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ABSTRACT

During the last decades significant progress in multi-microphone
speech enhancement algorithms has been made for hearing aids.
However, the performance of many algorithms depends on identify-
ing the target speaker to be enhanced. To identify the target speaker
from single-trial EEG recordings in an acoustic scenario with two
competing speakers, an auditory attention decoding (AAD) method
was recently proposed. This AAD method however requires the
clean speech signals of both the attended and the unattended speaker
as reference signals for decoding. Since in practice only microphone
signals, containing several undesired acoustic components, are avail-
able, in this paper we explore the potential of using steerable binaural
superdirective beamformer for generating appropriate reference sig-
nals for decoding. The experimental results show that using steer-
able superdirective beamformer output signals improves the decod-
ing performance compared to using the noisy microphone signals as
reference signals.

Index Terms— auditory attention decoding, steerable beam-
former, noisy signal, speech envelope, noise reduction, EEG signal,
brain computer interface

1. INTRODUCTION

In complex listening conditions the human auditory system has a
remarkable ability to separate a speaker of interest from a mixture
of speakers or to tune out interfering sounds in a noisy environ-
ment, known as the cocktail-party paradigm [1]. However, this au-
ditory scene analysis task may be very challenging for listeners with
hearing impairment. During the last decades significant progress in
multi-microphone speech enhancement algorithms has been made
to improve speech intelligibility for hearing-impaired listeners [2–
4]. In an acoustic scenario with multiple speakers, these speech
enhancement algorithms however need to know which is the tar-
get speaker to be enhanced. In hearing aid applications, the target
speaker is typically identified based on direction (e.g., the speaker is
in front of the hearing aid user) or energy (i.e., the loudest speaker).
However, in many realistic scenarios, e.g., two speakers with similar
energy in front of the hearing aid user, this is not possible.

In [5] an auditory attention decoding (AAD) method was pro-
posed to identify the attended speaker from single-trial EEG record-
ings in an acoustic scenario with two competing speakers. This AAD
method has recently attracted a lot of attention, e.g., for controlling
hearing aid processing [6–19]. The AAD method proposed in [5]
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aims to reconstruct the attended speech envelope from EEG record-
ings using a spatio-temporal filter. During the training step, the filter
coefficients are computed by minimizing the least-squares error be-
tween the attended speech envelope and the reconstructed envelope.
In the decoding step, the clean speech signals of both the attended
and the unattended speaker are required as reference signals. How-
ever, in practice only the microphone signals, containing several un-
desired acoustic components, are available.

The feasibility of AAD using the noisy microphone signals as
reference signals was shown in [14, 15], although the obtained de-
coding performance was significantly lower than when using the
clean speech signals as reference signals. To generate better ref-
erence signals from the microphone signals, in [11, 13] a noise re-
duction algorithm using multi-channel Wiener filtering and in [16] a
source separation algorithm using deep neural networks was pro-
posed. In this paper, we explore the potential of using steerable
superdirective beamformer for generating appropriate reference sig-
nals for decoding. A superdirective beamformer aims to pass the
signals arriving from a certain direction without any distortion while
minimizing the diffuse noise power [3, 20]. We evaluate the perfor-
mance of steerable superdirective beamformer for AAD in anechoic
and noisy conditions by considering a binaural configuration which
uses the microphone signals of the left and the right hearing aid si-
multaneously.

For an acoustic scenario comprising two competing speakers
and diffuse noise at different SNRs, 64-channel EEG responses with
18 participants were recorded. The experimental results show that
using steerable superdirective beamformer output signals improves
the decoding performance compared to using the noisy microphone
signals as reference signals.

2. AUDITORY ATTENTION DECODING USING
STEERABLE SUPERDIRECTIVE BEAMFORMER

In this section the least-squares-based AAD method using a steerable
superdirective beamformer is presented. In Section 2.1 the acoustic
scenario and the notation are defined. In Section 2.2 the binaural
superdirective beamformer used for generating the reference signals
are presented. In Section 2.3 the decoding and the training step of
the AAD method are discussed.

