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This paper presents a novel algorithm to estimate the power spectral density (PSD) of
stationary broadband noise disturbances in audio recordings. The proposed algorithm estimates
the noise PSD as the mean value of an exponential distribution that corresponds to the truncated
periodogram coefficients of the disturbed audio signal. An evaluation with a large number of
speech and music test signals shows that a high PSD estimation accuracy can be obtained for a
wide range of signal-to-noise ratios, allowing for unsupervised operation and thus constituting
an important part of a fully automatic broadband noise restoration system for audio archives.

0 INTRODUCTION

The quality of audio recordings is often degraded by var-
ious types of disturbances, such as broadband noise, hum,
clicks, and crackles [1–4]. Broadband noise is one of the
most frequently occurring types of disturbance, especially
in old recordings, and can be classified as having either a
technical or acoustic origin [2, Ch. 2.1.1]. Technical broad-
band noise disturbances, also known as hiss, typically arise
because of shortcomings of recording equipment or stor-
age media. Acoustic broadband noise disturbances, on the
other hand, have their origin in acoustic phenomena, such
as cars passing by, wind, or the hissing of an ocean. It can
be a difficult task to determine whether a certain acous-
tic element of a recording corresponds to an acoustic noise
disturbance, which typically requires semantic information.
On the other hand, in many cases the identification of tech-
nical noise disturbances is much clearer. For example, it is
a well-known fact that every audio recording brings about a
degradation of the original acoustic signal. Early recording
media, such as wax cylinders and shellac discs, typically
had SNRs of below 40 dB [5]. The vinyl disc represented
a large improvement in the dynamic range, with SNRs of
55 dB to 60 dB [6]. The next improvement was marked
by magnetic tape storage media, leading to SNRs between
60 dB and 70 dB [7], allowing for the first recordings that
practically contain no perceivable noise disturbance. The
compact disc, commercially introduced in 1982, made dy-
namic ranges above 90 dB possible [8]. Nowadays, digital
audio formats obviously allow for dynamic ranges that are

as high as desired, merely by increasing the word length for
each sample of the audio signal.

Hence, due to the progress in recording and storage tech-
nology, recordings made today usually do not suffer from
audible technical broadband noise disturbances. Neverthe-
less, in the last decades considerable effort has been spent
to digitize historical recordings from a variety of original
media and to reduce broadband noise disturbances in these
audio recordings [9–11]. In doing so, a central problem
is the estimation of the characteristics of the broadband
noise disturbance. State-of-the-art audio restoration algo-
rithms [2, 12, 13] often require the manual selection of one
or more noise-only sections of a recording to determine
a so-called noise fingerprint [1]. Assuming stationarity of
the noise disturbance, this fingerprint is then used as an
estimate for the PSD of the underlying noise disturbance.
The restoration quality of a noise reduction algorithm cru-
cially depends on the accuracy of the noise PSD estimate
[2], resulting in insufficient noise reduction if the noise
PSD estimate is too low and resulting in degradation of the
desired signal if the noise PSD estimate is too high.

While the manual selection of noise-only sections is not
a problem for a selected number of very valuable record-
ings, the manual restoration of large numbers of record-
ings stored in audio archives is not feasible due to the re-
quired manual intervention for each individual recording,
necessitating considerable time and effort. The number of
audio recordings stored in archives around the globe is im-
mense: the Library of Congress alone reports more than
3.5 million audio materials in 2014 [14], comprising, e.g.,
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music recordings, interviews, and field recordings. Due to
the large variety with regard to the type of the desired
signal, recording technology and age of the media, these
recordings show a large diversity of broadband noise types
and SNRs—from granular sounding noise at SNRs of ap-
proximately 30 dB for old wax cylinder recordings, via
tape media at SNRs of approximately 60 dB, to practically
noise-free recordings of today. If the restoration of large
numbers of audio recordings is desired, the only feasible
option is automatic processing. For noise reduction it is
therefore crucial to automatically obtain an accurate esti-
mate of the noise PSD, for low as well as for high input
SNRs. As mentioned before, many recordings stored in an
archive do not even contain audible broadband noise, im-
plying that the optimum choice may be not to perform any
restoration at all for these recordings.

To the best of our knowledge, no noise PSD estimation
algorithms exist that are robust against a large range of
input SNRs and against a large variety of desired signals.
Although many efficient noise PSD estimation algorithms,
e.g., [15–18], have been proposed to enhance noisy speech
signals in communication applications such as conferenc-
ing systems or hearing aids (cf., Sec. 1.2), the requirements
for audio restoration of archives are substantially different.
First, in speech communication applications the input sig-
nal is typically assumed to be a noisy recording of a single
speaker, whereas in generic audio archives the input sig-
nal may be much more diverse and complex (e.g., music,
singing voice, multiple speakers). Furthermore, in speech
communication applications the noise is typically assumed
to be of acoustic nature and to be time-varying, e.g., cars
passing by or other people talking in the background. In
contrast, the noise in audio archive recordings is usually
assumed to be of a technical nature and rather constant
for each individual recording. It is caused, e.g., by limited
dynamic ranges of recording media or aging effects of the
carrier material. In the audio archive context, acoustic noise
is typically regarded as part of the audio recording. Finally,
the main goal of noise reduction in speech communication
applications is to improve speech intelligibility, whereas in
archive audio restoration the main goal is to achieve well
sounding, high-resolution restoration results.

0.1 Main Idea of the Proposed Algorithm
The main idea of this paper is to develop an automated

procedure for audio restoration, avoiding the need for man-
ual selection of noise-only sections and allowing for fully
unsupervised broadband noise restoration of archive audio
material. We propose an algorithm to estimate the PSD of
stationary broadband noise disturbances that is designed to
work with diverse input signals, i.e., both speech and music
signals. Assuming an exponential distribution for the noise
periodogram coefficients, the noise PSD in each frequency
band is estimated as the mean value of an exponential dis-
tribution that corresponds to the truncated periodogram co-
efficients of the disturbed input signal. The optimum trun-
cation level is determined as the level that minimizes a
distance measure between the empirical distribution of the

truncated periodogram coefficients and the corresponding
truncated exponential distribution. In addition, from this
distance measure a frequency-dependent confidence value
is computed that represents a measure for the reliability of
the noise PSD estimate.

