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Online Estimation of Reverberation Parameters For
Late Residual Echo Suppression
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Abstract—In hands-free telephony and other distant-talk appli-
cations, often a short AEC filter is used to achieve fast convergence
at low computational cost. As a result, a significant amount of late
residual echo (LRE) may remain, especially in highly reverberant
environments. This LRE can be suppressed using a postfilter in
the subband domain, which requires an estimate of the power
spectral density (PSD) of the LRE. To estimate the LRE PSD, an
exponentially decaying model with frequency-dependent reverber-
ation scaling and decay parameters has frequently been assumed.
State-of-the-art methods estimate both reverberation parameters
independently of each other, either in offline or in online mode. In
this article, we propose two signal-based methods (i.e. output error
and equation error) to jointly estimate both reverberation param-
eters in online mode. The estimated parameters are then used to
generate an estimate for the LRE PSD, which is fed into a postfilter
for the purpose of late residual echo suppression. We derive several
gradient-descent-based algorithms to simultaneously update both
reverberation parameters, minimizing either the mean squared
error or the mean squared log error cost function. The proposed
methods are compared with state-of-the-art methods in terms of
the accuracy of the estimated reverberation parameters and the
corresponding LRE PSD estimate. Extensive simulation results
using both artificial as well as measured room impulse responses
show that the proposed output error method with mean squared
log error minimization outperforms state-of-the-art methods in all
considered scenarios.

Index Terms—Acoustic echo cancellation, adaptive filters, late
residual echo estimation, residual echo suppression.

I. INTRODUCTION

HANDS-FREE telephony and other distant-talk applica-
tions, such as voice-controlled multimedia devices, are of-

ten used in large reverberant rooms, where the distance between
the desired (near-end) speaker and the microphone may be quite
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large. Due to the acoustic coupling between the loudspeaker and
the microphone, the microphone signal is typically degraded by
the acoustic echo of the far-end signal, which may significantly
reduce the quality and/or the intelligibility of the near-end
speaker. Acoustic echo cancellation (AEC) [1] is a key tech-
nology used in such scenarios, aimed at canceling the echo from
the microphone signal. An AEC system typically consists of an
adaptive filter [2], [3] which estimates the acoustic echo path,
i.e. the room impulse response (RIR) between the loudspeaker
and the microphone. The adaptive filter is used to generate
an estimate of the acoustic echo signal, which is subsequently
subtracted from the microphone signal. The resulting signal is
referred to as the AEC error signal and is composed of near-end
speech, background noise and usually some residual echo, as
the AEC filter is unable to completely accurately estimate the
RIR in practice (filter misalignment). When deploying an AEC
system in a room with a large reverberation time (T60), a large
filter length needs to be used in order to achieve good echo
cancellation performance. However, using a long filter results in
large computational cost for updating the filter and may also lead
to slow filter convergence [2], [3]. Hence, aiming at achieving
fast filter convergence at low computational cost, in practice
often a short AEC filter is used, which however results in a large
amount of late residual echo (LRE).

In practice, a postfilter is often used in addition to the AEC
filter, aimed at suppressing the residual echo and background
noise while not distorting the near-end speech signal. Although
multi-frame postfilters have been proposed [4], most postfilters
are single-tap real-valued gains [5]–[12]. To design the postfilter
in the subband domain, an accurate estimate of the power
spectral density (PSD) of the residual echo and background
noise signals is required. A simple but frequently used method to
estimate the PSD of the residual echo signal is to apply a coupling
factor to the far-end signal PSD, where the coupling factor
is estimated during periods of near-end speech absence [1].
However, since this method does not take into account any
temporal context and is unable to model the LRE PSD accurately,
its performance is quite poor, especially when using a short
AEC filter. Hence, several other LRE PSD estimators have been
proposed which are based on the statistical reverberation model
proposed in [13], [14], which assumes that the late reverberant
part of a RIR decays exponentially at a rate proportional to the
T60. These PSD estimators require estimates of two parameters:
the reverberation decay parameter (corresponding to the T60)
and the reverberation scaling parameter (a.k.a. initial power of
the LRE).
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To estimate both reverberation parameters, channel-based as
well as signal-based methods have been proposed. Channel-
based methods [12], [15] estimate the reverberation parameters
using the coefficients of the converged AEC filter, either assum-
ing frequency-dependent [12] or frequency-independent param-
eters [15]. Channel-based methods are only effective if relatively
long AEC filters are used, which are able to capture the decay
of the late reverberant part of the RIR. Signal-based methods,
on the other hand, estimate the reverberation parameters directly
from the far-end and the residual echo signals [16]–[18]. In [16],
a signal-based method was proposed to estimate both reverber-
ation parameters independently of each other in offline mode
(i.e. batch processing). The reverberation scaling parameter was
estimated by minimizing the mean squared error (MSE) cost
function, while the reverberation decay parameter was estimated
by minimizing the mean squared log error (MSLE) cost function.
In [17], a pure acoustic echo suppression system, i.e. without
an AEC filter, was considered and a recursive estimator for the
(residual) echo PSD was used. A signal-based method exploiting
higher-order-statistics was proposed to estimate the initial power
of the (residual) echo and the reverberation decay parameter
independently of each other in online mode. Using the recursive
estimator for the LRE PSD in [12], in [18] we proposed two
signal-based methods, namely an output error and an equation
error method, to jointly estimate both reverberation parameters
in offline mode. These methods, which were originally proposed
to estimate the coefficients of generic IIR filters in the time-
domain [2], [19], [20], were applied on PSDs to jointly estimate
both reverberation parameters by minimizing either the MSE or
the MSLE cost function.

Based on the work in [18], in this paper we propose methods
to jointly estimate both reverberation parameters in online mode.
The estimated parameters are then used to generate an estimate
for the LRE PSD, which is fed into a postfilter for the purpose
of late residual echo suppression. We derive several gradient-
descent-based algorithms to simultaneously update both param-
eters, minimizing either the MSE or the MSLE cost function.
In particular, we propose to use the recursive prediction error
(RPE) and pseudo-linear regression (PLR) algorithms, which
were derived for time-domain recursive systems [19], to update
the parameters for the output error method. The different signal-
based methods (output/equation error), algorithms (RPE/PLR)
and cost functions (MSE/MSLE) are compared with state-of-
the-art signal-based methods [16], [17] in terms of accuracy
of the reverberation parameter estimates and the corresponding
LRE PSD estimate, and in terms of the resulting residual echo
suppression and near-end speech distortion.

The paper is organized as follows. The signal model as well
as some basic AEC and postfiltering principles are presented in
Section II. The recursive estimator for the LRE PSD, the dif-
ferent proposed signal-based parameter estimation methods and
the gradient-descent-based algorithms to simultaneously update
both parameters are presented in Sections III, IV and V, re-
spectively. Section VI presents the simulation results comparing
the performance of the proposed methods with state-of-the-art
methods using both artificially generated as well as measured
RIRs.

