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ABSTRACT

Binaural beamforming algorithms for head-mounted assistive listening
devices are crucial to improve speech quality and speech intelligibility
in noisy environments, while maintaining the spatial impression of
the acoustic scene. While the well-known BMVDR beamformer is
able to preserve the binaural cues of one desired source, the BLCMV
beamformer uses additional constraints to also preserve the binaural cues
of interfering sources. In this paper, we provide theoretical and practical
insights on how to optimally set the interference scaling parameters
in the BLCMV beamformer for an arbitrary number of interfering
sources. In addition, since in practice only a limited temporal observation
interval is available to estimate all required beamformer quantities, we
provide an experimental evaluation in a complex acoustic scenario
using measured impulse responses from hearing aids in a cafeteria for
different observation intervals. The results show that even rather short
observation intervals are sufficient to achieve a decent noise reduction
performance and that a proposed threshold on the optimal interference
scaling parameters leads to smaller binaural cue errors in practice.

Index Terms— Hearing aids, binaural cues, noise reduction, beam-
forming, BLCMV, RTF

1. INTRODUCTION

For head-mounted assistive listening devices (e.g., hearing aids, cochlear
implants), algorithms that use the microphone signals from both the left
and the right hearing device are effective techniques to improve speech in-
telligibility, as the spatial information captured by all microphones can be
exploited [1,2]. Besides reducing undesired sources and limiting speech
distortion, another important objective of binaural speech enhancement
algorithms is the preservation of the listener’s perception of the acoustical
scene, in order to exploit the binaural hearing advantage [3] and to reduce
confusions due to a mismatch between acoustical and visual information.
To achieve binaural noise reduction with binaural cue preservation, two
main concepts have been developed. In the first concept, a common
real-valued spectro-temporal gain is applied to the reference microphone
signals in the left and the right hearing device [4–10], ensuring perfect
preservation of the instantaneous binaural cues but inevitably introducing
speech distortion. The second concept, which is considered in this paper,
is to apply a complex-valued filter to all available microphone signals on
the left and the right hearing device using binaural extensions of spatial
filtering techniques [11–19].
While the well-known binaural minimum variance distortionless response
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Fig. 1: Binaural hearing device configuration.

(BMVDR) beamformer [1] preserves the binaural cues (i.e., the interaural
level difference (ILD) and interaural time difference (ITD)) of one desired
source, the binaural linearly constrained minimum variance (BLCMV)
beamformer [15] is also able to preserve the binaural cues of interfering
sources. This is achievable by imposing interference scaling constraints
for these sources. It should be noted that the BMVDR and BLCMV
beamformers require an estimate of the correlation matrix that should be
minimized and an estimate of the relative transfer functions (RTFs) of the
desired and interfering sources. The performance of these beamformers
may significantly deteriorate in case of estimation errors. Such estimation
errors occur if only short temporal observation intervals for estimation can
be used, e.g., due to dynamic spatial scenarios such as moving sources
or head movement.
In this paper, we first derive optimal values for the interference scaling pa-
rameters in the BLCMV beamformer based on the BMVDR beamformer
with RTF preservation (BMVDR-RTF) [13,14] for an arbitrary number
of interfering sources. Secondly, since these values are optimal in the
sense of noise reduction but not robust against RTF estimation errors in
practice, we propose to apply an upper and lower threshold on them. We
evaluate the performance of the BMVDR beamformer and the BLCMV
beamformer using the two different interference scaling parameters and
measured impulse responses from hearing aids in a cafeteria [20] for sev-
eral temporal observation intervals. The results show that even rather short
temporal temporal observation intervals lead to sufficient noise reduction
performance and that the imposed threshold on the optimal interference
scaling parameters can significantly reduce binaural cue errors.