This confidence value indicates whether the individ-
ual frequency bands contain broadband noise, therefore
whether they should be processed by a broadband noise
reduction algorithm or not.

0.2 Related Work
During the last decades the reduction of broadband noise

has received steady research attention, mainly however for
speech communication applications [19–22]. The earliest
broadband noise reduction approach is probably described
in a patent from 1965 [23]. Interestingly, many state-of-
the-art broadband noise reduction algorithms are still based
on a similar principle, namely splitting the noisy input
signal into a number of frequency bands and attenuating
the frequency bands with a low SNR. Since determining
the frequency-dependent SNRs requires knowledge about
the spectro-temporal characteristics of the broadband noise
disturbance, a variety of noise PSD estimation algorithms
have been proposed. Early algorithms used voice activity
detection (VAD) [24–26] to determine noise-only sections,
based on which the noise PSD was estimated by averag-
ing short-time periodograms, e.g., using the Welch method
[27]. Obviously, VAD-based noise PSD estimation algo-
rithms perform poorly when no pauses are detected in the
desired signal over a longer period. This holds true espe-
cially for music signals where pauses are typically scarce.
Furthermore, VAD performance usually degrades at low
SNRs, leading to an overestimation of the noise PSD as
desired signal components are considered part of the noise
[16]. Therefore, algorithms have been proposed that are able
to estimate the noise PSD even when the desired signal is
active. A well-known algorithm is the minimum statistics
algorithm [15], which estimates the noise PSD by tracking
minima of the noisy input PSD within a certain time win-
dow. Since the minimum of the noisy input PSD within the
time window is smaller than the sought-after mean value of
the PSD, a bias compensation factor is introduced for the
minimum statistics algorithm. Other algorithms estimate
the noise PSD by recursively averaging the noisy input
PSD using a time-varying recursive smoothing factor that
depends on the probability of presence of the desired signal
[16, 17].

It should be noted that all aforementioned noise PSD esti-
mation algorithms require that the desired signal contains a
number of pauses—either in the time domain (VAD-based
algorithms) or in the time-frequency domain (algorithms
based on minimum tracking or desired signal presence
probability). While speech signals typically contain fre-
quent pauses and a high noise PSD estimation accuracy can
be obtained for these signals, severe noise PSD overesti-
mation may occur if the desired signal contains only very
few pauses or does not contain pauses at all, e.g., for music
signals (cf., Sec. 4.5.2).
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Although most noise reduction algorithms were origi-
nally designed to enhance speech signals, they are often
successfully applied to diverse audio recordings [1, 2, 28].
However, the problem of noise PSD estimation for signals
different from speech has only been treated marginally. In
[29] an automatic method that estimates the noise PSD
in music signals is proposed that simultaneously performs
signal activity detection and noise PSD estimation based
on dynamic Bayesian networks. It is shown that the pro-
posed algorithm outperforms an earlier algorithm [18] that
was designed for speech applications; however, the evalua-
tion is restricted to comparatively low SNRs around 15 dB.
Other recently proposed noise reduction algorithms, e.g.,
[30], eliminate the need for a noise PSD estimate by per-
forming a sparse approximation of the noisy input signal
and taking into account the time-frequency structure of au-
dio signals. However, in order to obtain optimal restoration
results, crucial parameters of the algorithm need to be ad-
justed according to the characteristics and the SNR of the
input signal [31].

0.3 Paper Structure
This paper is structured as follows: Sec. 2 describes

the signal model and the assumed distribution of the pe-
riodogram coefficients of the noise disturbance. In Sec. 3
the proposed noise PSD estimation algorithm is presented
in detail. The evaluation of the proposed algorithm with
a large test signal database comprising speech and music
signals and different types of broadband noise is presented
in Sec. 4.

1 SIGNAL MODEL

We assume that the broadband noise disturbance is addi-
tive, i.e.,

x[n] = s[n] + d[n], for 0 ≤ n < L , (1)

with n denoting the sample index, L denoting the length of
the signal, x[n] the disturbed signal, s[n] the clean (unob-
servable) audio signal, and d[n] the broadband noise dis-
turbance. We assume that the noise is uncorrelated with the
audio signal and stationary over the complete duration L
of the recording. These assumptions are motivated by the
targeted audio archive application, in which technical noise
disturbances are caused by shortcomings of storage me-
dia or recording equipment, e.g., a recording that has been
digitized from a single reel of tape.

In [32] it has been shown that the real and imaginary
parts of the discrete Fourier transform (DFT) coefficients
of stationary noise approximately follow a Gaussian dis-
tribution. Although this requires a sufficiently long DFT,
it has been shown in [32] that the assumption of a Gaus-
sian distribution already holds for a DFT length of N =
1024 samples. In the short-time Fourier transform (STFT)
domain, the signal model in Eq. (1) is given by

X [k, l] = S[k, l] + D[k, l], (2)

for 0 ≤ k < N , 0 ≤ l < M,

with X[k, l], S[k, l], and D[k, l] the STFT coefficients of the
time-domain signals x[n], s[n], and d[n], respectively, k the
frequency index, N the DFT length, l the block index, and M
the number of blocks. The STFT coefficients are obtained
by computing the DFT for each (non-overlapping) block of
the time-domain input signal, i.e.,

X [k, l] =
N−1∑
n=0

w[n]x[l N + n] · e− j2πkn/N , (3)

where w[n] is an analysis window function that is used to
alleviate spectral leakage between neighboring frequency
bins. The real and imaginary parts of the STFT coefficients
D[k, l] of the noise disturbance are assumed to be Gaussian
distributed, i.e.,

Re {D[k, l]} , Im {D[k, l]} ∼ N
(
0, σ2 [k]

)
,

for 0 ≤ k < N , (4)

with σ2[k] the variance of the Gaussian distribution in the
kth frequency bin. Assuming that the real and imaginary
parts are uncorrelated, which holds for large values of
N [32], the squared magnitudes of the STFT coefficients
D[k, l], i.e., the short-time periodograms Pd[k, l] = |D[k, l]|2

follow an exponential distribution, which is defined via its
probability density function (PDF) [33, p. 85]:

fe(x ; μ) =
{ 1

μ
e− x

μ for x ≥ 0
0 else

, (5)

with mean μ > 0.
For the clean audio signal s, we assume that for

some time-frequency points its short-time periodogram
coefficients

Ps [k, l] = |S [k, l]|2 (6)

are zero or at least much smaller than the corresponding
noise periodogram coefficients Pd[k, l]. Simulation results
in Sec. 4.5.1 show that only a small number of zero coef-
ficients per frequency are required to obtain a very good
noise PSD estimation accuracy.