II. SIGNAL MODEL AND AEC SYSTEM

Fig. 1 shows a loudspeaker-enclosure-microphone (LEM)
system with the far-end signal x, the acoustic echo signal d, the
near-end speech signal s, the background noise signal v and the
microphone signal y. The RIR characterizing the acoustic echo
path between the loudspeaker and the microphone is denoted
as h and assumed to be time-invariant and of length Nh. The
microphone signal at discrete-time sample n is given as:

y(n) = s(n) + v(n) +
∑Nh−1

i=0
h(i) · x(n− i)

︸ ︷︷ ︸
d(n)

. (1)

For the subband processing, a fast Fourier transform (FFT) fil-
terbank of order NFFT is used to transform the (windowed) time-
domain signals into the short-time Fourier transform (STFT) do-
main, with the total number of subbands given byK = NFFT

2 + 1.
The complex-valued STFT coefficients of the far-end signal x
in subband k and frame � are computed as:

X(k, �) =

NFFT−1∑

m=0

x(� · F +m) ·Wana(m) · e−j 2π
NFFT

km
, (2)

where j =
√−1, F denotes the frameshift and Wana denotes the

analysis window. Similarly to (2), the STFT coefficients of s(n),
v(n), d(n) and y(n) are denoted asS(k, �), V (k, �),D(k, �) and
Y (k, �), respectively.

The complete AEC system consists of two components: an
(adaptive) AEC filter estimating the echo path and a residual
echo suppression (RES) postfilter. Both components will be
explained in more detail in the following subsections.

A. Acoustic Echo Cancellation

To cancel the acoustic echo signal from the microphone
signal, we consider a G-tap subband AEC filter Ĥ . The acoustic
echo estimate is given as:

D̂(k, �) = XH(k, �) Ĥ(k), (3)

with

X(k, �) =
[
X(k, �) . . . X(k, �−G+ 1)

]T
(4)

the G-dimensional tap-input vector to the AEC filter Ĥ:

Ĥ(k) =
[
Ĥ1(k) . . . ĤG(k)

]T
, (5)

where ·H denotes the Hermitian operator and ·T denotes the
transpose operator.

The signal obtained after the acoustic echo estimate is sub-
tracted from the microphone signal is referred to as the AEC
error signal:

E(k, �) = Y (k, �)− D̂(k, �)

= S(k, �) + V (k, �) +
(
D(k, �)− D̂(k, �)

)

︸ ︷︷ ︸
R(k,�)

, (6)

where R denotes the residual echo signal, which consists of
the early residual echo signal RE (due to filter misalignment)
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Fig. 1. Acoustic echo cancellation (AEC) and residual echo suppression (RES) systems.

and the LRE signal RL (due to the limited length of the AEC
filter). In this paper, the filter length G is chosen so as to cover
the direct path and the early reflections of the RIR h, i.e. G =
�N
F �, where N corresponds to the length of the direct path and

early reflections in samples. This means that the LRE signal
RL is assumed to contain only late reverberation. Additionally,
we assume no filter misalignment, i.e. RE = 0, such that the
residual echo signal only consists of the late residual echo signal,
i.e. R = RL.

B. Residual Echo Suppression

Residual echo suppression can be performed in the subband
domain by applying a real-valued gain WRES to the AEC error
signalE, as shown in Fig. 1. A frequently used gain is the Wiener
filter [1], which is derived by assuming that the signals S, RL

and V are independent stationary stochastic processes, leading
to:

WRES(k, �) = 1− λrL(k, �) + λv(k, �)

λe(k, �)
. (7)

Here, λrL , λv and λe denote the PSDs of the LRE, the back-
ground noise and the AEC error signals, respectively, defined
as λrL(k, �) = E {|RL(k, �)|2}, λv(k, �) = E {|V (k, �)|2}, and
λe(k, �) = E {|E(k, �)|2}, where E {·} denotes the statistical
expectation operator. In practice, the statistical expectation op-
erator is approximated by temporal averaging (assuming ergod-
icity), e.g.:

Φe(k, �) = α · Φe(k, �− 1) + (1− α) · |E(k, �)|2, (8)

where Φe is an approximation of the PSD λe and α denotes the
smoothing factor. The quantities ΦrL , Φv and Φx are defined
similarly as in (8) and are approximations of λrL , λv and λx,
respectively. Please note that for an unobservable signal such
as rL, the quantity ΦrL itself needs to be estimated, with the
estimate denoted as Φ̂rL . In the remainder of the paper, we will
use the term true PSD to refer to λa, a ∈ {e, rL, v, x}, the term
PSD to refer to its approximation Φa, a ∈ {e, rL, v, x} and the

term PSD estimate to refer to its estimate for an unobservable
signal Φ̂a, a ∈ {rL, v}.

In order to control the aggressiveness of the residual echo
suppression, we use the following gain for the RES postfilter:

WRES(k, �) = max

{
1− β ·

(
Φ̂rL(k, �) + Φ̂v(k, �)

Φe(k, �)

)
, γ

}

(9)

with over-estimation factor β and spectral floor γ. While the
AEC error PSD Φe is directly observable, the LRE PSD ΦrL

and the background noise PSD Φv need to be estimated. Many
approaches have been proposed in literature for estimating the
background noise PSD [21]–[23]. In this paper, we assume that
the background noise is stationary and its PSD is known.

The processed AEC error signal is given as:

Ẽ(k, �) = WRES(k, �) · E(k, �), (10)

which can be expressed as the sum of its individual components
in a similar way to (6):

Ẽ(k, �) = S̃(k, �) + Ṽ (k, �) + R̃L(k, �), (11)

where S̃, Ṽ and R̃L are obtained by multiplying S, V and RL

with the RES postfilter, similarly to (10). For the purpose of
evaluation, these processed signals are then synthesized to the
time-domain using inverse STFT and overlap-add processing,
yielding the time-domain signals ẽ(n), s̃(n), ṽ(n) and r̃L(n),
respectively.

III. MODEL FOR LRE PSD

In [13], an exponentially decaying model for the late rever-
berant part of a RIR was proposed when the source-microphone
distance is larger than the critical distance, defined as the distance
where the energy of the direct sound is equal to the energy of
all reflections [24]. According to this model, the late reverberant
part of a RIR can be described as a realization of a stochastic
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Fig. 2. Model for LRE PSD ΦrL as a function of far-end signal PSD Φx.

process:

h(i) = wL(i) · e−ρ (i−N), N ≤ i < Nh, (12)

where Nh denotes the total length of the RIR in samples, wL is
a zero-mean white Gaussian noise process with variance σ2

L and
ρ denotes the decay rate. The decay rate is related to the T60 as:

ρ =
3 · ln 10
fs · T60

, (13)

where fs denotes the sampling frequency in Hz. Although in (13)
it is assumed that the T60 is frequency-independent, it should be
noted that in practice the T60 (and hence the decay rate ρ) is
frequency-dependent [24].