2. CONFIGURATION AND NOTATION

Consider the binaural hearing device configuration in Fig. 1, consisting of
a microphone array withM microphones on the left and the right hearing
device. For an acoustic scenario with one desired source, P interfering
sources and incoherent background noise, them-th microphone signal of
the left hearing device YL,m(ω) can be written in the frequency-domain
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as

YL,m(ω)=XL,m(ω)+

P∑
p=1

UL,p,m(ω)+NL,m(ω), (1)

with XL,m (ω) the desired speech component, UL,p,m (ω) the p-th
interference component andNL,m(ω) the background noise component
(e.g., diffuse noise) in them-th microphone signal. Them-th microphone
signal of the right hearing device YR,m (ω) is defined similarly. For
conciseness we will omit the frequency variable ω in the remainder of
the paper. We define the 2M-dimensional stacked signal vector y as

y=[YL,1...YL,MYR,1...YR,M ]T , (2)

where (·)T denotes the transpose and which can be written as

y=x+v, v=

P∑
p=1

up+n, (3)

wherex,up andn are defined similarly as in (2) andv denotes the overall
undesired component, i.e., interference plus background noise compo-
nents. For the coherent desired source Sx and the coherent interfering
sources Su,p, with p∈{1,...,P}, the vectors x and up can be written as

x=Sxa, up=Su,pbp, (4)

with a and bp the acoustic transfer functions (ATFs) between all mi-
crophones and the desired and the p-th interfering source, respectively.
Without loss of generality, we choose the first microphones on the left
and the right hearing device as reference microphones, i.e.,

YL=eTLy, YR=eTRy, (5)

where eL and eR are 2M-dimensional vectors with one element equal
to 1 and the other elements equal to 0, i.e., eL[1]=1 and eR[M+1]=1.
The correlation matrices of the background noise component, the desired
speech component, the p-th interference component and all interference
components are defined as

Rn=E
{
nnH

}
, Rx=E

{
xxH

}
=Φxaa

H, (6)

Ru,p=E
{
upu

H
p

}
=Φu,pbpb

H
p , Ru=

P∑
p=1

Ru,p, (7)

where E{·} denotes the expectation operator, (·)H denotes the conjugate
transpose and Φx and Φu,p denote the power spectral density (PSD) of
the desired source and the p-th interfering source, respectively. Assuming
statistical independence between the components in (1), the correlation
matrix of the microphone signals Ry can be written as

Ry =Rx+Ru+Rn=Rx+Rv, (8)

with Rv the correlation matrix of the overall undesired component.
The output signal at the left hearing device ZL is obtained by filtering
the microphone signals with the 2M-dimensional filter wL, i.e.,

ZL=wH
L y=wH

L x+

P∑
p=1

wH
L up+wH

L n, (9)

The output signal at the right hearing aid ZR is similarly defined.
Furthermore, we define the 4M-dimensional filter vector w as

w=

[
wL

wR

]
. (10)

The RTF vectors of the desired and the interfering sources are defined
by relating the ATF vectors to the ATF of the reference microphone on

the left and the right hearing device, i.e.,

aL=
a

AL
, aR=

a

AR
, bL,p=

bp

BL,p
, bR,p=

bp

BR,p
. (11)

The 2M ×P -dimensional matrices BL and BR containing the RTF
vectors of all interfering sources are defined as

BL=
[
bL,1,...,bL,P

]
, BR=

[
bR,1,...,bR,P

]
. (12)

The binaural input and output signal-to-noise ratio (SNR) is defined
as the ratio of the average input and output PSDs of the desired speech
component and the background noise component, i.e.,

SNRi=
eTLRxeL+eTRRxeR
eTLRneL+eTRRneR

, SNRo=
wH

L RxwL+wH
RRxwR

wH
L RnwL+wH

RRnwR
.

(13)

The binaural input and output signal-to-interference ratio (SIR) is defined
as the ratio of the average input and output PSDs of the desired speech
component and the interference components, i.e.,

SIRi=
eTLRxeL+eTRRxeR
eTLRueL+eTRRueR

, SIRo=
wH

L RxwL+wH
RRxwR

wH
L RuwL+wH

RRuwR
.

(14)

The binaural input and output signal-to-interference-plus-noise ratio
(SINR) is defined as the ratio of the average input and output PSDs of
the desired speech component and the overall undesired component, i.e.,

SINRi=
eTLRxeL+eTRRxeR
eTLRveL+eTRRveR

, SINRo=
wH

L RxwL+wH
RRxwR

wH
L RvwL+wH

RRvwR
.

