quantile to the 80% quantile of the initial analysis coefficients

(quant), and iii) dynamically decreasing thresholds (dyn).

The utility of exploiting inter-coefficient structure was inves-

tigated by comparing neighbourhood-based shrinkage (denoted as

Neigh.) and modulation-based shrinkage (Modul.) to shrinkage

with independent-coefficients (Indep.). For shrinkage of the sta-

tionary layer Sλ, neighbourhoods comprised two coefficients for-

ward and two coefficients backward of the centre coefficient. For

shrinkage of the transient layer Sµ, the neighbourhood extended

for three coefficients above and three coefficient below the cen-

tre coefficient. For modulation-based shrinkage, we chose W as

a separable two-dimensional Gaussian distribution centred at the

origin of the modulation spectrum. In order to tune in on spectral

information for shrinkage of the stationary layer, the Gaussian’s

standard deviations were set to (1, 0.1) for the spectral scale and

temporal rate axes, respectively, and the distribution was evalu-

ated across the range [−1, 1]× [−1, 1]. For the transient layer, we

chose the reverse settings (0.1, 1), mainly tuning in on temporal

information.

4.3. Results

We measured the performance in terms of the estimation accuracy

of the 100th iterate of the above presented algorithms using the

signal-to-distortion ratio (SDR). For the stationary layer sS , for

instance, this corresponds to

SDR(sS ,Φα̂) = 20 log10
( ‖sS‖

‖sS −Φα̂‖

)

.

We present results in terms of the SDR improvement compared to

the unprocessed signal, i.e., ∆SDR = SDR(sS ,Φα̂)−SDR(sS , y).

Fig. 2 shows the mean ∆SDR values for all 2 × 3 × 3 al-

gorithmic variants, averaged across the three stimulus factors of

transient duration, level, and number of sinusoids in the station-

ary carrier signal (each with four levels, such that every data point

corresponds to a mean across 64 test signals). Both for the station-

ary and transient components, the ISTA and ICS methods yield

similar performance in conjunction with fixed thresholds. At the

same time, fixed thresholds yield negative ∆SDR values for the

stationary layer, which indicates that this strategy has significant

shortcomings. Whereas ISTA works best in conjunction with the

quantile-based update of the thresholds and fails for the dynamic

update, ICS seems to particularly profit from this latter strategy.

Furthermore, ∆SDR is generally higher with neighbourhoods com-

pared to the independent handling of coefficients and best perfor-

mance is reached for modulation filtering.

Overall, the figure clearly illustrates the superior performance

of ICS dyn with gains of around 10 dB SDR compared to the

best-performing variant of ISTA (quant) for both stationary and

transient layers. Compared to the initial reference algorithm—the

dual-layered ISTA with independent coefficients originally pro-

posed in [14, 15]—we were thus able to achieve improvements

of more than 20 dB SDR.

In order to additionally compare our algorithm to an orthog-

onal transform, we used the dual-layered expansion of the Modi-

fied Discrete Cosine Transform, which also serves as a dual-layer

decomposition example of the Large Time Frequency Analysis

Toolbox [29]. This configuration achieved an average ∆SDRS =
−2.8 and ∆SDRT = 4.5, thus markedly worse for transient es-

timation compared to the most rudimentary variant of our Gabor-

dictionary-based ISTA approach with fixed thresholds and inde-

pendent coefficients.

Fig. 3 depicts a more detailed picture of the performance of

the three best-performing algorithmic variants: ISTA and ICS with

quantile-based thresholds, and ICS with dynamic threshold update.

These figures demonstrate that performance drops as the durations

of the transients grow, which is expected, given that the differences

in time-scale of stationary and transient components increasingly

vanish. Yet, most algorithmic variants are still able to achieve a

substantial SDR improvement even for the longest transients of

49 ms, which span more than a whole Gabor atom of the stationary

layer (46 ms length). The dependency of ∆SDR on the transient

level appears to be fairly linear. As expected, the biggest improve-

ments of the stationary ∆SDR occur for conditions with strongest

transients, and vice versa for the transient ∆SDR. Finally, when

it comes to the number of sinusoidal components in the station-

ary carrier signal, that is, its sparsity, the dynamic ICS appears to

be particularly robust, whereas the rest of the algorithms yields a

sharp drop in performance already for four sinusoids.

