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ABSTRACT

In noisy and reverberant environments speech enhancement tech-
niques such as the multi-channel Wiener filter (MWF) can be used to
improve speech quality and intelligibility. Assuming that reverbera-
tion and ambient noise can be modeled as diffuse sound fields, such
techniques require an estimate of the diffuse power spectral den-
sity (PSD). Recently a multi-channel diffuse PSD estimator based
on the eigenvalue decomposition (EVD) of the prewhitened signal
PSD matrix was proposed. The EVD-based PSD estimator is advan-
tageous in comparison to other state-of-the-art PSD estimators, since
it does not require knowledge of the relative early transfer functions
of the target signal. However, computing the EVD can be compu-
tationally expensive, particularly when the number of microphones
is large. In this paper we propose to reduce the complexity of the
EVD-based PSD estimator by using the iterative power method to
compute the eigenvalues. Since the EVD-based PSD estimator only
requires the largest eigenvalues, the full EVD is not required and the
power method is a well suited computationally efficient technique
to estimate these eigenvalues. Experimental results show that using
the PSD estimated via the power method in an MWF yields a very
similar performance as using the PSD estimated via the full EVD.

Index Terms— dereverberation, PSD estimation, EVD, power
method, complexity reduction

1. INTRODUCTION

The microphone signals recorded in many hands-free speech com-
munication applications such as teleconferencing, voice-controlled
systems or hearing aids are often corrupted by reverberation and am-
bient noise. Reverberation and noise cause the recorded signals to
sound distant and spectrally distorted and typically result in a degra-
dation of speech quality and intelligibility [1, 2] as well as a perfor-
mance deterioration of automatic speech recognition systems [3, 4].
In order to mitigate these detrimental effects, dereverberation and
noise reduction techniques are required. Both single-microphone as
well as multi-microphone techniques exist, where multi-microphone
techniques are generally preferred, since they are also able to take
the spatial characteristics of the microphone signals into account [5].
A commonly used dereverberation and noise reduction technique is
the multi-channel Wiener Filter (MWF), which minimizes the mean-
square error between the output signal and a target signal [6–9]. The
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MWF can be implemented as a minimum variance distortionless re-
sponse (MVDR) beamformer, which takes spatial information into
account, followed by a single-channel spectral postfilter, which re-
quires an estimate of the late reverberation and noise power spectral
densities (PSDs) [9–14]. Since late reverberation is commonly mod-
eled as a diffuse sound field [10–15] and since diffuse background
noise is commonly encountered in many speech communication ap-
plications, implementing the MWF requires an estimate of the dif-
fuse PSD. Several multi-channel diffuse PSD estimators have been
proposed [10–15], which typically require an estimate of the rela-
tive early transfer functions (RETFs) of the target signal between
the reference microphone and all microphones. The RETFs may
be difficult to estimate accurately, particularly in highly reverberant
and noisy scenarios. Recently we proposed a multi-channel diffuse
PSD estimator based on the eigenvalue decomposition (EVD) of the
prewhitened signal PSD matrix, which does not require knowledge
of the RETFs [16, 17]. Experimental results in [17] show the ad-
vantages of using the EVD-based PSD estimator in an MWF, both
when the RETFs are perfectly estimated as well as in the presence of
RETF estimation errors. However, since the late reverberation and
noise are nonstationary and their PSD needs to be estimated in each
time-frequency bin, i.e., the EVD needs to be computed for each
time-frequency bin, the EVD-based PSD estimator may be compu-
tationally unsuitable for real-time applications, particularly when the
number of microphones is large.

In this paper we propose to mitigate this problem by relying on
the iterative power method [18] to compute the eigenvalues. Consid-
ering that the EVD-based PSD estimator requires only the first or the
second largest eigenvalue, a full EVD computation is not necessary
and the iterative power method can be used as a computationally effi-
cient procedure to compute the largest eigenvalues, which is similar
to the approach proposed in [19] to compute the RETF. Experimental
results for several realistic acoustic scenarios show that the iterative
power method converges quickly, yielding a similar performance as
the full EVD while reducing the computational complexity.

