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Analysis of Eigenvalue Decomposition-Based Late
Reverberation Power Spectral Density Estimation
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Abstract—Many speech dereverberation techniques require an
estimate of the late reverberation power spectral density (PSD).
State-of-the-art multichannel methods for estimating the late re-
verberation PSD typically rely on first, an estimate of the relative
transfer functions (RTFs) of the target signal; second, a model
for the spatial coherence matrix of the late reverberation; and fi-
nally, an estimate of the reverberant speech or reverberant and
noisy speech PSD matrix. The RTFs, the spatial coherence ma-
trix, and the speech PSD matrix are all prone to modeling and
estimation errors in practice, with the RTFs being particularly dif-
ficult to estimate accurately, especially in highly reverberant and
noisy scenarios. Recently, we proposed an eigenvalue decomposi-
tion (EVD)-based late reverberation PSD estimator, which does
not require an estimate of the RTFs. In this paper, this EVD-based
PSD estimator is further analyzed and its estimation accuracy and
computational complexity are analytically compared to a state-of-
the-art maximum likelihood (ML) based PSD estimator. It is shown
that for perfect knowledge of the RTFs, spatial coherence matrix,
and reverberant speech PSD matrix, the ML-based and the EVD-
based PSD estimates are both equal to the true late reverberation
PSD. In addition, it is shown that for erroneous RTFs but perfect
knowledge of the spatial coherence matrix and reverberant speech
PSD matrix, the ML-based PSD estimate is larger than or equal
to the true late reverberation PSD, whereas the EVD-based PSD
estimate is obviously still equal to the true late reverberation PSD.
Finally, it is shown that when modeling and estimation errors oc-
cur in all quantities, the ML-based PSD estimate is larger than
or equal to the EVD-based PSD estimate. Simulation results for
several realistic acoustic scenarios demonstrate the advantages of
using the EVD-based PSD estimator in a multichannel Wiener fil-
ter, yielding a significantly better performance than the ML-based
PSD estimator.

Index Terms—Dereverberation, PSD estimation, EVD, prewhi-
tening, ML.

I. INTRODUCTION

IN HANDS-FREE speech communication applications
the recorded microphone signals are often corrupted by
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reverberation, which arises from the superposition of delayed
and attenuated copies of the anechoic speech signal. While
early reverberation may be desirable [1], late reverberation may
degrade the perceived speech quality and intelligibility [2], [3]
as well as the performance of automatic speech recognition
systems [4], [5]. Hence, speech enhancement techniques
which effectively suppress the late reverberation are required.
In the last decades many single-channel and multi-channel
dereverberation techniques have been proposed [6]–[8], with
multi-channel techniques being generally preferred since they
are able to exploit both the spectro-temporal and the spatial
characteristics of the received microphone signals. Commonly
used techniques for speech dereverberation are acoustic multi-
channel equalization techniques [9]–[12], multi-channel linear
prediction-based techniques [13]–[15], and the multi-channel
Wiener filter (MWF) as well as various beamformer-postfilter
structures [16]–[28]. The MWF is typically implemented
as a minimum variance distortionless response (MVDR)
beamformer followed by a single-channel Wiener postfil-
ter [20]–[28]. Modeling the late reverberation as a spatially
homogeneous sound field [20]–[28], the implementation of
the MVDR beamformer and Wiener postfilter requires (among
other quantities) an estimate of the spatial coherence matrix and
of the power spectral density (PSD) of the late reverberation.
While the spatial coherence matrix can be computed assuming
a reasonable sound field model for the late reverberation (e.g.,
diffuse), estimating the late reverberation PSD is challenging.