2.1. Acoustic scenario and notation

Consider an acoustic scenario comprising two competing speakers
and background noise component (Fig. 1), where s1 [n] and s2 [n]
denote the clean speech signal, with n the discrete time index. The
ongoing EEG responses of a listener to these acoustic stimuli are
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Fig. 1. The schematic of the AAD method using steerable binaural
superdirective beamformer.

recorded and used for AAD (see Section 2.3). Them-th microphone
signal at the left hearing aid can be written as

yL,m [n] = x1L,m [n] + x2L,m [n] + vL,m [n] , (1)

with x1L,m [n] and x2L,m [n] the anechoic speech components corre-
sponding to the speakers, and vL,m [n] the background noise. The
m-th microphone signal at the right hearing aid yR,m [n] is defined
similarly as in (1).

In the short-time Fourier transform (STFT) domain, the m-th
microphone signal at the left hearing aid can be written as

YL,m (k, l) = X1
L,m (k, l) +X2

L,m (k, l) + VL,m (k, l) , (2)

with k denoting the frequency index and l denoting the frame index.
The m-th microphone signal at the right hearing aid YR,m (k, l) is
defined similarly. For notational conciseness the frequency index
k, the frame index l, and the time index n will be omitted in the
remainder of this paper. We also define the M -dimensional signal
vectors YL = [YL,1, . . . , YL,M ]T and YR = [YR,1, . . . , YR,M ]T ,
and the 2M -dimensional stacked signal vector Y =

[
YT

L ,Y
T
R

]T
.

2.2. Steerable superdirective beamformer

Assuming diffuse nosie, a superdirective beamformer aims at min-
imizing the output power of the noise component subject to a unit
response constraint for the steering angle θs [3, 20, 21]. In this pa-
per, we will consider a binaural configuration which uses the micro-
phone signals of the left and the right hearing aid simultaneously.
The 2M -dimensional binaural beamformer steered towards θs can
be computed as

W (θs) =
(Γ + αI)−1 d (θs)

dH (θs) (Γ + αI)−1 d (θs)
, (3)

with Γ the binaural spatial coherence matrix of a diffuse noise field,
d (θs) the (anechoic) relative transfer function (RTF) vector corre-
sponding to θs, which can be obtained from anechoic measurements,
I the identity matrix, and α = 10−2 a regularization parameter [20].
The output signal of the binaural beamformer in the time-domain is
computed as

z (θs) = ISTFT
{

WH (θs) Y
}
, (4)

with ISTFT denoting the inverse short-time Fourier transform.
To investigate the potential of using steerable superdirective

beamformer for AAD, we will consider the beamformer output sig-
nals z (θL) and z (θR), with steering angles towards the left side
of the listener θL and the right side of the listener θR, as reference
signals.

2.3. Auditory attention decoding

2.3.1. Decoding step

To decode auditory attention from C-channel EEG recordings rc [i],
with c = 1 . . . C and i the sub-sampled time index, using a trained
spatio-temporal filter g (see Training step 2.3.2), an estimate of the
attended speech envelope êa is reconstructed as, i.e.,

êa [i] = gT r [i] , (5)

with g =
[
gT
1 gT

2 . . .g
T
C

]T
, gc = [gc,0 gc,1 . . . gc,J−1]T , r [i] =[

rT1 [i] rT2 [i] . . . rTC [i]
]T

, and rc [i] = [rc [i+ ∆] rc [i+ ∆ + 1] . . .

rc [i+ ∆ + J − 1]]T , where gc,j denotes the j-th filter coefficient
in the c-th channel, J the number of filter coefficients per chan-
nel, and ∆ models the latency of the attentional effect in the EEG
responses to the acoustic stimuli.

Based on the correlation coefficients between the reconstructed
speech envelope êa [i] and the speech envelopes e1 [i] and e2 [i] of
the first and the second speaker, respectively, i.e.,

ρ1 = ρ
(
e1 [i] , êa [i]

)
, ρ2 = ρ

(
e2 [i] , êa [i]

)
, (6)

it is then decided that the listener was attending to, e.g., the first
speaker if ρ1 > ρ2. Accordingly, the difference between the corre-
lation coefficients ρ1 and ρ2 (correlation difference) is indicative of
the reliability of the AAD decision.

The complete set of EEG recordings is segmented into t =
1 . . . Ttr trials and the filter gt corresponding to trial t is used for
decoding this trial. The decoding performance is defined as the per-
centage of correctly decoded trials over all considered trials and over
all participants.