2. SIGNAL MODEL AND NOTATION

We consider a reverberant and noisy acoustic scenario with one
speech source and M ≥ 2 microphones. The signals are considered
in their time-frequency representation obtained via the short-time
Fourier transform (STFT) with frequency index k and frame index l.
In vector notation, the M -dimensional stacked vector of the micro-
phone signals y(k, l) = [Y1(k, l), Y2(k, l), ..., YM (k, l)]T is given
by

y(k, l) = x(k, l) + d(k, l) + v(k, l), (1)
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with x(k, l) the direct and early reverberation component, d(k, l)
the diffuse sound component, and v(k, l) the noise component. The
vectors x(k, l), d(k, l), and v(k, l) are defined similarly as y(k, l).
The diffuse sound component d(k, l) models the late reverberation
as well as any noise which can be well approximated by a diffuse
sound field, such as background noise in large crowded rooms. The
noise component v(k, l) accounts for any noise which cannot be
modeled by a diffuse sound field, such as uncorrelated sensor noise.
For simplicity, in the remainder of this paper we assume that the
non-diffuse noise component v(k, l) is equal to zero, i.e.,

y(k, l) = x(k, l) + d(k, l). (2)

However, the diffuse PSD estimators considered in this paper can
also be used in acoustic scenarios where non-diffuse noise is present,
as long as an estimate of the non-diffuse noise PSD matrix is avail-
able [16]. Since all processing is performed separately for each fre-
quency bin, the index k is omitted in the remainder of this paper.

Following the widely-used assumption that the components in
(2) are mutually uncorrelated, the M ×M -dimensional PSD matrix
of the microphone signals can be written as

Φy(l) = E{y(l)yH(l)} = Φx(l) + Φd(l) (3)

where E denotes the expected value operator and Φx(l) and Φd(l)
are the PSD matrices of x(l) and d(l), respectively. The direct and
early reverberation component is given by

x(l) = S(l)a(l), (4)

where S(l) denotes the target signal as received by a reference mi-
crophone and a(l) is a vector of (possibly) time-varying RETFs of
the target signal between the reference microphone and all micro-
phones. Based on (4) and since Φd(l) is the PSD matrix of the
diffuse sound component, (3) can be written as

Φy(l) = Φs(l)a(l)aH(l)︸ ︷︷ ︸
Φx(l)

+ Φd(l)Γ︸ ︷︷ ︸
Φd(l)

, (5)

with Φs(l) the time-varying target signal PSD, i.e, Φs(l) =
E{|S(l)|2}, Φd(l) the time-varying diffuse PSD, and Γ the time-
invariant spatial coherence matrix of a diffuse sound field, which
can be analytically computed based on the microphone array geom-
etry [20].

In this paper, speech enhancement is achieved using the MWF,
which is implemented as an MVDR beamformer followed by a
single-channel spectral postfilter. Applying the MVDR beamformer
with filter coefficients w(l) = [W1(l), ...,WM (l)]T , the MVDR
output signal is given by

X̂(l) = wH(l)y(l) =

(
Γ−1a(l)

aH(l)Γ−1a(l)

)H
y(l). (6)

To obtain the final target signal estimate, a spectral postfilter G(l) is
applied to the MVDR output signal as

Ŝ(l) = G(l)X̂(l) =
Φ̂s(l)

Φ̂s(l) + Φ̂d(l)/(aH(l)Γ−1a(l))
X̂(l), (7)

with Φ̂s(l) and Φ̂d(l) estimates of the target signal and diffuse PSDs.
As can be seen from (7), an estimate of the diffuse PSD Φ̂d(l) is
required to obtain the final target signal estimate Ŝ(l).

3. EVD-BASED DIFFUSE PSD ESTIMATOR

Using the structure of the PSD matrix Φy(l) in (5), an EVD-based
estimator for the diffuse sound PSD Φ̂d(l) has been proposed in [17].
First, the Cholesky decomposition of the spatial coherence matrix Γ
is computed, i.e.,

Γ = LLH , (8)

with L an M ×M -dimensional lower triangular matrix. Using (8),
the signal PSD matrix Φy(l) is prewhitened as

Φw
y (l) =L−1Φy(l)L−H (9)

=Φs(l) L−1a(l)︸ ︷︷ ︸
b(l)

aH(l)L−H︸ ︷︷ ︸
bH (l)