(15)

3. BINAURAL NOISE REDUCTION ALGORITHMS

In Section 3.1 and 3.2 we briefly review the BMVDR beamformer
[1,2,12] and the BLCMV beamformer [15]. Based on the optimality of
the BMVDR-RTF beamformer [14] in optimizing the SINR (or SNR)
while preserving the binaural cues of all sources, in Section 3.3 we derive
optimal values for the interference scaling parameters in the BLCMV
beamformer in the case of an arbitrary number of interfering sources.
Furthermore, in order to achieve a robust binaural cue preservation
performance in case of estimation errors of the correlation matrices and
the RTF vectors (Section 3.4), we propose to threshold these interference
scaling parameters.

3.1. BMVDR beamformer

The BMVDR beamformer aims at minimizing the output PSD in
both hearing devices, while preserving the desired speech component
in the reference microphone signals. The corresponding constrained
optimization problem is given by

min
w

wHR̃w subject to wHC=g, (16)

with

R̃=

[
R 02M×2M

02M×2M R

]
, (17)

with R either equal to the correlation matrix Ry of the microphone
signals, the correlation matrix Rv of the overall undesired component
or the correlation matrix Rn of the background noise component. The
constraint set in (16) is given by

C=

[
aL 02M×1

02M×1 aR

]
, g=

[
1 1

]
, (18)
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requiring the RTF vectors of the desired source. The solution to the
optimization problem in (16) using the constraint set in (18) is equal
to [1,12,21]

wMVDR,L=
R−1aL

aH
L R−1aL

, wMVDR,R=
R−1aR

aH
RR−1aR

. (19)

From a theoretical point of view, in the case of perfectly estimated quanti-
ties (i.e., correlation matrices and RTF vector), using R=Ry or R=Rv

in (19) is optimal in the SINR sense, whereas using R=Rn in (19) is
optimal in the SNR sense. While the BMVDR beamformer preserves the
binaural cues of the desired source, its major drawback is the distortion
of the binaural cues of the interfering sources (and background noise),
such that all sources are perceived as coming from the direction of the
desired source. In practice, it should also be realized that using R=Ry

may lead to target cancellation in the case of RTF estimation errors of
the desired source [21] and that Rv is not straightforward to estimate.

3.2. BLCMV beamformer

In order to also take binaural cue preservation of the interfering sources
into account as well as control the amount of interference suppression,
it has been proposed in [15] to add interference scaling constraints to
the BMVDR beamformer, leading to the BLCMV beamformer. This
corresponds to the constrained optimization problem in (18) with the
constraint set

C1=

[
aL BL 02M×1 02M×P

02M×1 02M×P aR BR

]
, g1=

[
1 δL 1 δR

]
,

(20)

requiring the RTF vectors of the desired source and all interfering sources.
The P -dimensional vectors δL =

[
δL,1...δL,P

]
and δR =

[
δR,1...δR,P

]
contain the interference scaling parameters, which control the suppres-
sion and the binaural cue preservation of the P interfering sources. The
BLCMV beamformer is given by

wLCMV =R̃−1C1

(
CH

1 R̃−1C1

)−1

gH
1 . (21)

Setting δL,p=δR,p ensures binaural cue preservation of the p-th interfer-
ing source, while the absolute values of δL,p and δR,p directly determine
the SIR improvement for the p-th interfering source. From a theoretical
point of view, in the case of perfectly estimated quantities (i.e., correlation
matrices and RTF vectors), setting δL,p = δR,p = 0 in the BLCMV
beamformer is optimal in the SIR sense, but not necessarily in the SINR
or SNR sense. Moreover, in contrast to the BMVDR beamformer, the
choice of the correlation matrix R has no impact on the SINR, SNR
and SIR improvement and the binaural cue preservation as these are
completely determined by the interference scaling parameters. In practice,
in the case of estimation errors the choice of the correlation matrix R
will obviously have an influence on the performance of the BLCMV
beamformer (cf. Section 4).