In previous work, e.g., [5,22], it has often been assumed that the
clean speech signals s1 and s2 are available as reference signals for
computing the speech envelopes e1 [i] and e2 [i] in (6), which is quite
unrealistic in practice. In this paper we address this issue by using
the output signals of steerable superdirective beamformer z (θL) and
z (θR) as reference signals.

2.3.2. Training step

In the training step, the attended speaker is assumed to be known
and the attended speech envelope ea [i] is used to compute the filter
coefficients gc,j . The attended clean speech signal sa is typically
used for computing ea [i]. The filter g is computed by minimizing
the least-squares error between the attended speech envelope ea [i]
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(assumed to be known) and the reconstructed envelope êa [i], regu-
larized with the squared l2-norm of the derivatives of the filter coef-
ficients to avoid over-fitting [5], i.e.,

F (g) =
1

I

I∑
i=1

(
ea [i] − gT r [i]

)2
+ βgT Λg, (7)

with β the regularization parameter, Λ the derivative matrix, and I
the total number of EEG samples or envelope samples considered for
computing F . The filter minimizing the regularized cost function in
(7) is equal to [7, 9]

g = (Q + βΛ)−1 q, (8)

with Q = 1
I

I∑
i=1

(
r [i ] rT [i ]

)
the correlation matrix, and q =

1
I

I∑
i=1

(r [i ] ea [i ]) the cross-correlation vector. The correlation

matrix and the the cross-correlation vector corresponding to trial
t = 1 · · ·Ttr are defined as Qt and qt, respectively. The filter

to decode trial t is computed as gt =
(
Q̃t+βΛ

)−1

q̃t with Q̃t

computed by averaging all correlation matrices except Qt (known
as leave one-out averaging), and q̃t computed by averaging all
cross-correlation vectors except qt.

3. EXPERIMENTAL SETUP

EEG responses were recorded for 18 native German-speaking partic-
ipants aged between 21 and 34 years with self-reported normal hear-
ing. Two German stories, uttered by two different male speakers,
were simultaneously presented to the participants using earphones.
The presented stimuli at both ears were generated by convolving the
clean speech signals, i.e., stories, with (non-individualized) binau-
ral anechoic impulse responses from [23], and adding diffuse noise,
generated according to [24]. The left and the right speakers were
simulated at −45◦ and 45◦, respectively. Two acoustic conditions
were considered: noiseless, and noisy with two different average
signal-to-noise ratios, i.e., SNR = 9.0 dB and SNR = 4.0 dB. The
stimuli for the noiseless condition were presented in 4 sessions, each
of length 10 minutes, while for the noisy condition were presented
in 2 sessions, one per each SNR1. Among all participants, 8 par-
ticipants were instructed to attend to the left speaker, while 10 par-
ticipants were instructed to attend to the right speaker. During the
breaks, the participants were asked to fill out a questionnaire con-
sisting of 10 multiple-choice questions related to each story. Two
participants were excluded from the analysis, one participant due to
poor attentional performance (as revealed by the questionnaire re-
sults) and the other one due to a technical hardware problem.

The EEG responses were recorded using C = 64 channels at a
sampling frequency of 500 Hz, and referenced to the nose electrode.
The EEG responses were offline re-referenced to a common average
reference, band-pass filtered between 2 Hz and 8 Hz using a third-
order Butterworth band-pass filter, and subsequently downsampled
to 64 Hz. The envelopes of the speech signals were obtained us-
ing a Hilbert transform, followed by low-pass filtering at 8 Hz and
downsampling to 64 Hz. For the training and decoding steps (see
Sections 2.3), the EEG recordings of each session were split into 20
trials, each of length 30 seconds. Each participant’s own data were
used for filter training and evaluation. The parameters involved in

1The data for this experiment are a subset of the EEG measurements in
several acoustic conditions from [14, 15].

the filter design were set to fixed values as ∆ = 125 ms, J = 8
(corresponding to 125 ms), and β = 104.