+Φd(l)L
−1ΓL−H (10)

=Φs(l)b(l)bH(l) + Φd(l)IM , (11)

where IM is the M ×M -dimensional identity matrix. Due to the
structure in (11), the eigenvalues of Φw

y (l) are given by

λ1{Φw
y (l)} = σ(l) + Φd(l)

λi{Φw
y (l)} = Φd(l) ∀i ∈ {2, ...,M},

(12)

where λi{·} denotes the i-th eigenvalue (arranged in descending or-
der) and σ(l) denotes the only non-zero eigenvalue of the rank-1
term Φs(l)b(l)bH(l). Based on (12), in [17] we proposed to es-
timate the diffuse PSD by computing the EVD of the prewhitened
PSD matrix Φw

y (l) and using either the second eigenvalue, i.e.,

Φ̂d,EIG2(l) = λ2{Φw
y (l)}, (13)

or the mean of the last M − 1 eigenvalues, i.e.,

Φ̂d,EIG1(l) =
1

M − 1

(
tr
{
Φw

y (l)
}
− λ1

{
Φw

y (l)
})
, (14)

with tr{·} denoting the trace and (14) derived using the fact that the
trace of a matrix is equal to the sum of its eigenvalues. Obviously,
when the true spatial coherence matrix Γ and the true PSD matrix
Φy(l) are known, the EVD-based PSD estimates in (13) and (14)
are equal. However, since in practice the model in (5) does not
perfectly hold, the EVD-based PSD estimates in (13) and (14) are
different. Note that in contrast to other state-of-the-art diffuse PSD
estimators [10–15], the EVD-based estimator does not suffer from
performance degradation caused by RETF estimation errors. How-
ever, since the EVD needs to be performed for every time-frequency
bin, the computational cost may become unsustainable for real-time
applications, particularly when the number of microphones is large.
To mitigate this problem, in the following section we propose to esti-
mate the two largest eigenvalues λ1{Φw

y (l)} and λ2{Φw
y (l)} using

the computationally efficient iterative power method.

4. ITERATIVE POWER METHOD

The power method is a well-known iterative procedure for numeri-
cally solving eigenproblems [18]. It is applicable to estimating the
largest eigenvalue of an M ×M -dimensional matrix A under the
condition that

|λ1{A}| > |λ2{A}| ≥ ... ≥ |λM{A}|. (15)

As already mentioned in Section 3, since the model in (5) does not
perfectly hold, the eigenvalues of Φw

y (l) are typically different, i.e.,

|λ1{Φw
y (l)}| > |λ2{Φw

y (l)}| > ... > |λM{Φw
y (l)}|. (16)
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Hence, since the eigenvalues of the prewhitened PSD matrix Φw
y (l)

satisfy (15), the power method can be applied to obtain an estimate
of λ1{Φw

y (l)}. In addition, since λ2{Φw
y (l)} also typically differs

from the remaining eigenvalues, the power method can be slightly
modified to obtain an estimate of λ2{Φw

y (l)} as well (cf. Section
4.1). In the remainder of this section, the power method is presented
and some insights on the computational complexity reduction com-
pared to the full EVD are provided.

4.1. Algorithm

The power method for computing the two largest eigenvalues of
the matrix Φw

y (l) is shown in Algorithm 1. It should be noted
that in principle the power method can be used to compute all M
eigenvalues of the matrix Φw

y (l), however, in this paper only the
largest two eigenvalues are of interest. The justification of this it-
erative procedure, including a proof of convergence, can be found
in [18]. The convergence speed depends on the eigenvalue ratios(
λm{Φw

y (l)}
λ1{Φw

y (l)}

)n
, 2 ≤ m ≤M , where n is the iteration index. Since

|λ1{Φw
y (l)}| > |λm{Φw

y (l)}| ∀m ∈ {2, ...,M}, the eigenvalue
ratios approach zero as the number of iterations n increases.

The modification that allows to compute not only the largest but
also the second largest eigenvalue is based on matrix rank reduc-
tion. Once the largest eigenvalue has been computed, the column
space of the input matrix Φw

y (l) is reduced using the corresponding
estimated eigenvector and the same iterations as for computing the
largest eigenvalue estimate are repeated. Since the power method is
an iterative procedure, a termination criterion needs to be imposed,
which is chosen to be a fixed number of iterations.