2 NOISE PSD ESTIMATION ALGORITHM

2.1 Overall Procedure
The proposed noise PSD estimation algorithm makes use

of the assumed stationarity of the noise disturbance over
the complete duration of the recording1 and the assumption
that the clean audio signal is zero for some time-frequency
points, corresponding to a number of time-frequency points
where only noise is present. A confidence value is computed
to indicate unreliable estimation results if too few noise-
only time-frequency points are present.

Fig. 1 shows four diagrams that illustrate the interme-
diate steps of the proposed algorithm. First, the short-time
periodogram coefficients of the disturbed input signal

Px [k, l] = |X [k, l]|2 (7)

1In our experiments we used signals with a length of 30 s.
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Fig. 1. Intermediate steps of the proposed noise PSD estimation algorithm, exemplarily shown with an artificially disturbed music signal
as input. The broadband SNR was set to 40 dB by adding white noise to a clean music recording.

are computed. Subsequently, each frequency bin is analyzed
separately and independently from all other frequency bins.
Hence, in order to simplify the notation, from now on we
will drop the frequency index k. For a music signal that has
been artificially disturbed with white noise at a broadband
SNR of 40 dB, Fig. 1(a) depicts the spectrogram of the
input signal. For an example frequency of approximately

2 kHz, Fig. 1(b) depicts the power of the input signal Px

and the (unobservable) power of the noise disturbance Pd.
The central idea of the proposed algorithm is to deter-

mine, for each frequency, the power level below which the
empirical distribution of the periodogram coefficients of the
disturbed input signal is closest to the assumed distribution
of the periodogram coefficients of the noise disturbance.
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The subset of the periodogram coefficients of the disturbed
input signal that is smaller than or equal to a truncation
level b is denoted as

Pb = {Px [l] : 0 ≤ l < M, Px [l] ≤ b} , (8)

where we assume that the elements of Pb are sorted in
ascending order. The size of this subset is denoted as Q,
and the smallest truncation level b is selected such that Q
is greater than or equal to a minimum size Mmin, i.e., Q �
Mmin (in this paper we use Mmin = 10). From this subset
the normalized histogram Hb of the truncated periodogram
coefficients is calculated, such that

∑B−1
i=0 Hb [i] = 1, with

B the number of histogram bins (in this paper we use B =
10). The empirical cumulative distribution function (CDF)
of the truncated periodogram coefficients Fb is given by
[34]

Fb (x) = 1

Q

Q−1∑
i=0

IPb[i]≤x , (9)

with the indicator function

IPb[i]≤x =
{

1 for Pb [i] ≤ x
0 else

. (10)

As mentioned in Sec. 2, the periodogram coefficients of
the noise disturbance are assumed to follow an exponential
distribution, cf., Eq. (5). As a consequence, the truncated
periodogram coefficients are assumed to follow a truncated
exponential distribution, whose PDF fte and CDF Fte are
defined as

fte (x ; μ, b) =

⎧⎪⎨
⎪⎩

1
μ

e− x
μ

1−e− b
μ

for 0 ≤ x ≤ b

0 else
(11)

Fte (x ; μ, b) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < 0
e

b
μ

e
b
μ −1

(
1 − e− x

μ

)
for 0 ≤ x ≤ b

1 for x > b

. (12)

The corresponding normalized histogram is denoted as
Hte (μ, b) and has the same number of histogram bins as
Hb.

For each truncation level b, the optimal value μ̂ (b) of
the truncated exponential distribution is then determined
by minimizing the distance between the empirical distri-
bution of the (truncated) periodogram coefficients and the
assumed truncated exponential distribution. We have con-
sidered two different distance measures, cf., Sec. 3.2. The
optimal truncation level leading to the minimum distance
is denoted as bopt. The corresponding parameter μ̂

(
bopt

)
of

the truncated exponential distribution is used as the noise
PSD estimate σ̂2.

For an example value of the truncation level (b =
−30 dB), Fig. 1(c) depicts the normalized histogram of
the truncated periodogram coefficients (black, solid line)
together with the PDF of the exponential distribution using
the optimal value μ̂ (b) estimated from Pb (black, dotted
line). For reference, the normalized histogram and the PDF
of the estimated exponential distribution of the truncated

periodogram coefficients of the (unobservable) noise dis-
turbance Pd are shown (gray, solid and dotted line, respec-
tively). Fig. 1(d) shows the distance measure (the normal-
ized total absolute difference, cf., Sec. 3.2) as a function of
the truncation level b, indicating the optimal value bopt.

2.2 Distance Measures between Probability
Distributions

A crucial part of the proposed algorithm is to deter-
mine how well the empirical distribution of the truncated
periodogram coefficients of the disturbed input signal fits
the assumed truncated exponential distribution. On the one
hand, well-known statistical hypothesis tests for goodness-
of-fit measures could be used, as they aim at determining
whether a sample follows a specific probability distribu-
tion. Possible tests comprise the Kolmogorov-Smirnov test
[35], the Anderson-Darling test [36], or the chi-squared test
[35]. On the other hand, distance measures between prob-
ability distributions such as the Kullback-Leibler (KL) or
Jensen-Shannon (JS) divergence [37] could be used.