As mentioned in Section II-A, we assume that the AEC filter
is able to cancel the direct sound component and the early
reflections, such that the LRE signal RL contains only late
reverberation. Based on the RIR model in (12), a recursive
expression for λrL can be derived (see Appendix A), i.e.:

λrL(k, �) = A · λx(k, �−G) +B · λrL(k, �− 1), (14)

where A denotes the reverberation scaling parameter and B
denotes the reverberation decay parameter. These parameters
are related to the parameters σ2

L and ρ of the RIR model in (12)
as (see Appendix A):

A = σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
, (15)

B = e−2ρF . (16)

In this paper, we assume the reverberation parameters to be
frequency-dependent, such that similarly to (14), a recursive
expression for ΦrL using frequency-dependent parameters can
be obtained as in [12]:

ΦrL(k, �) = A(k) · Φx(k, �−G) +B(k) · ΦrL(k, �− 1),

(17)

with the parameters A(k) and B(k) given as:

A(k) = σ2
L(k) ·

(
1− e−2ρ(k)F

1− e−2ρ(k)

)
, (18)

B(k) = e−2ρ(k)F . (19)

The expression in (17) relating the LRE PSD ΦrL to the far-end
signal PSDΦx is illustrated in Fig. 2 using the IIR filterP{θ(k)},
where

θ(k) =
[
A(k) B(k)

]T
. (20)

In the next section, we will present different methods to estimate
θ(k). It should be noted that θ(k) is estimated during periods of
near-end speech absence and subsequently used to estimate the
LRE PSD during periods of double-talk.

IV. PARAMETER ESTIMATION METHODS

Several methods have been proposed in literature to estimate
both reverberation parameters A and B independently of each
other. In [12], a channel-based method was proposed using the
converged AEC filter coefficients. In [16], a signal-based method
was proposed in offline mode (i.e. batch processing), where the
parameterAwas estimated by minimizing an MSE cost function
and the parameterB was estimated by minimizing an MSLE cost
function. In [17], an acoustic echo suppression setup without
an AEC filter (i.e. G = 0) was considered and a signal-based
method based on higher-order statistics was proposed to estimate
both parameters in online mode. For the purpose of fair compari-
son, we consider a slightly modified version of the method in [17]
in order to estimate the LRE PSD for our considered setup and
compare this method with our proposed parameter estimation
methods (see Section VI). Since we assume a perfect AEC
filter (see Section II-A), this modification simply corresponds
to inserting a delay of G frames in the original method in [17]
(details presented in Appendix B).

To jointly estimate the parameters of generic IIR filters in
the time-domain, several signal-based methods have been pro-
posed [2], [19], [20], [25]–[27], either based on the output error
(OE) or the equation error (EE). In [18], we applied the OE
and EE methods on PSDs to jointly estimate both reverberation
parameters in offline mode (i.e. batch processing), minimizing
either the MSE or the MSLE cost function. Simulation results
showed that the most accurate estimates for the reverberation
decay parameter B and the LRE PSD ΦrL were obtained using
the OE method minimizing the MSLE cost function, while the
most accurate estimates for the reverberation scaling parameter
A were obtained using either the OE or the EE method mini-
mizing the MSE cost function.

Based on the offline methods from [18], in this paper we
investigate the OE and EE methods in online mode to jointly
estimate both reverberation parameters A and B during periods
of near-end speech absence, where the parameters are simulta-
neously updated in each frame using a gradient-descent-based
algorithm (see Section V). The estimated parameters θ̂(k) are
then fed into the IIR filter P{θ̂(k, �)} to estimate the LRE PSD
(also during double-talk), as illustrated in Fig. 3:

Φ̂rL(k, �)=Â(k, �) · Φx(k, �−G)+B̂(k, �) · Φ̂rL(k, �− 1).

(21)

In the following subsections we will discuss the OE and EE
methods to estimate the reverberation parameters θ̂(k).

A. Output Error Method

The OE method is a well-known method used for parameter
estimation of linear recursive systems in a variety of applica-
tions. The OE method is characterized by the following recursive
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Fig. 3. The LRE PSD estimate Φ̂rL is computed using the far-end signal PSD
Φx, with the parameters θ̂(k, �) estimated during near-end speech absence.

difference equation (where the superscript O denotes the OE
method):

Φ̂O
rL
(k, �) = ÂO(k, �) · Φx(k, �−G)

+ B̂O(k, �) · Φ̂O
rL
(k, �− 1), (22)

with the corresponding IIR filter structure illustrated in Fig. 4.
Here, Φ̂O

rL
denotes the OE PSD estimate and

θ̂
O
(k, �) =

[
ÂO(k, �) B̂O(k, �)

]T
(23)

denotes the reverberation parameters estimated using the OE
method, which are fed into (21) to generate the LRE PSD
estimate Φ̂rL . Please note that (22) has the same recursive
structure as (21), such that Φ̂O

rL
(k, �) = Φ̂rL(k, �). From (22), it

can be observed that the OE PSD estimate in the current frame
Φ̂O

rL
(k, �) not only depends on the parameter estimates in the

current frame θ̂
O
(k, �), but also on the OE PSD estimate in

the previous frame Φ̂O
rL
(k, �− 1), which itself depends on the

parameter estimates in the previous frame θ̂
O
(k, �− 1), and so

on. Thus, Φ̂O
rL

is a non-linear function of θ̂
O
, where the current

OE PSD estimate depends on the parameter estimates in all
previous frames.

The output error is obtained by subtracting the output in (22)
from the target PSD ΦrL :

QO(k, �) = ΦrL(k, �)− Φ̂O
rL
(k, �). (24)

Similarly, the output log error is given as:

QO
ln(k, �) = ln ΦrL(k, �)− ln Φ̂O

rL
(k, �) = ln

(
ΦrL(k, �)

Φ̂O
rL
(k, �)

)
.

(25)

To compute the parameter estimates, we will consider minimiz-
ing either the MSE or the MSLE cost function:

J O
MSE

(
ÂO(k, �), B̂O(k, �)

)
= E

{[
QO(k, �)

]2
}
, (26)

Fig. 4. Parameter estimation using the output error method by minimizing the
cost function JO.

J O
MSLE

(
ln ÂO(k, �), ln B̂O(k, �)

)
= E

{[
QO

ln(k, �)
]2
}
.

(27)

To update the parameters in every frame using a gradient-
descent-based algorithm (see Section V), these cost functions
will be approximated by their instantaneous values:

JO
MSE

(
ÂO(k, �), B̂O(k, �)

)
=
[
QO(k, �)

]2

=
[
ΦrL(k, �)− Φ̂O

rL
(k, �)

]2
, (28)

JO
MSLE

(
ln ÂO(k, �), ln B̂O(k, �)

)
=
[
QO

ln(k, �)
]2

=

[
ln

(
ΦrL(k, �)

Φ̂O
rL
(k, �)

)]2
. (29)

As Φ̂O
rL

is a non-linear function of the parameters θ̂
O
, the cost

functions JO
MSE and JO

MSLE are not quadratic in the parameters
and may exhibit multiple local minima [19], [27]–[30]. This
may result in gradient-descent-based algorithms converging to
a local minimum, thereby yielding sub-optimal and inaccurate

parameter estimates, with the initial value of θ̂
O

also influencing
to which minimum the algorithms converge. This is a typical
problem when using adaptive IIR filters for identifying recursive
systems [19].