In: Φw
y (l) ∈ CM×M , number of iterations N

Out: 2 eigenvalue estimates λ̂1{Φw
y (l)} and λ̂2{Φw

y (l)}
for m = 1 to 2 do

initialize u
(0)
m ∈ CM ;

for n = 1 to N do
t = Φw

y (l)u
(n−1)
m ;

u
(n)
m = t/||t||2;

/* Rayleigh quotient */

λ
(n)
m = u

(n),H
m Φw

y (l)u
(n)
m ;

end
λ̂m{Φw

y (l)} = λ
(N)
m ;

/* matrix rank reduction */

Φw
y (l) = Φw

y (l)− λ̂m{Φw
y (l)}u(N)

m u
(N),H
m ;

end
Algorithm 1: Power method for computing the first two largest
eigenvalues

4.2. Computational Complexity

In this section we provide some insights on the complexity reduction
that is achieved when using the power method to compute the re-
quired eigenvalues instead of the full EVD. The computational com-
plexity is given in terms of the number of real floating-point opera-
tions (flops), with each basic arithmetic operation counted as 1 flop.

For the power method, one iteration of the inner for-loop re-
quires 8M2 − 2M − 3 additions, 8M2 + 2M multiplications,
2M divisions, and 1 square-root operation, which results in total in
16M2 +2M−2 flops. Hence, if only the largest eigenvalue is com-
puted using N iterations, N(16M2 + 2M − 2) flops are required.
If the second largest eigenvalue is computed, additional operations

are required for the matrix rank reduction and N iterations of the
inner for-loop should be repeated. Reducing the rank of Φw

y (l)
requires 2M2 additions and 3M2 multiplications, yielding in total
5M2 flops. Hence, using the power method to estimate λ2{Φw

y (l)}
requiresN(16M2 +2M−2)+5M2 flops. Overall, the complexity
of the power method is O(M2).

Although many algorithms exist for computing the full EVD,
we consider the QR decomposition-based algorithm [18], which is
one of the most widely used algorithms to compute eigenvalues. The
complexity of the QR decomposition-based algorithm for Hermitian
matrices is O(M3) flops [21], also when the matrix is first trans-
formed into real tridiagonal form using Householder reflections [18].

Hence, using the power method to compute the eigenvalues of
interest instead of the full EVD reduces the complexity fromO(M3)
to O(M2), which can be advantageous for a real-time implementa-
tion of the diffuse PSD estimator, particularly when the number of
microphones M is large.

5. EXPERIMENTAL VALIDATION

In this section, the diffuse PSD estimation accuracy using the power
method is evaluated for different numbers of iterations. Furthermore,
the performance of an MWF using the diffuse PSD estimate based
on either the full EVD or the power method is compared.

5.1. Evaluation Setup and Algorithmic Settings

Three different acoustic scenarios are investigated [22–24]. Each
scenario consists of a single speech source and a microphone array
with M = {4, 6} microphones. The details for each scenario are
summarized in Table 1. The reverberant microphone signals are ob-
tained by convolving a 38 s long clean speech signal with the mea-
sured room impulse responses (RIRs) at a sampling frequency of
16 kHz. Diffuse babble noise generated as in [25] is added at differ-
ent input signal-to-noise ratios (SNRs) ∈ {10, 20, 30, 40} dB.

The time-domain signals are transformed into the time-frequency
domain using an STFT with 64 ms frame size and 75 % overlap. The
MVDR is calculated as in (6), where the RETF vector a(l) is com-
puted from the first 8 ms of the RIRs using the first microphone
as the reference microphone and the diffuse coherence matrix Γ is
constructed assuming spherically isotropic noise. The postfilter is
calculated as in (7), where the minimum gain is set to -20 dB and
the speech PSD estimate Φ̂s(l) is obtained via the decision-directed
approach [26]. An estimate of the signal PSD matrix is obtained
using recursive smoothing as

Φ̂y(l) = αΦ̂y(l − 1) + (1− α)y(l)yH(l), (17)

with smoothing constant α = 0.67 corresponding to approximately
40 ms. We consider four different methods to estimate the diffuse
PSD Φ̂d(l):

• EIG1 and EIG2 denote the PSD estimates corresponding to
(14) and (13) obtained via the full EVD. Note that the full
EVD is obtained utilizing the MATLAB function eig, which
utilizes a QR-decomposition-based algorithm.