In the context of our application, the measure should
fulfill two properties: (1) independence of the sample size,
which is proportional to the length of the input signal; and
(2) boundedness in order to be able to derive a confidence
value. As the behavior of statistical hypothesis tests depends
on the sample size [38], they will not be further considered;
for large sample sizes, the statistical evidence that the sam-
ples have been produced by an assumed distribution tends
to zero, since small deviations from the assumed distribu-
tion become statistically significant. Hence, we will only
consider distance measures between probability distribu-
tions. Since the KL divergence is not bounded [37], we
will consider the JS divergence as a first option for an ap-
propriate distance measure. The JS divergence between the
normalized histograms Hb and Hte (μ, b) is defined as

�JS (Hb, Hte) = 1

2

[
�KL

(
Hb,

1

2
(Hb + Hte)

)
(13)

+ �KL

(
1

2
(Hb + Hte) , Hte

)]
,

with the KL divergence between two histograms H1 and
H2 defined as [37]

�KL (H1, H2) =
B−1∑
i=0

H1[i] · log2
H1[i]

H2[i]
. (14)

As the JS divergence is bounded by one (0 � �JS � 1) if
the binary logarithm is used as in Eq. (14) [37], a confidence
value can easily be derived as

CJS = 1 − �JS. (15)

As a second option, we propose to use the normalized to-
tal absolute difference (AD) between the empirical CDF in
Eq. (9) and the CDF of the truncated exponential distribu-
tion in Eq. (12) as a simple and intuitive distance measure.
The (unnormalized) total AD is given by

AD =
Q−1∑
i=0

|Fb (Pb [i]) − Fte (Pb[i]; μ, b)| , (16)
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Algorithm 1: The proposed noise PSD estimation algorithm. The MINIMIZEDISTANCE function
determines the optimum value μ̂ (b) of the truncated exponential distribution as well as the distance �

to that distribution.

Procedure ESTIMATENOISEPSD(x) � Estimate the noise PSD in x
for all frequency bins k do

�min ← ∞ � Initialize the minimum distance
for all block indices l do � Compute the periodogram coefficients

Px [l] ←
∣∣∣∑N−1

n=0 w [n] x [l N + n] · e− j2πkn/N
∣∣∣2

end for
Px ← SORT(Px )
for l = Mmin. . .M do

Pb ← [Px [0], . . . , Px [l − 1]]
b ← Px[l − 1] � Truncation level
[μ̂, �] ← MINIMIZEDISTANCE(Pb, b)
if� < �minthen

�min ← �

σ̂2[k] ← μ̂

C[k] ← 1 − � � Confidence value
end if

end for
end for
return σ̂2, C

end Procedure

Fig. 2. Absolute difference (AD) and ADmax for example values
of Pb, μ and b. In this example Q = 50.

where both CDFs are evaluated at the periodogram coeffi-
cient values Pb[i]. A loose upper bound for AD is given by

ADmax = Q

2
, (17)

which corresponds to Fte(Pb[i]; μ, b) being equal to either
0 or 1 for all i. Fig. 2 shows AD and ADmax for exam-
ple values of Pb, μ, and b where AD is the area between
Fte(Pb[i]; μ, b) and Fb(Pb[i]), and ADmax is the area be-
tween 0 and Fb(Pb[i]). In this example, Fte(Pb[i]; μ, b) >

Fb(Pb[i]) for most i, which indicates that the periodogram
coefficients are generally larger than assumed for this spe-
cific choice of μ and b.

Since AD is not bounded by one, we propose to normalize
it by ADmax, i.e.,

�AD = AD

ADmax
, (18)

such that similarly as in Eq. (15) a confidence value can be
easily derived as

CAD = 1 − �AD. (19)

The confidence values in Eqs. (15) and (19) are a mea-
sure for the reliability of the obtained noise PSD estimates.
Although it will be shown in Sec. 4.5.2 that the proposed
algorithm provides accurate PSD estimation results for a
wide range of SNRs, the confidence values can be used to
refrain from restoration when the confidence in the noise
PSD estimate is too low. To this end, a minimum required
confidence can be defined and the noise PSD estimate set
to zero at frequencies where the confidence value is smaller
than the minimum required confidence. This is especially
relevant for signals without pauses or with high SNRs.
In these cases, the proposed algorithm typically yields a
noise PSD estimate that overestimates the true noise PSD,
leading to signal distortion when used in a noise reduction
algorithm. The complete noise PSD estimation algorithm
is summarized in Algorithm 1.

3 EVALUATION AND RESULTS

We evaluate the proposed noise PSD estimation algo-
rithm using a database of music and speech signals and
different types of broadband noise (cf., Sec. 4.1). The noise
PSD estimation accuracy is evaluated in a first step (cf.,
Sec. 4.2). Furthermore, the perceptual quality of the re-
stored audio signal is rated when the obtained noise PSD
estimate is used in a high-quality noise reduction algorithm
[20]. The evaluation consists of three parts. First, we ana-
lyze the influence of the used distance measure on the es-
timation accuracy of the proposed algorithm. This analysis
is based on a small test signal database in order to alleviate
the computational requirements of the experiment. Second,
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for a large test signal database we compare the estimation
accuracy using the best distance measure with a reference
noise PSD estimation algorithm based on minimum statis-
tics (cf., Sec. 4.3). Third, we evaluate the noise reduction
performance when the obtained noise PSD estimate is used
in a high-quality noise reduction algorithm and compare
its performance to that of a recently proposed noise reduc-
tion algorithm that does not require a noise PSD estimate
(cf., Sec. 4.4). The results of the evaluation are presented in
Sec. 4.5.

3.1 Test Signals
The used test signals are clean music and speech signals2

to which we have added different types of broadband noise
at different SNRs ranging from 20 to 60 dB. The clean
signals are

• Modern music recordings and
• High-quality speech recordings.

The noise disturbances are all technical in nature:

• Artificially generated white noise,
• Artificially generated pink noise,
• A recording of real tape noise3 and
• A recording of real optical film soundtrack noise4.

All clean signals and noise signals are single-channel5

and sampled at fs = 44.1 kHz. The length of each recording
is 30 s. For all experiments, we used a Hann window as
the analysis window function for the computation of the
short-time periodogram coefficients and a block length of
N = 2048 samples such that the number of blocks is M =
645. The blocks do not overlap for the proposed algorithm6

while an overlap of 50 % is used for the minimum statistics
algorithm (cf., Sec. 4.3) as specified in [15].

3.2 Performance Measures
In order to evaluate the performance of the proposed

noise PSD estimation algorithm, we use different instru-
mental measures that assess different properties of the
algorithm.