B. Equation Error Method

In order to avoid the local minima problem associated with
the OE method, the EE method has often been employed for
parameter estimation of linear recursive systems [19], [20]. The
EE method differs from the OE method by using the delayed
target PSD ΦrL(k, �− 1) instead of the delayed PSD estimate
Φ̂rL(k, �− 1) for computing the current PSD estimate, thereby
breaking the recursive structure. The EE method is characterized
by the following non-recursive difference equation (where the
superscript E denotes the EE method):

Φ̂E
rL
(k, �) = ÂE(k, �) · Φx(k, �−G)

+ B̂E(k, �) · ΦrL(k, �− 1), (30)

with the corresponding non-recursive filter structure illustrated
in Fig. 5. Here, Φ̂E

rL
denotes the EE PSD estimate and

θ̂
E
(k, �) =

[
ÂE(k, �) B̂E(k, �)

]T
(31)
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Fig. 5. Parameter estimation using the equation error method by minimizing
the cost function JE.

denotes the reverberation parameters estimated using the EE
method, which are fed into (21) to generate the LRE PSD
estimate Φ̂rL . As a result, the PSD estimate Φ̂E

rL
is a linear

function of θ̂
E
. Please note that using ΦrL(k, �− 1) instead of

Φ̂rL(k, �− 1) in (30) is an approximation, such that unlike the
OE method, the EE PSD estimate Φ̂E

rL
is not equal to the LRE

PSD estimate Φ̂rL .
Similarly to (24), the equation error is given as:

QE(k, �) = ΦrL(k, �)− Φ̂E
rL
(k, �), (32)

and similarly to (25), the equation log error is given as:

QE
ln(k, �) = ln ΦrL(k, �)− ln Φ̂E

rL
(k, �) = ln

(
ΦrL(k, �)

Φ̂E
rL
(k, �)

)
.

(33)

Contrary to the cost functionsJO
MSE andJO

MSLE, the cost functions
JE

MSE and JE
MSLE (defined similarly to (28) and (29) respectively)

are quadratic in the parameters, hence exhibiting a single global
minimum and no local minima [19], [20]. This makes the EE
method particularly attractive for use in practical applications,
as the corresponding adaptive algorithms typically have fast
convergence and converge to a global minimum. However, it has
been shown in [19] that the EE method yields biased solutions
in the presence of additive noise, where the bias is proportional
to the amount of noise. Additionally, as Φx and ΦrL are ap-
proximations of the true PSDs λx and λrL (see Section II-B),
these approximations introduce additional noise to the system.
This results in the EE method yielding biased solutions even
in the absence of additive noise, as was observed in [18] when
using the EE method for reverberation parameter estimation in
offline mode. In this paper, we investigate how accurately the EE
method estimates the reverberation parameters in online mode.

V. GRADIENT-DESCENT-BASED ALGORITHMS

In this section, we derive gradient-descent-based algorithms
to update the reverberation parameters θ(k) in every frame for
the OE and EE estimation methods, either minimizing the MSE
or the MSLE cost function.

For both estimation methods, the gradient-descent update rule
for the MSE cost function is given as:

θ̂
I
(k, �+ 1) = θ̂

I
(k, �)− Γ

2
�∇I

MSE(k, �), (34)

where I ∈ {O,E} denotes the used estimation method, � de-
notes element-wise multiplication, Γ = [μA μB ]T denotes the
(fixed) step-sizes used update both parameters, and

∇I
MSE(k, �) =

[
∂J I

MSE

(
ÂI(k,�),B̂I(k,�)

)

∂ÂI(k,�)

∂J I
MSE

(
ÂI(k,�),B̂I(k,�)

)

∂B̂I(k,�)

]T

(35)

denotes the gradient of the MSE cost function. Using (28), the
partial derivatives of the MSE cost function with respect to the
reverberation scaling and decay parameter estimates are equal
to:

∂J I
MSE

(
ÂI(k, �), B̂I(k, �)

)

∂ÂI(k, �)
= −2 ·QI(k, �) · ∂Φ̂

I
rL
(k, �)

∂ÂI(k, �)
,

(36)

∂J I
MSE

(
ÂI(k, �), B̂I(k, �)

)

∂B̂I(k, �)
= −2 ·QI(k, �) · ∂Φ̂

I
rL
(k, �)

∂B̂I(k, �)
.

(37)

The partial derivatives of the LRE PSD estimate Φ̂I
rL

with
respect to the parameter estimates will be computed for the OE
and EE methods in subsections V-A and V-B, respectively. It
should be noted that when minimizing the MSE cost function,
the parameter updates in each frame depend on the error QI

between the LRE PSD and its estimate.
For both estimation methods, the gradient-descent update rule

for the MSLE cost function is given in the logarithmic domain1

as:

ln θ̂
I
(k, �+ 1) = ln θ̂

I
(k, �)− Γ

2
�∇I

MSLE(k, �), (38)

where the gradient of the MSLE cost function ∇I
MSLE is com-

posed of the partial derivatives of the MSLE cost function with
respect to the logarithm of the parameter estimates:

∇I
MSLE(k, �) =

[
∂J I

MSLE

(
ln ÂI(k, �), ln B̂I(k, �)

)

∂ ln ÂI(k, �)

∂J I
MSLE

(
ln ÂI(k, �), ln B̂I(k, �)

)

∂ ln B̂I(k, �)

]T
.

(39)

Using (29), these partial derivatives are equal to:

∂J I
MSLE

(
ln ÂI(k, �), ln B̂I(k, �)

)

∂ ln ÂI(k, �)

= −2 ·
[
QI

ln(k, �)

Φ̂I
rL
(k, �)

]
· ∂Φ̂I

rL
(k, �)

∂ ln ÂI(k, �)
, (40)

∂J I
MSLE

(
ln ÂI(k, �), ln B̂I(k, �)

)

∂ ln B̂I(k, �)

= −2 ·
[
QI

ln(k, �)

Φ̂I
rL
(k, �)

]
· ∂Φ̂I

rL
(k, �)

∂ ln B̂I(k, �)
. (41)

1It should be noted that the gradient-descent update rule for the MSLE cost
function in the linear domain yielded unreliable results.
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The partial derivatives of the LRE PSD estimate Φ̂I
rL

with
respect to the logarithm of the parameter estimates will be
computed for the OE and EE methods in subsections V-A and
V-B, respectively. It should be noted that when minimizing the
MSLE cost function, the parameter updates in each frame are
normalized by the LRE PSD estimate Φ̂I

rL
and depend on the

log errorQI
ln, which in turn depends on the ratio of the LRE PSD

and its estimate.