3.3. Interference scaling parameters

As an extension of the method presented in [22] for an arbitrary number
of interfering sources, in this section we propose a method to determine
the interference scaling parameters that maximize the SINR or the SNR
while preserving the binaural cues of the interfering sources. To this
end, we will use the BMVDR beamformer with RTF preservation [14],
denoted as BMVDR-RTF beamformer, which is a special case of the
BLCMV beamformer. In the BMVDR-RTF beamformer the constraints
related to the interfering sources only control the binaural cue preservation

while the amount of desired interference suppression is not specified, i.e.,

wH
L bp

wH
Rbp

=
BL,p

BR,p
⇒ wH

L bL,p

wH
RbR,p

=1, (22)

leading to the constraint set

C2=

[
aL BL 02M×1

02M×1 −BR aR

]
, g2=

[
1 01×P 1

]
. (23)

The BMVDR-RTF beamformer is given by [14]

wRTF=R̃−1C2

(
CH

2 R̃−1C2

)−1

gH
2 , (24)

and either maximizes the SINR (R = Ry or R = Rv) or the SNR
(R=Rn), while preserving the binaural cues of all sources.
Hence, the optimal interference scaling parameters for the BLCMV
beamformer (in the SINR or SNR sense) can be determined as

δoptp =δL,p=δR,p=wH
RTF,LbL,p=wH

RTF,RbR,p (25)

However, using the optimal interference scaling parameters may lead to
problems in practice due to estimation errors of the correlation matrices
and RTF vectors. More in particular, in the case of SINR maximization,
the corresponding interference scaling parameters may be rather small,
leading to a decreased binaural cue preservation performance (cf. simula-
tions in Section 4). On the other hand, in the case of SNR maximization,
the corresponding interference scaling parameters may be rather large,
depending on the position of the interfering source, leading to an unsat-
isfying SINR improvement. Hence, we propose to enforce an upper and
lower threshold on the optimal interference scaling parameters, i.e.,

δthrp =


|δoptp |, if δmin< |δoptp |<δmax,

δmin, if |δoptp |≤δmin,

δmax, if |δoptp |≥δmax.

(26)

The thresholds have been experimentally obtained as δmin = 0.2 and
δmax=0.4, limiting the theoretically possible SIR improvement for each
interfering source between 8dB and 14dB.

3.4. Estimation of correlation matrices and RTFs

All considered binaural beamformers require an estimate of the RTF
vectors aL and aR of the desired source (cf. (11)). In addition, the
BLCMV and BMVDR-RTF beamformers require an estimate of the RTF
vectors bL,p and bR,p of each interfering source. In this paper, we will
estimate these RTFs using the covariance whitening approach [23,24],
which is based on the generalized eigenvalue decomposition (GEVD)
of the speech + noise correlation matrix Rxn = Rx + Rn and the
background noise correlation matrix Rn or the GEVD of the interference
+ noise correlation matrix Rv,p=Ru,p+Rn and Rn. While Rn can be
estimated exploiting the assumed stationarity of the background noise, es-
timating Rxn and Rv,p from the available mixture is not straightforward.
Due to limited source activity and possible spatial changes of the acoustic
scenarios, the temporal observation interval that is available in practice
for estimating these correlation matrices is typically limited. We assume
that the correlation matrix Rxn can be estimated from an observation
interval consisting of TL frames (corresponding to L seconds) where
only the desired source and the background noise are active, i.e.,

R̂xn=
1

TL

TL∑
t=1

(
x(t)+n(t)

)(
x(t)+n(t)

)H

, (27)

where t is the frame index. Similarly, we assume that the correlation
matrix Rv,p can be estimated from an observation interval of TL frames
where only the p-th interfering source and the background noise are active.
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4. EXPERIMENTAL RESULTS