To estimate the late reverberation PSD several single-channel
estimators based on a temporal model of reverberation [29]–
[31] and multi-channel estimators based on a model for the spa-
tial coherence matrix of the late reverberation [22]–[28], [32]
have been proposed. The multi-channel estimators can be clas-
sified as non-blocking-based estimators [23], [26], [28], where
the target signal and late reverberation PSDs are jointly es-
timated, and blocking-based estimators [22], [24], [25], [27],
[32], where the late reverberation PSD is estimated at the output
of a blocking matrix aiming to block the target signal. For both
classes of estimators, either maximum-likelihood (ML)-based
estimators [23], [25]–[27] or estimators minimizing the Frobe-
nius norm of an error PSD matrix [22], [24], [28] have been
proposed. Whereas for noisy scenarios the ML-based estima-
tors require an iterative optimization procedure, e.g. based on
Newton’s method [25], [26] or root finding [27], in noise-free
scenarios a closed-form solution for the ML estimator can be
derived [23], [27]. In [33] it has been analytically shown that
the ML-based PSD estimator from [23] yields a higher PSD
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estimation accuracy than the PSD estimator based on the Frobe-
nius norm in [22]. It should be realized that all multi-channel
late reverberation PSD estimators in [22]–[28], [32] require an
estimate of the relative transfer functions (RTFs) of the target
signal from the reference microphone to all microphones. In ad-
dition, all estimators require a model for the spatial coherence
matrix of the late reverberation and an estimate of the reverber-
ant speech or reverberant and noisy speech PSD matrix. While
the spatial coherence matrix can be computed assuming a diffuse
sound field model [22]–[28] and the PSD matrix can be directly
estimated from the received microphone signals, the RTFs may
be more difficult to estimate accurately, particularly in highly
reverberant and noisy scenarios. As experimentally validated
in [34]–[36], erroneously estimated RTFs degrade the derever-
beration performance of the speech enhancement system.

Recently, we proposed a multi-channel late reverberation PSD
estimator which does not require an estimate of the RTFs [36],
[37]. The late reverberation PSD is estimated using the eigen-
value decomposition (EVD) of the reverberant speech PSD ma-
trix prewhitened with the spatial coherence matrix of the late
reverberation. In this paper, we further analyze this EVD-based
PSD estimator, providing novel insights in terms of 1) its esti-
mation accuracy in comparison to the state-of-the-art ML-based
PSD estimator from [23], 2) its computational complexity, and
3) its performance not only in reverberant scenarios as in [36],
but also in the presence of additive noise. It is shown that when
the true RTFs, spatial coherence matrix, and reverberant speech
PSD matrix are known, the ML-based and EVD-based PSD
estimators are equivalent and yield the true late reverberation
PSD. Furthermore, it is shown that for erroneously estimated
RTFs but perfect knowledge of the spatial coherence matrix
and reverberant speech PSD matrix, the ML-based PSD esti-
mate is larger than or equal to the true late reverberation PSD,
whereas the EVD-based PSD estimate is obviously still equal
to the true late reverberation PSD. Finally, it is shown that when
modeling and estimation errors occur in all quantities, the ML-
based PSD estimate is larger than or equal to the EVD-based
PSD estimate. On the one hand, when such errors result in an
overestimation of the true late reverberation PSD for both es-
timators, the ML-based PSD estimation error is larger than or
equal to the EVD-based PSD estimation error. On the other
hand, when such errors result in an underestimation of the true
late reverberation PSD for both estimators, the ML-based PSD
estimation error is smaller than or equal to the EVD-based PSD
estimation error. Simulation results for several realistic acous-
tic scenarios with different reverberation times and microphone
configurations demonstrate the advantages of using the EVD-
based PSD estimator in the MWF, yielding a significantly better
performance than the ML-based PSD estimator.

The paper is organized as follows. In Section II the consid-
ered acoustic configuration and the used notation is introduced.
In Section III the ML-based and EVD-based late reverbera-
tion PSD estimators are reviewed and analytical insights on
the equivalence of both estimators are provided. In Section IV
the impact of modeling and estimation errors in the RTFs, spa-
tial coherence matrix, and reverberant speech PSD matrix on
the estimation accuracy of the ML-based and EVD-based PSD

Fig. 1. Acoustic system configuration.

estimators is theoretically analyzed. In addition, the computa-
tional complexity of the ML-based and EVD-based PSD esti-
mators is compared. In Section V all analytical derivations are
experimentally validated and the performance of the MWF us-
ing the ML-based and EVD-based PSD estimators in realistic
acoustic scenarios is compared.