A. Algorithms for Output Error method

Using (22), the partial derivatives of Φ̂O
rL

with respect to the
parameter estimates are equal to:

∂Φ̂O
rL
(k, �)

∂ÂO(k, �)
= Φx(k, �−G) + B̂O(k, �) · ∂Φ̂

O
rL
(k, �− 1)

∂ÂO(k, �)
,

∂Φ̂O
rL
(k, �)

∂B̂O(k, �)
= Φ̂O

rL
(k, �− 1) + B̂O(k, �) · ∂Φ̂

O
rL
(k, �− 1)

∂B̂O(k, �)
,

(42)

while the partial derivatives of Φ̂O
rL

with respect to the logarithm
of the parameter estimates are equal to:

∂Φ̂O
rL
(k, �)

∂ ln ÂO(k, �)
= ÂO(k, �) · Φx(k, �−G)

+ B̂O(k, �) · ∂Φ̂
O
rL
(k, �− 1)

∂ ln ÂO(k, �)
,

∂Φ̂O
rL
(k, �)

∂ ln B̂O(k, �)
= B̂O(k, �) · Φ̂O

rL
(k, �− 1)

+ B̂O(k, �) · ∂Φ̂
O
rL
(k, �− 1)

∂ ln B̂O(k, �)
. (43)

It should be noted that (42) and (43) contain partial derivatives of
the OE PSD estimate Φ̂O

rL
(k, �− 1) in the previous frame with

respect to the parameter estimates θ̂
O
(k, �) and their logarithm

ln θ̂
O
(k, �) in the current frame, respectively. These terms appear

due to the recursive filter structure of the OE method. These
partial derivatives cannot be computed in a straightforward

manner, as Φ̂O
rL
(k, �− 1) does not directly depend on θ̂

O
(k, �).

In [19], two approximations have been proposed for computing
these partial derivatives, which we now apply to the problem at
hand.

1) Recursive Prediction Error (RPE): Although the OE PSD
estimate Φ̂O

rL
(k, �− 1) in the previous frame does not directly

depend on the parameter estimates θ̂
O
(k, �) in the current

frame, it obviously directly depends on the parameter estimates

θ̂
O
(k, �− 1) in the previous frame. For computing the partial

derivatives in (42) and (43), the RPE adaptive algorithm [19]

uses the following approximations:

∂Φ̂O
rL
(k, �− 1)

∂θ̂
O
(k, �)

≈ ∂Φ̂O
rL
(k, �− 1)

∂θ̂
O
(k, �− 1)

,

∂Φ̂O
rL
(k, �− 1)

∂ ln θ̂
O
(k, �)

≈ ∂Φ̂O
rL
(k, �− 1)

∂ ln θ̂
O
(k, �− 1)

, (44)

which have been shown to be reasonable if the step-sizes Γ in
(34) and (38) are sufficiently small. Using these approximations
makes it possible to compute the partial derivatives in (42) and
(43) recursively. As a result, both reverberation parameters are
updated even when the respective inputs to the parameters are
absent.

2) Pseudo Linear Regression (PLR): The PLR algorithm is
an approximate gradient method [19] which assumes that the OE
PSD estimate in the previous frame Φ̂O

rL
(k, �− 1) is independent

of the parameter estimates in the current frame θ̂
O
(k, �), i.e.:

∂Φ̂O
rL
(k, �− 1)

∂θ̂
O
(k, �)

= 0,

∂Φ̂O
rL
(k, �− 1)

∂ ln θ̂
O
(k, �)

= 0. (45)

Using (45) in (42) and (43) yields non-recursive formulations for
the partial derivatives. It should be noted that the gradient com-
puted using the PLR algorithm is an approximate version of the
gradient computed using the RPE algorithm, as the assumptions
in (45) are stronger than in (44).

B. Algorithm for Equation Error Method

Using (30), the partial derivatives of Φ̂E
rL

with respect to the
parameter estimates are equal to:

∂Φ̂E
rL
(k, �)

∂ÂE(k, �)
= Φx(k, �−G),

∂Φ̂E
rL
(k, �)

∂B̂E(k, �)
= ΦrL(k, �− 1), (46)

while the partial derivatives of Φ̂E
rL

with respect to the logarithm
of the parameter estimates are equal to:

∂Φ̂E
rL
(k, �)

∂ ln ÂE(k, �)
= ÂE(k, �) · Φx(k, �−G),

∂Φ̂E
rL
(k, �)

∂ ln B̂E(k, �)
= B̂E(k, �) · ΦrL(k, �− 1). (47)

Hence, the partial derivatives obtained for the EE method in (46)
and (47) are non-recursive and similar to those obtained for the
PLR algorithm for the OE method. It can also be observed that
the reverberation parameters are not updated when the respective
inputs to the parameters are absent, i.e. the reverberation scaling
parameter ÂE is not updated when Φx(k, �−G) = 0, while
the reverberation decay parameter B̂E is not updated when
ΦrL(k, �− 1) = 0.
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TABLE I
NUMBER OF RIRS MEASURED IN EACH ROOM AND THE CORRESPONDING

REVERBERATION TIMES (T60)

VI. SIMULATIONS

In this section, we evaluate the performance of the pro-
posed online parameter estimation methods (OE and EE), cost
functions (MSE and MSLE) and gradient-descent-based al-
gorithms, giving rise to 6 combinations: OE-RPE-MSE, OE-
PLR-MSE, EE-MSE, OE-RPE-MSLE, OE-PLR-MSLE and
EE-MSLE. In Sections VI-A and VI-B we describe the signals
and the algorithmic parameters used in our simulations, while in
Section VI-C we discuss the performance metrics used to evalu-
ate the PSD estimation accuracy, the residual echo suppression
and the near-end speech distortion. In Section VI-D we perform
two experiments to evaluate the performance of the proposed
parameter estimation methods. To evaluate the parameter esti-
mation accuracy, the first experiment is performed in an ide-
alistic setting using artificial RIRs with frequency-independent
reverberation parameters. The second experiment is performed
in a realistic setting using RIRs measured in different rooms,
comparing the performance of the proposed methods with state-
of-the-art signal-based methods.

A. Signals

In our simulations, we use time-domain signals at a sampling
frequency fs = 16 kHz. The far-end speech signal x of length
30 secs and the near-end speech signal s of length 5 secs are
obtained from the TIMIT database [31], where the double-talk
condition occurs in the last 5 secs. The background noise signal
v of length 30 secs is stationary air conditioner noise measured
in an office. The time-domain signals are transformed into the
STFT domain with NFFT = 512 (i.e. K = 257) using a Hann
analysis window and an overlap of 75%, i.e. a frameshift of
F = 128.

The different RIRs used for our simulations can be divided
into two categories:
� Artificial RIRs: A total of 30 RIRs were generated exactly

according to the model in (12) with N = 640 and Nh =
16000 for all combinations of the frequency-independent
parameters σ2

L = {−40,−36,−32,−28,−24,−20} dB
and T60 = {200, 400, 600, 800, 1000} ms.

� Measured RIRs: A total of 55 RIRs were measured in 4
rooms with different reverberation times, with the number
of RIRs measured in each room and the corresponding T60

values shown in Table I. The broadband T60 of each RIR
was estimated by line-fitting on its corresponding energy
decay curve [32]. The lab, garage and the echoic room were
rectangular shaped, while the office room was L-shaped.
It should be noted that these RIRs obviously don’t exactly
correspond to the model in (12).