Regarding the iterative behavior of the algorithms, Fig. 4 shows

an example of the three best-performing algorithmic variants (us-

ing modulation filtering) across iterations as well as the corre-

sponding evolution of thresholds (rightmost panel). It is clearly
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Figure 2: Mean SDRs improvement across all acoustic conditions for different algorithms (ISTA, ICS), different shrinkage operators
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visible how after every 10 iterations, decreases of thresholds are

accompanied by increases in ∆SDR. Notably, the ICS with dy-

namic threshold update appears to converge much faster, likely due

to a steeper slope of thresholds across iterations for the dynamic

update. Also note that the dynamic threshold update reaches the

same absolute threshold values for both layers, which stands in

contrast to the other two methods for which the 80% quantile of

the stationary layer is much smaller compared to that of the tran-

sient layer.

Due to their rather heuristic nature, our findings motivate fur-

ther mathematical and experimental inquiries into the formal roots

of the proposed algorithms. For instance, it is currently unclear

why ISTA appears to be incompatible with the dynamic thresh-

old update whereas ICS profits substantially from it. It is also

questionable whether this gain in performance (from ICS quant

to ICS dyn) is due to the update’s actual adaptivity or solely based

on a steeper decrease of thresholds over iterations. Finally, it is

left completely open whether it could be beneficial to replace the

STFT dictionary with short window lengths by a wavelet basis,

which may be better suited to account for the stochastic nature of

transients [10]. On the other hand, the proposed algorithms ap-

pear to be robust enough already in order to be useful for station-

ary/transient separation in practical situations, as described in the

next section.

5. EXAMPLES WITH RECORDED AUDIO

We considered natural recorded instrumental tones produced by a

violoncello, a vibraphone, and a harpsichord. Each sound was of

500 ms duration, fundamental frequency 311 Hz, and of equal per-

ceptual loudness as used in [30]. Due to its continuous mode of ex-

citation, the violoncello is a quasi-harmonic sound without marked

attack transient, yet with low-energy noise components stemming

from the bow. As an impulsively excited sound, the vibraphone

features strong attack transient at its onset. Interestingly, the harp-

sichord comprises one transient component at its onset, but also

one at the release of its hopper while other sinusoidal components

sustain. Fig. 5 presents the waveform of these three sounds in se-

quence, their spectrograms, as well as the separation provided by

ICS with dynamic threshold update and modulation filtering.1

For this example, the stationary layer of the ISTA algorithm

swallows the transient layers, i.e., the separation fails. On the con-

trary, the ICS algorithm provides non-zero estimates of transients

for all three sounds, even for the onset noise components of the

cello bow. As visible in the figure, the vibraphone contains the

strongest transient component, which is clearly separated from the

remaining sinusoidal components. Finally, the two transients of

the harpsichord sound are well separated, even though they fully

overlap in time. The latter sound once again illustrates that sep-

aration performance is not at all relying on temporal separation,

but on distinct spectrotemporal shapes of stationary and transient

signal components.

6. CONCLUSION

In this paper, we presented novel strategies for stationary/transient

signal separation. Several shrinkage operators were defined by

1These and additional audio examples can be accessed via
http://www.uni-oldenburg.de/en/mediphysics-acoustics/

sigproc/research/audio-demos/.

considering either the energy of time-frequency neighbourhoods

or modulation spectrum regions instead of individual coefficients.

These shrinkage operators were specifically tuned to the presumed

sparsity and persistence properties of stationary and transient com-

ponents, exploiting the basic observation that stationary compo-

nents are sparse in frequency and persistent over time, and vice

versa for transients. This step extends the usage of structured

shrinkage operators to the context of dual-layer decomposition.

We also proposed a novel iteration scheme, Iterative Cross-Shrink-

age, which appears to work particularly well in conjunction with a

dynamic update of the thresholds. In experiments with artificial

test signals, the proposed scheme improved stationary/transient

separation by surprisingly large margins by about 10 dB SDR com-

pared to the dual-layered ISTA with neighbourhood/modulation

persistence. Compared to the dual-layered ISTA with indepen-

dent coefficients, we were able to achieve improvements of more

than 20 dB SDR. In addition, the application of Iterative Cross-

Shrinkage to recorded sounds from acoustic musical instruments

provided a perceptually convincing separation of transients.
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