2All signals, i.e., the clean signals and the noise signals, have
either been published under a CC-BY license or are in the public
domain and are available for download from the website accompa-
nying this paper at https://matbra.github.io/noise_psd_estimation.

3Available online at https://freesound.org/people/
monotraum/sounds/242209.

4Available online at https://freesound.org/people/Yuval/sounds/
197795.

5The left channel was extracted if a recording had two channels.
6As no gain in estimation accuracy could be observed in in-

formal experiments when using overlapping blocks, we use non-
overlapping blocks to reduce the computational complexity of the
algorithm.

Table 1. The ODG scale.

ODG Impairment Description

0 Imperceptible
–1 Perceptible but not annoying
–2 Slightly annoying
–3 Annoying
–4 Very annoying

3.2.1 Noise PSD Estimation Errors
To evaluate the PSD estimation accuracy of the pro-

posed algorithm, we use the error measure proposed in
[17], which equally weighs the logarithmic overestimation
error (LogErrOver) and the logarithmic underestimation
error (LogErrUnder), i.e.,

LogErr = LogErrOver + LogErrUnder, (20)

with

LogErrOver

= 1

Nbins

Nbins−1∑
k=0

∣∣∣∣min

(
0, 10 · log10

[
σ2 [k]

σ̂2 [k]

])∣∣∣∣ (21)

LogErrUnder

= 1

Nbins

Nbins−1∑
k=0

∣∣∣∣max

(
0, 10 · log10

[
σ2 [k]

σ̂2 [k]

])∣∣∣∣ , (22)

where the number of considered frequency bins Nbins =
N
2 + 1.

3.2.2 Instrumental Measure for Audio Quality
In order to evaluate the performance of a noise reduction

algorithm using the obtained noise PSD estimate, we use an
instrumental measure to rate the perceptual quality of the
processed input signal. Specifically, we use the “perceptual
evaluation of audio quality” (PEAQ) measure7 [39–41]. The
PEAQ measure aims at determining the perceptual similar-
ity between two audio signals by computing a representa-
tion of each signal that takes the human hearing properties
into account. From this representation, a so-called Objec-
tive Difference Grade (ODG) is computed which ranges
from –4 (“very annoying”) to 0 (“imperceptible”), cf., Ta-
ble 1. Although the PEAQ measure was devised to rate the
perceptual quality of artifacts that were produced by au-
dio coding algorithms, we believe that it also makes sense
to use it to rate the quality of broadband noise restoration
algorithms. This can be justified by the fact that additive
noise disturbances were used during the development of the
PEAQ measure [41]. In addition, the results of a subjective
quality evaluation (cf., Sec. 4.2.3) indicate that the ODG
ratings obtained with the PEAQ measure generally corre-
spond well with the subjective impression. A selection of
the audio signals that were used for the evaluation and the

7As the PEAQ measure requires its input signals to have a
sampling rate of 48 kHz, the analyzed signals were resampled
accordingly.
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corresponding ODG ratings are available on the website
accompanying this paper (please refer to the corresponding
footnote in 3.1).

3.2.3 Subjective Quality Evaluation
As a supplement to the instrumental PEAQ measure,

we conducted a Multiple Stimuli with Hidden Reference
and Anchor (MUSHRA) listening test [42] to evaluate the
perceived audio quality of the processed input signal. Par-
ticipants of the listening test were 10 normal-hearing and
trained listeners. In order to obtain comparability with the
PEAQ ratings, they were asked to rate the similarity of the
processed signals to the undisturbed signal on a scale from
0 to 100. The signals used in the test were based on three
randomly selected speech signals and three randomly se-
lected music signals from the test signals described in Sec.
4.1, each at SNRs of 20 dB, 40 dB, and 60 dB. In order
to limit the duration of the listening test and avoid fatigue,
we only used the recording of real tape noise as the noise
disturbance.

The statistical evaluation of the listening test ratings
consists in a Repeated Measures Analysis of Variance
(ANOVA) [43] to determine whether the differences be-
tween the algorithm ratings are statistically significant
followed by Wilcoxon signed-rank tests [44] to investigate
rating differences between all pairs of algorithms.

3.3 Reference Noise PSD Estimation Algorithm
In order to assess the performance of the proposed noise

PSD estimation algorithm, we use the well-known noise
PSD estimation algorithm based on minimum statistics [15]
(cf., Sec. 1.2) for reference. An important parameter of this
algorithm is the length of the minimum search window. If
this window is too short to capture a pause in the desired
signal, the minimum value within the window no longer cor-
responds to the noise power but contains a certain amount
of desired signal power, resulting in an overestimation of
the noise PSD. In [15] a compensation mechanism has
been proposed that accounts for the estimation bias that is
caused by using the power minimum while the goal is to
estimate the mean power. It has been shown that the bias
compensation factor becomes larger for longer minimum
search windows. As a consequence, long minimum search
windows may even lead to an increased overestimation if
no pause in the desired signal is captured, caused by the
bias compensation factor. In this paper we will consider
two different window lengths: the standard value of ≈1.5 s
(typically used in speech communication applications) and
the maximum value of 3.7 s specified in [15].

3.4 Reference Noise Reduction Algorithms
Since the main objective is audio restoration, we also

evaluate the performance of the proposed noise PSD esti-
mation algorithm (and the reference noise PSD estimation
algorithm) in combination with the frequently used min-
imum mean square error short-time spectral attenuation
(MMSE STSA) noise reduction algorithm [20]. We use the
implementation and parameter values from [13]. In addi-

tion, we use a recently proposed noise reduction algorithm
based on structured sparsity [30], which takes the time-
frequency structure of the input signal into account and
does not require a noise PSD estimate. We use the default
parameters but reduced the threshold level (λ) to 0.001 as
this value allows for good restoration results for a wide
range of SNRs. The two noise reduction algorithms will be
denoted by MMSE STSA and Struc. sparsity, respectively.

In order to reduce artifacts produced by the noise reduc-
tion algorithms, i.e., musical noise and degradation of the
desired signal, we restrict the maximum attenuation of each
time-frequency coefficient, i.e., we set the spectral floor to
–20 dB in all experiments [19].