TABLE II
STEP-SIZES USED FOR THE OE-RPE, OE-PLR AND EE METHODS

(FOR BOTH THE MSE AND MSLE COST FUNCTIONS)

B. Algorithmic Parameters

All required PSDs are computed via recursive smoothing
according to (8), with the smoothing factorα = e

−2·F
fs ·tc computed

for a time-constant tc = 0.02 s. For the different combinations
of parameter estimation methods, cost functions and gradient-
descent-based algorithms, the step-sizes listed in Table II were
used, which were found to give good results. In our experiments
we however observed that the results obtained for the MSLE cost
function were not very sensitive to the choice of the step-size.
For the modified version of Favrot’s method (see Appendix B),
the delay M has been chosen as M = N = 640, while the delay
P has been chosen as P = κ · F for two different values κ = 12
andκ = 16. In the RES postfilter in (9), an over-estimation factor
β = 2 and a fixed spectral floor γ = −20 dB have been used.

C. Performance Metrics

To evaluate the accuracy of the LRE PSD estimate Φ̂rL , we
compute the Log Spectral Distance (LSD) [23] between the PSD
estimate and the target PSD ΦrL , which can be expressed as the
sum of the under- and over-estimation scores:

LSD = LSDun + LSDov, (48)

LSDun=
10

K · L ·
K−1∑

k=0

l1+L∑

�=l1+1

max

{
0, log10

(
ΦrL(k, �)

Φ̂rL(k, �)

)}
,

LSDov=− 10

K · L ·
K−1∑

k=0

l1+L∑

�=l1+1

min

{
0, log10

(
ΦrL(k, �)

Φ̂rL(k, �)

)}
,

where l1 andL denote the start and the duration of the evaluation
window (in frames), respectively. We choose l1 corresponding to
20 secs (l1 = 2500) and L corresponding to 5 secs (L = 625).
A small LSD score corresponds to an accurate PSD estimate,
with the perfect estimate Φ̂rL = ΦrL yielding LSD = 0.

To evaluate the amount of residual echo suppression and near-
end speech distortion obtained by applying the RES postfilter,
we compute the segmental residual echo attenuation (REA) and
the segmental speech-to-speech distortion ratio (SSDR) [23],
[33] respectively. The segmental REA is defined as:

REAseg =
1

L
·

l1+L∑

�=l1+1

δ(�), (49)

where

δ(�) = 10 · log10
(∑F−1

m=0 r2L(m+ � · F )
∑F−1

m=0 r̃2L(m+ � · F )

)
(50)
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denotes the REA in each frame, with the late residual echo signal
rL and the processed residual echo signal r̃L obtained through
inverse STFT processing of RL and R̃L (see (11)), respectively.
A large REAseg means that a large amount of residual echo has
been suppressed. The segmental SSDR is defined as:

SSDRseg =
1

L
·

l2+L∑

�=l2+1

η(�), (51)

where

η(�) = 10 · log10

⎛

⎜⎜⎜⎝

∑F−1
m=0 s2(m+ � · F )

∑F−1
m=0

(
s(m+ � · F )− s̃(m+ � · F )

)2

⎞

⎟⎟⎟⎠

(52)

denotes the SSDR in each frame, with s the near-end speech
signal and s̃ the processed near-end speech signal (see (11)).
Here, we choose l2 corresponding to 25 secs (l2 = 3125), such
that the segmental SSDR is computed in the last 5 secs when
double-talk occurs. A large SSDRseg corresponds to a small
near-end speech signal distortion. In general, a trade-off exists
between obtaining large residual echo attenuation and small
near-end speech distortion. Hence, it is desirable to maximize
REAseg while keeping SSDRseg as large as possible.

D. Experimental Results

The first experiment is performed in an idealistic setting, i.e.
using artificial RIRs, a perfect AEC filter, no near-end speech
and no background noise. In this experiment we evaluate how
accurately the proposed methods estimate the RIR parameters
and the LRE PSD. The second experiment is performed in a
realistic setting using measured RIRs, a converged (but not
perfect) subband AEC filter, near-end speech and background
noise. In this experiment, we compare the LSD, segmental
REA and SSDR scores and the T60 estimates obtained using
the proposed online methods with those obtained using state-
of-the-art methods, i.e. Valero’s method [16] (offline version)
and Favrot’s method [17] (modified online version presented in
Appendix B).

1) Idealistic Setting: As already mentioned, in this experi-
ment we use artificial RIRs with frequency-independent param-
etersσ2

L andT60 (see Section VI-A) to generate the acoustic echo
signal and we assume a perfect AEC filter, i.e. no early resid-
ual echo (RE = 0). Additionally, we assume that no near-end
speech and background noise are present, i.e. s(n) = v(n) = 0,
such that E(k, �) = RL(k, �). For this idealistic setting, we
compare the estimates of the RIR parameters σ̂2

L and T̂60 with
the true values, and compare the LSD scores of the LRE PSD
estimates obtained using the OE-RPE, OE-PLR and EE methods
(for both the MSE and MSLE cost functions). For each method,
the parameter estimates σ̂2

L and T̂60 are obtained by averaging
the converged values of the estimated model parameters A(k)
and B(k) over all frequency bins and using them in (15), (16)
and (13).

Fig. 6. Plot of σ̂2
L vs σ2

L for the OE-RPE, OE-PLR and EE methods when
minimizing the MSLE cost function for the idealistic setting.

Fig. 7. Plot of σ̂2
L vs σ2

L for the OE-RPE, OE-PLR and EE methods when
minimizing the MSE cost function for the idealistic setting.

Fig. 6 and Fig. 7 show the estimated scaling parameter σ̂2
L as

a function of the true scaling parameter σ2
L for the OE-RPE, OE-

PLR and EE methods when minimizing the MSLE and MSE cost
functions, respectively. Each point in these figures corresponds
to the average result obtained for 5 RIRs (with different T60

values), while the error bars depict the standard deviation across
these 5 RIRs. On the one hand, it can be observed that for MSLE
minimization (Fig. 6), all considered methods slightly under-
estimateσ2

L and yield a very small standard deviation, indicating
robustness to different T60 values. On the other hand, for MSE
minimization (Fig. 7), all considered methods yield less accurate
estimates with large standard deviations. Overall, the OE-RPE
method with MSLE minimization gives the most accurate results
for all considered σ2

L and T60.
Fig. 8 and Fig. 9 show the estimated reverberation time T̂60

as a function of the true reverberation time T60 for the OE-RPE,
OE-PLR and EE methods when minimizing the MSLE and
MSE cost functions, respectively. Each point in these figures
now corresponds to the average result obtained for 6 RIRs
(with different σ2

L), while the error bars depict the standard
deviation across these 6 RIRs. It can be observed that for MSLE
minimization (Fig. 8), the OE-RPE method estimates the T60

very accurately, while the OE-PLR and EE methods slightly
over-estimate the T60. All three methods yield small standard
deviations, indicating robustness to different σ2

L values. For the
MSE minimization (Fig. 9), the OE-RPE and OE-PLR methods
estimate theT60 reasonably accurately with large standard devia-
tions, while the EE method fails completely, especially for large
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TABLE III
AVERAGE LSD SCORES OBTAINED FOR ARTIFICIALLY GENERATED RIRS FOR ALL PROPOSED PARAMETER ESTIMATION METHODS

Fig. 8. Plot of T̂60 vs T60 for the OE-RPE, OE-PLR and EE methods when
minimizing the MSLE cost function for the idealistic setting.