In this section, we experimentally investigate the effect of the temporal
observation interval on the performance of the BMVDR beamformer
(wMVDR) and the BLCMV beamformer using either the optimal inter-
ference scaling parameters (wLCMV(δopt)) or the proposed thresholded
interference scaling parameters (wLCMV(δthr)) (cf. Section 3.3).
We consider three different acoustic scenarios comprising of one desired
source, one or two interfering sources and diffuse background noise
(cf. Table 1 for source positions). The desired source was a male Ger-
man speaker, the first interfering source was a male Dutch speaker and
the second interfering source was a male English speaker. The desired
speech and interference components were generated by convolving the
desired and interfering source signals with measured impulse responses
of binaural behind-the-ear hearing aids mounted on a dummy head in a
cafeteria (T60≈1250ms) [20], withM=2 microphones per hearing aid.
For background noise we used real ambient noise recorded in the same
cafeteria with the same setup. The sampling frequency was 16kHz. All
signals start with 2 s of noise-only, followed by about 20 s of all sources
being active. The broadband input SNR was set to 5dB and the SIRs
were set to 0dB.
The noise correlation matrix Rn was estimated using the 2 s noise-only
segment. To estimate the correlation matrices Ry, Rv, Rxn and Rv,p,
we considered different temporal observation intervals (starting at 2 s),
whose length L ranged between 0.1 s and 3 s. To estimate the correlation
matrices Rv, Rxn and Rv,p the algorithm had access to the respective
mixtures. The RTF vectors of the desired source and the interfering
source(s) were then calculated based on these estimated correlation ma-
trices (cf. Section 3.4). Please note that shorter temporal observation
intervals correspond to larger estimation errors.
The microphone signals were processed using a weighted overlap-add
framework with a block length of 256 with 50% overlap and a square-root
Hann window. The BMVDR and BLCMV beamformers were calculated
using three different correlation matrices, i.e., R = Ry (maximizing
SINR with possible target cancellation), R=Rv (maximizing SINR)
and R=Rn (maximizing SNR). The filters were used as fixed filters
over the whole signal.
As performance measures we used the binaural SINR improvement and
the binaural cues errors, i.e., ILD and ITD errors, that we calculated using
a model of binaural auditory processing [25]. All performance measures
were averaged over all frequencies and all acoustic scenarios.
Figure 2 depicts the SINR improvement for different lengths of the tem-
poral observation interval and for different correlation matrices, while
Figure 3 depicts the binaural cue errors of the first interfering source for
the same temporal observation intervals and R=Rv. First, it can be
observed that when using Ry or Rv the SINR improvement is generally
larger than when using Rn. This is expected because using the noise
correlation matrix Rn is maximizing the SNR and not the SINR. Second,
when using Ry or Rv, an apparent difference can be seen for small
observation intervals below 200ms. The small observation intervals lead
to larger estimation errors for the correlation matrices and hence also for
the RTF vectors, such that the drop in SINR improvement observed when
using Ry is probably attributed to target cancellation. For longer observa-
tion intervals and hence smaller estimation errors, the difference between
using Ry and Rv is smaller. As expected, the SINR improvement of the
BLCMV beamformer using the thresholded interference scaling param-
eters δthr is smaller than for the BLCMV beamformer using the optimal
interference scaling parameters δopt. Although, looking at the binaural
cue errors, using δthr in the BLCMV beamformer leads to much better
binaural cue preservation, while using δopt leads to similar binaural cue er-
rors as for the BMVDR beamformer. This difference is especially visible
for the ITD error at small observation intervals and is also confirmed by

Scenario 1 2 3
Desired −35◦ 0◦ 0◦

Interfering 150◦ −35◦ −35◦, 150◦

Table 1: Spatial scenarios (0◦: frontal direction. −90◦: left hand side.
90◦: right hand side).
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Fig. 2: SINR improvement for different temporal observation intervals
for R=Ry (top), R=Rv (mid) and R=Rn (bottom).

0.1 0.5 1  2  3  

3.5

4

4.5

5

5.5

6

0.1 0.5 1  2  3  

0.3

0.4

0.5

0.6

Fig. 3: Binaural cue errors of the first interfering source (R=Rv).

informal listening tests. Third, when using Rn, the BLCMV beamformer
outperforms the BMVDR beamformer for longer observation intervals
above 300ms because of the additional constraints. Additionally, using
δthr in the BLCMV beamformer apparently leads to marginally better
SINR improvement in this case. Because Rv is in practice very hard to
accurately estimate, it should be recommended to use Rn when short ob-
servation intervals are required (e.g., in dynamic acoustic scenarios) and
to use δthr in the BLCMV beamformer to prevent binaural cue errors.

5. CONCLUSIONS
In this paper, we proposed optimal values for the interference scaling
parameters in the BLCMV beamformer for an arbitrary number of
interfering sources based on the BMVDR-RTF beamformer. We showed
how to set these parameters in practice such that a robust performance
in the case of estimation errors can be achieved. Evaluation results in a
complex acoustic scenario showed that even short temporal observation
intervals for estimating the required correlation matrices and RTF vectors
are sufficient to achieve a decent noise reduction performance and
binaural cue preservation.
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