3.5 Results
This section presents the results of three experiments to

determine the best distance measure (Sec. 4.5.1), the noise
PSD estimation accuracy with this distance measure (Sec.
4.5.2), and the noise reduction performance when using
the proposed noise PSD estimate in the MMSE STSA
noise reduction algorithm (Sec. 4.5.3). In Sec. 4.5.1 we
use 50 music and 50 speech recordings. In Secs. 4.5.2 and
4.5.3 we use 500 music and 500 speech recordings for the
evaluation of the noise PSD estimation error and the noise
reduction quality with the PEAQ measure, and three music
and three speech signals for the subjective noise reduction
quality evaluation.

3.5.1 Distance Measure
In this section we analyze the noise PSD estimation

accuracy of the proposed algorithm for both considered dis-
tance measures (cf., Sec. 3.2), i.e., the JS divergence and the
normalized total AD. Fig. 3 shows the LogErr measure in
Eq. (20) for both distance measures and for different SNRs.
The box plots represent the distribution of the LogErr
measure for all combinations of the 100 clean music and
speech signals and the four noise types (cf., Sec. 4.1). It
can be observed that the LogErrs are very similar for both
distance measures.

For all of the following experiments we selected the nor-
malized total AD as the distance measure as it leads to a
good overall estimation accuracy for all SNRs, and it is
easier to compute than the JS divergence.

3.5.2 Noise PSD Estimation Accuracy
Using the optimum distance measure determined in the

previous section, we analyze the noise PSD estimation ac-
curacy in more detail and compare it to the reference noise
PSD estimation algorithm based on minimum statistics (cf.,
Sec. 4.3).

Fig. 4 shows the noise PSD estimation errors of the pro-
posed algorithm and the reference minimum statistics algo-
rithm (for two search window lengths) for different SNRs
and noise types. First, it can be observed that the estima-
tion errors for all algorithms depend strongly on the input
SNR, i.e., the larger the input SNR, the larger the esti-
mation errors. Furthermore, increasing the length of the
search window for the minimum statistics algorithm leads
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Fig. 3. Noise PSD estimation errors of the proposed algorithm for
different SNRs for both distance measures. The lower and upper
edge of each box indicates the first and the third quartile of the data,
respectively, while the horizontal line in each box corresponds to
the median value. Vertical lines extending from the boxes extend
to the smallest and largest data point, respectively, within 1.5 times
the inter-quartile range (IQR), with IQR the distance between the
first and the third quartile. All data outside these intervals are
considered outliers and are represented by dots.

to lower estimation errors. This is due to the fact that a
longer search window increases the probability of captur-
ing parts of the desired signal with pauses inside the search
window, hence reducing the noise PSD overestimation er-
ror. For most SNRs and noise types, the proposed algorithm
yields lower estimation errors than the minimum statistics
algorithm. We therefore conclude that the assumption of
exponentially distributed periodogram coefficients is valid
not only for artificially generated noise but also for real-
world noise recordings. Only for an SNR of 20 dB and film
noise, the minimum statistics algorithm yields a smaller
error than the proposed algorithm. This can probably be
explained by the fact that the assumption regarding the dis-
tribution of the noise periodogram coefficients is violated:
in addition to broadband noise, the used film noise also
contains a certain amount of hum and impulsive distur-
bances. The proposed algorithm only estimates the PSD
of the stationary noise part of the disturbance, while the
PSD estimate obtained using the minimum statistics algo-
rithm includes the PSD of the hum. As a consequence, the
proposed algorithm underestimates the noise PSD, leading
to an increased LogErr. This specific result indicates that
it is important to detect and remove hum and impulsive
disturbances before noise reduction [3, 4].

It should be noted that the confidence value CAD was
not considered further in this experiment, i.e., for each fre-
quency the noise PSD is determined from the truncation
level that leads to the maximum confidence (corresponding
to the smallest distance between the empirical distribution
of the truncated periodogram coefficients and the truncated
exponential distribution, cf., Eq. (19)), however low that
confidence is. Fig. 5 shows the confidence values for each
noise type and SNR, averaged over all frequencies for each
disturbed signal. It can be observed that the confidence val-
ues depend on the input SNR, i.e., the larger the input SNR
the smaller the confidence. The confidence values are sim-
ilar for white noise, pink noise, and tape noise, while they
are generally lower for film noise. Similarly, as for the noise
PSD estimation errors in Fig. 4, this can probably be ex-
plained by the amount of hum and impulsive disturbances
in the film noise. The results in Fig. 5 indicate that the con-
fidence value allows to distinguish severely disturbed from
weakly disturbed input signals in most cases, i.e., SNR �
30 dB from SNR � 50 dB.

3.5.3 Noise Reduction

This section presents the results of the proposed noise
PSD estimation algorithm combined with the MMSE STSA
noise reduction algorithm in terms of perceptual audio
quality. First, the influence on the perceptual audio qual-
ity of using a minimum required confidence (MRC), cf.,
Sec. 3.2, is investigated. Second, the performance of the
MMSE STSA noise reduction algorithm using the proposed
and the reference noise PSD estimate is compared to a noise
reduction algorithm based on structured sparsity.

Fig. 6 shows the PEAQ ratings of the processed signals
for different SNRs and for different values of the MRC:
if the confidence value CAD is lower than the MRC for a
certain frequency, the noise PSD estimate is set to zero,
i.e., no noise reduction is performed at this frequency.
Using MRC = 0 corresponds to accepting all noise PSD
estimates, however low the confidence value is. While MRC
= 0 leads to the maximum amount of noise reduction, it
can be expected that this will lead to a degradation of the
desired signal in frequency bands with a high SNR or no
pauses in the clean signal (both leading to an overestimation
of the noise PSD). In contrast, MRC = 1 leads to no noise
reduction because the empirical CDF of the periodogram
coefficients always deviates from the theoretical CDF, at
least by a small amount, and the confidence never reaches
exactly 1. Hence, the MRC can be used as a trade-off be-
tween maximum noise reduction and maximum preserva-
tion of the desired signal. The optimal value of the MRC
depends on the audio restoration task at hand. From Fig. 6
it can be observed that the achieved restoration quality de-
pends on the MRC, and the MRC for which the best PEAQ
rating is achieved highly depends on the SNR. Especially
for high SNRs, using MRC > 0 is important to protect the
clean signal. While all considered MRC values yield sim-
ilar median PEAQ ratings for an SNR of 20 dB, MRC =
0.97 yields the best median PEAQ rating for SNRs of 30 dB
to 50 dB, and MRC = 0.99 yields the best median PEAQ
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Fig. 4. Noise PSD estimation errors of the proposed algorithm using the normalized total AD distance measure and the minimum
statistics algorithm for two search window lengths. This figure integrates the results for all speech and music signals. The results are
shown separately for each noise type.