The positions of the attended and the unattended speaker are not
always the same, i.e., sometimes the attended speaker is on the left
side of the listener (and the unattended speaker is on the right side),
while sometimes the attended speaker is on the right side (and the
unattended speaker is on the left side). In order to assess the AAD
performance using the anechoic speech signals as reference signals,
we consider the anechoic speech signals of the hearing aid at the
side of the attended speaker as the anechoic attended speech signals
and the anechoic speech signals of the hearing aid at the side of
the unattended speaker as the anechoic unattended speech signals.
To assess the AAD performance using the microphone signals as
reference signals, we consider the microphone signals of the hearing
aid at the side of the attended speaker as the microphone attended
speech signals and the microphone signals of the hearing aid at the
side of the unattended speaker as the microphone unattended speech
signals. For both the anechoic and the microphone reference signals
the first microphone of the left and the right hearing aid is used.

To generate reference signals using the superdirective beam-
former with M = 3, the microphone signals are processed using
a weighted overlap-add framework with a frame size of 512 sam-
ples and an overlap of 50%. The diffuse coherence matrix Γ is
calculated using spatially averaged auto- and cross-correlations of
the anechoic acoustic transfer functions (ATFs) measured with an
angle resolution of 5◦ [23]. For the steering angle θs the RTF
vector D (θs) is computed from the same anechoic ATFs. For the
RTF vector the first microphone of left hearing aid is arbitrarily se-
lected as the reference microphone. The beamformer output signal
is computed for the target angles (θL, θR) = (−45◦, 45◦) where
speakers are positioned. In order to assess a possible mismatch
between steering and target angles the beamformer output signal is
also computed for (−75, 75◦) and (−90◦, 90◦). The interference
and the noise reduction performance of the beamformer steered to-
wards the left side of the listener (W (θL)) is evaluated in terms of
the broadband signal-to-interference ratio SIRL and signal-to-noise
ratio SNRL improvements between the output signal z (θL) and the
first microphone signals of the left hearing aid yL,1 [n]. For the
beamformer steered towards the right side of the listener (W (θR))
the broadband SIRR and SNRR improvement is similarly evaluated
between z (θR) and yR,1 [n]. The average SIR and SNR improve-
ments are computed as SIR = SIRL+SIRR

2
and SNR = SNRL+SNRR

2
,

respectively.

4. RESULTS AND DISCUSSION

For the binaural beamformer, Fig. 2 depicts the SIR and SNR im-
provements, computed over 30 trials, for different steering angles.
It can be observed that for all steering angles both the SIR and the
SNR can be improved. The best SIR and SNR improvements are
obtained for the target steering angles ±45◦ where the speakers are
positioned. This result is expected since the beam of the superdirec-
tive beamformer is relatively narrow [3,20,21] and if it is steered to-
wards different angles rather than the target angle some target source
suppression will occur.

For the noiseless and the noisy condition, Fig. 3 a, b depicts
the decoding performance when using either the microphone sig-
nals, the anechoic signals, or the output signals of the superdirec-
tive beamformer steered towards different angles. It can be observed
that when using microphone signals as reference signals the decod-
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(a) (b)

Fig. 2. SIR improvement in the noiseless and the noisy condition
(a) and SNR improvement in the noisy condition (b) obtained by the
superdirective beamformer steered at different angles.

ing performance for both conditions is large2, however, substantially
lower than when using anechoic signals as reference signals, con-
sistent with previous findings in [14, 15]. When using the superdi-
rective beamformer output signals, the decoding performance for all
considered steering angles are considerably improved compared to
when using microphone signals as reference signals. This can be ex-
plained by considering the impact of the SIR and SNR improvements
on the correlation difference. Fig. 3 c, d depicts the correlation dif-
ference, averaged across trials and participants (noted that these av-
erage correlation coefficients are not directly used for decoding). It
should be realized that although the obtained correlation differences
are quite small, these differences are still statistically significant for
making AAD decisions. It can be observed that the largest correla-
tion difference is obtained when using anechoic signals as reference
signals, which is related to the fact that these signals do not contain
noise and interference. Comparing the correlation difference with
the SIR and SNR improvements in Fig. 2 a, b, it can be observed
that the correlation difference for all steering angles is considerably
improved compared to when using microphone signals as reference
signals.

In conclusion, these results show that using steerable superdi-
rective beamformer for decoding auditory attention improves the de-
coding performance compared to when using the microphone signals
as reference signals.
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