Fig. 9. Plot of T̂60 vs T60 for the OE-RPE, OE-PLR and EE methods when
minimizing the MSE cost function for the idealistic setting.

T60. Overall, the OE-RPE method with MSLE minimization
gives the most accurate and consistent results for all considered
σ2
L and T60.
Fig. 10 shows the LSD scores of the LRE PSD estimates

obtained using all considered methods as a function of T60.
Each point in this figure again corresponds to the average result
obtained for 6 RIRs (with different σ2

L), while the error bars
depict the standard deviation across these 6 RIRs. Addition-
ally, Table III breaks down all average LSD scores into under-
and over-estimation scores (see (48)). From these results it
can be observed that the OE-RPE-MSLE and OE-PLR-MSLE
methods consistently outperform all other methods across all
T60 values, yielding the lowest LSD scores with the smallest
standard deviations. When minimizing the MSE cost function,
all methods yield significantly larger over-estimation scores than
under-estimation scores, especially for large T60 values.

Fig. 10. Plot of LSD vs T60 for all proposed parameter estimation methods
for the idealistic setting.

Fig. 11. LSD scores obtained for RIRs measured in four different rooms for
all considered parameter estimation methods.

In conclusion, based on the results obtained for the idealis-
tic setting, the OE-RPE-MSLE method outperforms all other
proposed methods in terms of estimation accuracy of the RIR
parameters σ2

L and T60 and the LRE PSDΦrL . This corresponds
to the result obtained in [18] for offline processing.

2) Realistic Setting: In this experiment, we use measured
RIRs (see Table I) to generate the acoustic echo signal and sub-
band AEC filter to perform echo cancellation (see Section II-A).
For the AEC filter we have used a rather short filter length (G = 5
frames, corresponding to 64 ms), aiming at canceling the direct
sound component and the early reflections, while achieving
fast convergence at low computational cost. The subband filter
was pre-converged using the NLMS algorithm [2], with white
Gaussian noise as the far-end signal. It should be noted that
when using a subband AEC filter, the early residual echo is
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TABLE IV
AVERAGE LSD SCORES OBTAINED FOR RIRS MEASURED IN FOUR ROOMS (SEE TABLE I) FOR ALL CONSIDERED PARAMETER ESTIMATION METHODS

Fig. 12. Plot of segmental REA vs segmental SSDR obtained for RIRs measured in four different rooms for all considered parameter estimation methods.

not completely cancelled, i.e. a small amount of early residual
echo remains due to filter misalignment (RE 
= 0). In addition,
near-end speech and background noise are present, with the
near-end signal-to-noise ratio set to 40 dB. In order to obtain
a fair comparison of the segmental performance metrics for all
measured RIRs, all RIRs have been scaled appropriately such
that the speech-to-residual echo ratio (SRER) is equal to 10 dB.
The reverberation parameters θ(k) are estimated only during
periods of near-end speech absence, i.e. during the first 25 secs,
and when the AEC error PSD Φe is at least 3 dB above the
background noise PSD Φv , as during these periods the AEC
error PSD Φe is predominantly composed of the LRE PSD ΦrL .
As ΦrL is not directly observable in practice, it is approximated
in (30) by Φe during these periods.

For this realistic setting, we compare the LSD, REAseg and
SSDRseg scores obtained using the OE-RPE, OE-PLR and EE
methods (for both the MSE and MSLE cost functions) with
the state-of-the-art methods in [16] (offline version) and [17]
(modified online version). Additionally, we also compare the
estimated reverberation time T̂60 with the (true) T60 obtained by
line-fitting.

Fig. 11 shows the LSD scores obtained using all considered
methods for the measured RIRs in each room. Each point in this
figure corresponds to the average LSD score obtained for all
RIRs in a specific room, while the error bars depict the standard

deviation across these RIRs. It can be observed that the proposed
OE-RPE-MSLE and OE-PLR-MSLE methods outperform all
other online parameter estimation methods, and are even slightly
better than the offline method proposed in [16]. In addition,
Table IV breaks down all average LSD scores into under- and
over-estimation scores. Firstly, it can be observed that among
all proposed estimation methods, the OE-RPE-MSLE and OE-
PLR-MSLE methods yield similar under- and over-estimation
scores. Although the other proposed methods and the modified
Favrot method yield smaller under-estimation scores than the
OE-RPE-MSLE and OE-PLR-MSLE methods, they yield con-
siderably larger over-estimation scores. Finally, for the offline
method proposed in [16], both the under- and over-estimation
scores are slightly larger than for the online OE-RPE-MSLE and
OE-PLR-MSLE methods (except for under-estimation scores in
the lab and over-estimation scores in the echoic room).

Fig. 12 shows the REAseg scores against the SSDRseg scores
obtained using all considered methods. Each point in this figure
corresponds to the average result obtained for all RIRs in a
specific room, while the error bars on the x and y-axes depict
the standard deviations across these RIRs for the SSDRseg and
REAseg scores, respectively. For comparison, we also included
the results obtained using the perfect LRE PSD estimate Φ̂rL =
ΦrL and an over-estimation factor β = 1, which yields the best
possible performance in terms of maximizing both the REAseg
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Fig. 13. Plot of T̂60 vs T60 (line-fitting) for RIRs measured in four different rooms for all considered parameter estimation methods.

Fig. 14. Correlation between T̂60 obtained using each considered parameter estimation method and T60 (line-fitting) for all measured RIRs.

and SSDRseg scores. As expected, it can be observed that a
large LSD over-estimation score (see Table IV) leads to large
residual echo attenuation at the expense of large near-end speech
distortion, while an opposite effect can be observed for a large
LSD under-estimation score. The proposed online OE-RPE-
MSLE and OE-PLR-MSLE methods as well as Valero’s offline
method yield significantly better SSDRseg scores as compared
to the other methods (about 5–10 dB), while not losing too
much in terms of the REAseg score (about 2–3 dB). Overall, the
OE-RPE-MSLE method yields the best performance amongst all
considered parameter estimation methods, i.e. both its REAseg

as well as its SSDRseg score are closest to the scores obtained
for the perfect LRE PSD estimate.

Fig. 13 shows the estimated reverberation time T̂60 obtained
using all considered methods for the measured RIRs in each
room. Each point in this figure corresponds to the average result
obtained for all RIRs in a specific room, while the error bars
depict the standard deviation across these RIRs. For comparison,
the (true) T60 values obtained by line-fitting on the measured
RIRs have also been included. It can be clearly observed that the
OE-RPE-MSLE method yields the most accurate and consistent
T60 estimate across all rooms. On the one hand, the OE-PLR-
MSLE method, Valero’s method and Favrot’s method perform
rather similarly, i.e. slightly over-estimating theT60 for the lower

range (250–500 ms) but under-estimating the T60 for the higher
range (600–900 ms). On the other hand, the EE method for both
cost functions fails completely and significantly over-estimates
the T60, while the OE-RPE-MSE and OE-PLR-MSE methods
significantly underestimate the T60. Additionally, in Fig. 14 we
plot the estimated and true T60 values for all 55 measured RIRs
and compute the correlation coefficient ζ between these values
for each considered method. It can be seen that the proposed
OE-RPE-MSLE method yields the largest correlation coefficient
(ζ = 0.96), followed by the proposed OE-PLR-MSLE method
(ζ = 0.95) and Favrot’s method (ζ = 0.94).