Fig. 5. Confidence values of the proposed algorithm, averaged over all frequencies for each disturbed signal. This figure integrates the
results for all speech and music signals. The results are shown separately for each noise type.
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Fig. 6. Instrumental audio quality evaluation of the processed signals obtained by combining the proposed noise PSD estimate with the
MMSE STSA noise reduction algorithm for different MRC values. This figure integrates the results for all speech and music signals and
all noise types.

rating for an SNR of 60 dB. As MRC = 0.98 yields PEAQ
ratings that lie between those obtained with MRC = 0.97
and MRC = 0.99, it represents a trade-off between high
noise reduction at low SNRs and preservation of the clean
signal at high SNRs. Hence, in the following experiment
we will consider two values for the MRC that work well
for all SNRs, namely MRC ∈ {0.97, 0.98}.

Fig. 7 shows the PEAQ ratings of the unprocessed dis-
turbed input signals (“None”) and of the signals processed
by the MMSE STSA noise reduction algorithm using
the proposed noise PSD estimate (for two MRC values),
the minimum-statistics-based noise PSD estimate (for two
search window lengths) and the oracle noise PSD estimate.
In addition, the PEAQ results of a noise reduction algo-
rithm based on structured sparsity (cf., Sec. 3.3) are shown.
It can be observed that a broadband noise disturbance may
lead to a severe degradation of the overall audio quality
(“None”). The rightmost boxes (“Oracle”) indicate that the
MMSE STSA algorithm using the true noise PSD is able
to increase the PEAQ rating for all SNRs except for SNR
= 60 dB. As the true noise PSD is obviously unknown
in practice, these results serve as a reference. The results
obtained with the minimum statistics algorithm (for both
search window lengths), show that an improvement of the
PEAQ rating is only achieved for an SNR of 20 dB. For
SNR > 30 dB the audio quality is severely reduced, due
to a degradation of the desired signal as the noise PSD
is overestimated for these SNRs. The choice of a longer
search window alleviates this problem to a certain extent—
the median PEAQ ratings for the minimum statistics algo-

rithm with a search window length of 3.7 s are higher than
those with a search window length of 1.536 s. Furthermore,
the noise reduction algorithm based on structured sparsity
achieves an improvement of the PEAQ rating compared
to the unprocessed signal for SNRs of 20 dB to 40 dB.
For SNR > 40 dB, the application of this algorithm also
leads to a considerable decrease in audio quality. This is
caused by a degradation of the desired signal that is pre-
sumably the result of fixed algorithm parameters that are
not adjusted in dependence on the SNR, as already pointed
out in [31].

For SNRs of 20 dB and 30 dB the PEAQ ratings ob-
tained by the proposed algorithm are comparable to those
obtained by the structured sparsity algorithm. For an SNR
of 40 dB, the PEAQ ratings obtained by the proposed algo-
rithm are a bit worse than those obtained by the structured
sparsity algorithm, but better than the unprocessed input
signal. For SNRs of 50 dB and 60 dB, the PEAQ ratings
obtained by the proposed algorithm with MRC = 0.98 are
much higher than those obtained by all other considered
algorithms, reaching quality ratings close to those of the
unprocessed input signal.

Table 2 summarizes the PEAQ results and lists the num-
ber of signals whose quality was improved, remained un-
changed, or was worsened by the noise reduction processing
using different noise PSD estimation algorithms. It can be
observed that at low SNRs all algorithms lead to a general
quality improvement. Nevertheless, it is evident that the
noise PSD estimation algorithm based on minimum statis-
tics leads to a quality reduction for a substantial fraction of
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Fig. 7. Instrumental audio quality evaluation of the processed signals obtained by several algorithms: (1) no processing; (2) MMSE
STSA noise reduction algorithm using the minimum-statistics-based noise PSD estimate, the proposed PSD estimate and the oracle
noise PSD estimate; (3) noise reduction algorithm based on structured sparsity.

the signals. The results also suggest that at an SNR of 20 dB
the noise reduction algorithm based on structured sparsity
performs no change of the signal at all. (It should be noted
that we used fixed algorithm parameters that were adjusted
for an overall good performance across all SNRs.) Of all
analyzed algorithms, the proposed algorithm with MRC =
0.98 leads to the highest number of signals with improved
quality at SNRs of 20 dB, 50 dB, and 60 dB, i.e., at low as
well as high SNRs.

The results of the subjective quality evaluation are shown
in Fig. 8. In addition to the signals processed with the noise
reduction algorithms, a lowpass anchor signal was used that
was obtained by filtering the clean signal with a 3.5 kHz
lowpass filter. It can be observed that the variation in the
ratings of the signals obtained with each noise PSD esti-
mation algorithm is large, covering almost the full range of

rating scores for the lowpass anchor signal and the signals
obtained with the noise PSD estimation algorithm based on
minimum statistics. Furthermore, the median ratings of the
unprocessed disturbed input signals (“None”) are very high
at SNRs of 40 dB and 60 dB, indicating that the majority
of signals used in the listening test are perceived as undis-
turbed at these SNRs. This may be explained by the fact
that only the tape noise disturbance was used in the listening
test, which is masked by the desired signal at higher SNRs
due to its lowpass characteristic. In comparison, the results
in Fig. 7 show that the PEAQ ratings of the unprocessed dis-
turbed input signals are generally much lower, especially
at SNRs of 20 dB and 40 dB, suggesting that the PEAQ
measure penalizes the broadband noise disturbance much
more than the listeners. It should be noted that the subjective
quality evaluation is able to evaluate the efficiency of the

Table 2. Change of the PEAQ ratings compared to the unprocessed, disturbed input signal for different noise PSD
estimation algorithms. For each algorithm and SNR, the number of signals whose rating are improved by the

processing (↑), remained unchanged (=), and are worsened (↓) are shown.