• PI1 and PI2 denote the PSD estimates where the two largest
eigenvalues are computed with the power method.

The accuracy of the PSD estimates is evaluated using the total PSD
estimation error (averaged over all frames and frequencies) with re-
spect to the true PSD [27]. The true PSD is determined intrusively
from the late reverberant and diffuse noise component. Hereby, late
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array geometry mic. distance θ T60

AS1 [22] linear d = 8 cm 45 ◦ 0.61 s
AS2 [23] circular r = 10 cm 45 ◦ 0.73 s
AS3 [24] linear d = 6 cm −15 ◦ 1.25 s

Table 1: Configuration of considered acoustic scenarios; d: inter-
microphone distance, r: circle radius, θ: speaker direction of arrival

reverberant component refers to the speech component originating
from the portion of the RIRs excluding the first 8 ms. The perfor-
mance of the MWF using the considered PSD estimators is evaluated
in terms of the frequency-weighted segmental SNR (fwsSNR) [28]
as well as the perceptual evaluation of speech quality (PESQ) [29]
measure.

5.2. Initialization and Convergence Speed

In this section, the influence of the initialization u
(0)
m and the number

of iterationsN on the PSD estimation accuracy of the power method
is investigated. Here, we only consider AS1 with M = 4 and an
input SNR of 20 dB, but similar results are obtained for all other
scenarios.

We either initialize u
(0)
m for each time-frequency bin deter-

ministically using u
(0)
m = [1 0 0 ... 0]T or randomly using an M -

dimensional real-valued vector with Gaussian distributed elements
and variance 1. In the latter case, the simulations are repeated
5 times.

Fig. 1 depicts the total PSD estimation error based on the full
EVD (EIG1 and EIG2) as well as the power method, either with ran-
dom initialization (PI1-R and PI2-R) or with deterministic initial-
ization (PI1-D and PI2-D). For the random initialization in Fig. 1,
both the mean value (solid line) as well as the standard deviation
(shaded area) are shown. First, it can be observed that for all con-
sidered initializations the convergence speed is fast, i.e., after only
2-3 iterations the power method-based PSD estimates converge to
the PSD estimates obtained using the full EVD. The specific num-
ber of iterations required for convergence depends on the considered
acoustic scenario; however, it has never exceeded N = 3 in the
acoustic scenarios we have considered. Second, it can be observed
that the standard deviation for the random initialization is small and
not even visible at this scale.

In summary, using the power method to compute the two largest
eigenvalues yields a similar diffuse PSD estimation accuracy as us-
ing the full EVD, with convergence reached after only a few itera-
tions and with the initialization method having no significant influ-
ence.

5.3. Performance for Different Acoustical Systems

In this section we compare the performance of the MWF with differ-
ent PSD estimates obtained using either the full EVD or the power
method for all considered acoustic systems, microphone configura-
tions, and input SNRs. Based on the results from the previous sec-
tion, for the power method-based PSD estimates we used a random
initialization and a fixed number of iterations (N = 2). Fig. 2 shows
the performance in terms of ∆fwsSNR and ∆PESQ for different in-
put SNRs for M = {4, 6} microphones, averaged over the acoustic
scenarios detailed in Table 1. As expected, in general the configura-
tion with M = 6 leads to better results than the one with M = 4.
In terms of both performance measures, it can be observed that there
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Fig. 1: Total PSD estimation error vs. number of power iterations
for the exemplary acoustic scenario 1; 20 dB input SNR; M = 4
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Fig. 2: Average ∆fwsSNR (left) and ∆PESQ (right) of the MWF
with different PSD estimates (top: M = 4, bottom: M = 6)

is no large difference between the performance of the MWF using
either the full EVD or the power method. Complying with the exper-
imental findings in [17], the performance of the MWF using either
the first or second eigenvalue is similar.