In conclusion, based on the results obtained for this realis-
tic setting, the proposed OE-RPE-MSLE method outperforms
all other considered (online and offline) parameter estimation
methods in terms of LRE PSD and T60 estimation accuracy,
while yielding the largest SSDRseg score and hardly compro-
mising on the REAseg score compared to the perfect LRE PSD
estimate.

VII. CONCLUSION

In this paper, we considered late residual echo suppression by
jointly estimating the parameters of an exponentially decaying
reverberation model using online signal-based methods. The OE
and EE methods, which were originally proposed to estimate the



DESIRAJU et al.: ONLINE ESTIMATION OF REVERBERATION PARAMETERS FOR LRE SUPPRESSION 89

coefficients of time-domain IIR filters, were used on PSDs to
jointly estimate the reverberation scaling and decay parameters
by minimizing either the MSE or the MSLE cost function. For
both methods, gradient-descent-based algorithms were derived
to simultaneously update both parameters during periods of
near-end speech absence. The estimated parameters were then
used in a recursive filter structure to generate the correspond-
ing LRE PSD estimate. The different methods (OE/EE), cost
functions (MSE/MSLE) and gradient-descent-based algorithms
(RPE/PLR) were compared with state-of-the-art signal-based
methods, both in an idealistic as well as in a realistic setting.
For both considered settings, the proposed OE-RPE-MSLE and
OE-PLR-MSLE methods consistently outperformed all other
considered methods in terms of LRE PSD estimation accuracy.
Moreover, across all considered scenarios the OE-RPE-MSLE
method yielded the most accurate T60 estimates. The EE method
failed to accurately estimate the LRE PSD and T60 across all
scenarios, while both OE and EE methods for the MSE cost
function failed to accurately estimate the T60. For the realis-
tic setting, the proposed OE-RPE-MSLE and OE-PLR-MSLE
methods resulted in the smallest near-end speech distortion after
applying the postfilter, while delivering a large residual echo
suppression.

APPENDIX A
DERIVATION OF MODEL FOR LATE RESIDUAL ECHO PSD

We adopt the methodology used in [34] and [35] to derive the
recursive expression for λrL in (14), as well as expressions for
the reverberation parameters A and B in terms of the RIR model
parameters σ2

L and ρ in (15) and (16). The energy envelope of
the late part of the stochastic RIR h in (12) is given as:

E{h2(i)} = σ2
L · e−2ρ (i−N), N ≤ i < Nh, (53)

where E{·} denotes spatial expectation, i.e. the ensemble av-
erage over different realizations of the stochastic process h. As
the LRE signal rL is given as:

rL(n) =

Nh−1∑

i=N

h(i) · x(n− i), (54)

its auto-correlation at lag τ for one realization of h is defined as:

arLrL(n, n+ τ ;h) = E {rL(n) · rL(n+ τ)}

=

Nh−1∑

i=N

Nh−1∑

j=N

h(i) · h(j) · E {x(n− i) · x(n− j + τ)}

=

Nh−1∑

i=N

Nh−1∑

j=N

h(i) · h(j) · axx(n− i, n− j + τ), (55)

where axx(n, n+ τ) denotes the auto-correlation of the far-end
signal x(n) at lag τ . Assuming that h and x are mutually
independent, the spatial average of (55) over all realizations of

h can be computed using (53) as:

arLrL(n, n+ τ) = E{arLrL(n, n+ τ ;h)}

=

Nh−1∑

i=N

Nh−1∑

j=N

E{h(i) · h(j)} · axx(n− i, n− j + τ)

= σ2
L · e2ρN ·

Nh−1∑

i=N

e−2ρ i · axx(n− i, n− i+ τ), (56)

sinceE{h(i) · h(j)} = 0 if i 
= j. Evaluating (56) at time instant
n− F , with F � Nh, gives:

arLrL(n− F, n− F + τ)

= σ2
L · e2ρN ·

Nh−1∑

i=N

e−2ρ i · axx(n− F − i, n− F − i+ τ)

≈ σ2
L · e2ρN ·

Nh−1∑

i=N+F

e−2ρ (i−F ) · axx(n− i, n− i+ τ).

(57)

Using (56) and (57), the auto-correlation of the LRE signalarLrL

can be computed recursively as:

arLrL(n, n+ τ) = e−2ρF · arLrL(n− F, n− F + τ)

+ σ2
L · e2ρN ·

N+F−1∑

i=N

e−2ρ i · axx(n− i, n− i+ τ). (58)

If we assume the signal x to be stationary over F samples, with
F the STFT frameshift, (58) can be rewritten as:

arLrL(n, n+ τ) = e−2ρF · arLrL(n− F, n− F + τ)

+ σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
· axx(n−N,n−N + τ). (59)

Using the Wiener-Khinchin theorem, (59) can be expressed in
terms of true PSDs as:

λrL(k, �) = A · λx(k, �−G) +B · λrL(k, �− 1), (60)

where G = �N
F � and the parameters A and B are equal to:

A = σ2
L ·
(
1− e−2ρF

1− e−2ρ

)
, (61)

B = e−2ρF . (62)

APPENDIX B
MODIFIED VERSION OF PSD ESTIMATION METHOD IN [17]

We denote the parameters estimated using the modified ver-

sion of Favrot’s method [17] as θ̂
F
. The parameter AF corre-

sponds to the initial power of the residual echo and is estimated
as:

ÂF
N (k, �) =

E {Φ̃e(k, �) · Φ̃xN
(k, �)}

E {Φ̃xN
(k, �) · Φ̃xN

(k, �)} , (63)

where Φ̃xN
(k, �) = |XN (k, �)|2 − ΦxN

(k, �) and Φ̃e(k, �) =
|E(k, �)|2 − Φe(k, �) represent the temporal fluctuations of the
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PSD of the N -sample delayed far-end signal xN (n) = x(n−
N) and the AEC error signal e(n), respectively. The far-end
signal is delayed so as to temporally align it with the LRE
component in the AEC error signal. Thus, the numerator in (63)
is the cross-correlation between the temporal fluctuations of the
delayed far-end signal PSD and the AEC error PSD, while the
denominator is the auto-correlation of the temporal fluctuations
of the delayed far-end signal PSD. The decay rate is estimated by
computing (63) for two different delays M and M + P , where
M should be chosen such that ÂF

M can be associated with the
late reverberant part of the RIR h and P corresponds to a delay
of κ frames, i.e.:

B̂F(k, �) =

(
ÂF

M+P (k, �)

ÂF
M (k, �)

)1/κ

. (64)
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