Noise PSD 20 dB 30 dB 40 dB 50 dB 60 dB

Estimation Algorithm ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑
Min. stat. (1.536 s window) 439 75 486 695 19 286 897 0 103 983 0 17 1000 0 0
Min. stat. (3.7 s window) 371 75 554 565 14 421 732 2 266 900 0 100 987 0 13
Struc. sparsity 8 585 407 13 14 973 39 1 960 539 3 458 942 0 58
Proposed (MRC=0.98) 68 129 803 77 8 915 86 2 912 150 8 842 317 46 637
Proposed (MRC=0.97) 190 110 700 105 9 886 115 0 885 211 1 788 609 9 382
Oracle 90 39 871 23 0 977 52 1 947 122 0 878 623 7 370
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Fig. 8. Subjective audio quality evaluation of the processed signals obtained by several algorithms: (1) no processing; (2) MMSE STSA
noise reduction algorithm using the minimum-statistics-based noise PSD estimate, the proposed PSD estimate and the oracle noise PSD
estimate; (3) noise reduction algorithm based on structured sparsity.

noise PSD estimation algorithms to a certain extent only.
This is due to the fact that only six clean signals were used,
compared to 1000 clean signals used for the instrumental
evaluation using the PEAQ measure. The results of the sub-
jective quality evaluation are expected to vary significantly
in dependence on the test signals, analogous to the large
variations observed in the PEAQ ratings in Fig. 7. Still, the
results of the subjective quality evaluation in general corre-
spond well with the PEAQ ratings, confirming the validity
of the instrumental evaluation: at SNRs above 20 dB, the
results obtained with the noise PSD estimation algorithm
based on minimum statistics are significantly lower than the
results obtained with the noise reduction algorithm based
on structured sparsity and the proposed algorithm. The high
ratings obtained with the true noise PSD show that efficient

noise reduction is possible if an exact estimate of the noise
PSD is available.

We analyzed the results of the subjective quality evalu-
ation statistically to investigate rating differences between
the algorithms. In doing so, we integrated the subjective
ratings for all SNRs. The results of a repeated-measures
ANOVA indicate in a first step that the ratings for all al-
gorithms are significantly different, with p < 0.001. In
a second step, the results of Wilcoxon signed-rank tests
shown in Table 3 indicate the statistical significance of dif-
ferences between all algorithm pairs. The numbers indicate
the significance levels at which the null hypothesis can be
rejected that the ratings for a pair of algorithms follow the
same distribution. It can be observed that the rating differ-
ences between almost all pairs of algorithms are significant

Table 3. Results of the Wilcoxon signed-rank tests. The table shows the significance levels at which the null hypothesis that the two
respective samples follow the same distribution may be rejected. Bold entries highlight p values >0.05 that suggest that the two

respective samples follow the same distribution.

Lowpass Min. stat. Min. stat. Struc. Proposed Proposed
Anchor None (1.536 s window) (3.7 s window) sparsity (MRC=0.97) (MRC=0.98) Oracle

Lowpass Anchor – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
None – – <0.001 <0.001 >0.05 <0.05 <0.05 <0.001
Min. stat. (1.536 s window) – – – <0.01 <0.001 <0.001 <0.001 <0.001
Min. stat. (3.7 s window) – – – – <0.001 <0.001 <0.001 <0.001
Struc. sparsity – – – – – <0.05 <0.05 <0.001
Proposed (MRC = 0.97) – – – – – – >0.05 <0.001
Proposed (MRC = 0.98) – – – – – – – <0.001
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at least at the 5% level. Only the ratings for the unprocessed
disturbed input signal (“None”) and the noise reduction al-
gorithm based on structured sparsity (“Struc. sparsity”),
and the ratings for the MMSE STSA algorithm combined
with the proposed noise PSD estimation algorithm with
both MRC values are not significantly different. However,
in multiple cases, the difference between multiple pairs of
noise reduction types is significant although their overall
ratings seem similar in Fig. 8. For example, the ratings
obtained for the noise reduction algorithm based on struc-
tured sparsity and for the MMSE STSA algorithm using the
proposed noise PSD estimation algorithm are significantly
different with p < 0.05 although the overall ratings seem
similar. This shows that the signals processed with these
two algorithms are rated inconsistently by the listeners,
confirming that perceptual quality is a matter of personal
taste.

In conclusion, the proposed algorithm with MRC = 0.98
is the only algorithm that improves the audio quality of
noisy signals over the wide range of considered SNRs and
input signals typically encountered in audio archives, while
only leading to a small amount of signal degradation for
practically clean input signals.

4 SUMMARY AND CONCLUSIONS

In this paper we presented a novel algorithm to estimate
the PSD of stationary broadband noise disturbances in au-
dio signals. The proposed algorithm assumes that the noise
periodogram coefficients are exponentially distributed and
estimates the noise PSD as the mean value of an exponential
distribution that corresponds to the truncated periodogram
coefficients of the disturbed input signal. In addition, a con-
fidence value is computed reflecting the reliability of the
noise PSD estimate. Noise PSD estimates with a low con-
fidence are rejected in order to avoid degradation of the
desired signal when the obtained noise PSD estimate is
used in a noise reduction algorithm. Based on experiments
with a large database of clean speech and music signals and
different artificial and real-world broadband noise distur-
bances, we have shown that the proposed algorithm yields
reduced PSD estimation errors compared to the state-of-
the-art minimum statistics algorithm for a large range of
SNRs. When using the proposed noise PSD estimate in the
MMSE STSA noise reduction algorithm with an MRC of
0.98, we showed that an unsupervised restoration is pos-
sible for a large variety of test signals at a wide range of
SNRs, leading to a median PEAQ improvement for SNRs
below 60 dB and very little signal degradation at an SNR of
60 dB. In contrast, restoration results with minimum-
statistics-based noise PSD estimates and a noise reduction
algorithm based on structured sparsity lead to a severe de-
crease in PEAQ rating for SNRs above 30 dB and 40 dB,
respectively. In conclusion, the presented algorithm consti-
tutes a crucial step for automatic broadband noise restora-
tion over a wide range of SNRs and input signals, which
are typically encountered in large audio archives.
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