6. CONCLUSION

In this paper we have proposed to use the power method to reduce
the computational complexity of the EVD-based diffuse PSD esti-
mator. It is shown that the initialization does not significantly influ-
ence the convergence speed of the power method-based PSD esti-
mate and that even for a small number of iterations (N = 2), diffuse
PSD estimators are obtained that lead to the same performance as
the computationally more complex full EVD.
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[13] A. Kuklasiński, S. Doclo, S. H. Jensen, and J. Jensen, “Max-
imum likelihood PSD estimation for speech enhancement in
reverberation and noise,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 9, pp. 1595–
1608, Sept. 2016.

[14] O. Schwartz, S. Gannot, and E. A. P. Habets, “Joint estima-
tion of late reverberant and speech power spectral densities in
noisy environments using Frobenius norm,” in Proc. European
Signal Processing Conference, Budapest, Hungary, Sept. 2016,
pp. 1123–1127.

[15] O. Thiergart and E. A. P. Habets, “Extracting reverberant sound
using a linearly constrained minimum variance spatial filter,”

IEEE Signal Processing Letters, vol. 21, no. 5, pp. 630–634,
May 2014.

[16] I. Kodrasi and S. Doclo, “EVD-based multi-channel derever-
beration of a moving speaker using different RETF estimation
methods,” in Proc. Joint Workshop on Hands-Free Speech
Communication and Microphone Arrays, San Francisco, USA,
Mar. 2017, pp. 116–120.

[17] I. Kodrasi and S. Doclo, “Late reverberant power spectral den-
sity estimation based on an eigenvalue decomposition,” in
Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, New Orleans, USA, Mar. 2017, pp.
611–615.

[18] G. Golub and C. Van Loan, Matrix Computations, The John
Hopkins University Press, Baltimore, USA, 1996.

[19] R. Varzandeh, M. Taseska, and E. A. P. Habets, “An iterative
multichannel subspace-based covariance subtraction method
for relative transfer function estimation,” in Proc. Joint Work-
shop on Hands-Free Speech Communication and Microphone
Arrays, San Francisco, USA, Mar. 2017, pp. 11–15.

[20] B. F. Cron and C. H. Sherman, “Spatial-correlation functions
for various noise models,” The Journal of the Acoustical Soci-
ety of America, vol. 34, no. 11, pp. 1732–1736, Nov. 1962.

[21] J. M. Ortega and H. F. Kaiser, “The LLT and QR methods for
symmetric diagonal matrices,” The Computer Journal, vol. 6,
no. 1, pp. 99–101, Jan. 1963.

[22] E. Hadad, F. Heese, P. Vary, and S. Gannot, “Multichannel
audio database in various acoustic environments,” in Proc.
International Workshop on Acoustic Echo and Noise Control,
Antibes, France, Sept. 2014, pp. 313–317.

[23] K. Kinoshita, M. Delcroix, T. Yoshioka, T. Nakatani, A. Sehr,
W. Kellermann, and R. Maas, “The REVERB challenge: A
common evaluation framework for dereverberation and recog-
nition of reverberant speech,” in Proc. IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics, 2013,
pp. 1–4.

[24] J. Eaton, N. D. Gaubitch, A. H. Moore, and P. A. Naylor, “The
ACE challenge - Corpus description and performance evalua-
tion,” in Proc. IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, New York, USA, Oct. 2015.

[25] E. A. P. Habets, I. Cohen, and S. Gannot, “Generating non-
stationary multisensor signals under a spatial coherence con-
straint,” Journal of the Acoustical Society of America, vol. 124,
no. 5, pp. 2911–2917, Nov. 2008.

[26] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error short-time spectral amplitude estima-
tor,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 32, no. 6, pp. 1109–1121, Dec. 1984.

[27] R. C. Hendriks, J. Jensen, and R. Heusdens, “Noise tracking
using DFT domain subspace decompositions,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 16, no.
3, pp. 541–553, March 2008.

[28] S. Quackenbush, T. Barnwell, and M. Clements, Objective
measures of speech quality, Prentice-Hall, New Jersey, USA,
1988.

[29] ITU-T, Perceptual evaluation of speech quality (PESQ), an
objective method for end-to-end speech quality assessment of
narrowband telephone networks and speech codecs P.862, In-
ternational Telecommunications Union (ITU-T) Recommenda-
tion, Feb. 2001.

455