II. CONFIGURATION AND NOTATION

Consider a reverberant and noisy acoustic system with a single
speech source and M ≥ 2 microphones, as depicted in Fig. 1.
In the short-time Fourier transform (STFT) domain, the m-th
microphone signal Ym (k, l) at frequency bin k and time frame
index l is given by

Ym (k, l) = Xe,m (k, l) + Xr,m (k, l)
︸ ︷︷ ︸

Xm (k,l)

+Vm (k, l), (1)

with Xm (k, l) the reverberant speech component which con-
sists of the direct and early reverberation component Xe,m (k, l)
and the late reverberation component Xr,m (k, l), and Vm (k, l)
the noise component. In vector notation, the M -dimensional
microphone signal vector y(k, l) can be written as

y(k, l) = xe(k, l) + xr(k, l)
︸ ︷︷ ︸

x(k,l)

+v(k, l), (2)

with y(k, l) = [Y1(k, l) Y2(k, l) . . . YM (k, l)]T and x(k, l),
xe(k, l), xr(k, l), and v(k, l) similarly defined. For a single
source scenario, the direct and early reverberation component
xe(k, l) can be expressed as

xe(k, l) = S(k, l)d(k, l), (3)

where S(k, l) denotes the target signal, i.e., direct and early
reverberation component received at the reference microphone,
and d(k, l) = [D1(k, l) D2(k, l) . . . DM (k, l)]T denotes the
M -dimensional vector of RTFs of the target signal from the ref-
erence microphone to all microphones. The target signal S(k, l)
is often defined as the direct component only, such that for cal-
ibrated microphones the RTF vector d(k, l) only depends on
the direction of arrival (DOA) of the speech source and the
microphone array geometry [22], [24]–[26], [28], [32].

Assuming that the components in (2) are mutually uncor-
related, the PSD matrix of the microphone signals y(k, l) is
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given by

Φy(k, l) = E{y(k, l)yH (k, l)} (4)

= Φxe (k, l) + Φxr (k, l)
︸ ︷︷ ︸

Φx (k,l)

+Φv(k, l), (5)

where E denotes the expectation operator,
Φx(k, l) = E{x(k, l)xH (k, l)} is the reverberant
speech PSD matrix, Φxe (k, l) = E{xe(k, l)xH

e (k, l)}
is the direct and early reverberation PSD matrix,
Φxr(k, l)=E{xr(k, l)xH

r (k, l)} is the late reverberation
PSD matrix, and Φv(k, l)=E{v(k, l)vH (k, l)} is the noise
PSD matrix. The direct and early reverberation PSD matrix
Φxe (k, l) is a rank-1 matrix given by (cf. (3))

Φxe (k, l) = Φs(k, l)d(k, l)dH (k, l), (6)

with Φs(k, l) the time-varying PSD of the target signal, i.e.,
Φs(k, l) = E{|S(k, l)|2}. Modeling the late reverberation as a
spatially homogeneous sound field, the PSD matrix Φxr (k, l)
can be expressed as

Φxr (k, l) = Φr(k, l)Γ(k), (7)

with Φr(k, l) the time-varying PSD of the late reverberation and
Γ(k) the spatial coherence matrix of the late reverberation which
is assumed to be time-invariant. It is commonly assumed that the
sound field modeling the late reverberation is diffuse [22]–[28],
such that the spatial coherence matrix Γ(k) can be analytically
computed based on the microphone array geometry [38]. Us-
ing (6) and (7), the reverberant speech PSD matrix Φx(k, l) can
be expressed as

Φx(k, l) = Φs(k, l)d(k, l)dH (k, l) + Φr(k, l)Γ(k). (8)

Assuming that the reverberant speech PSD matrix is given
by (8) is a commonly used assumption when deriving multi-
channel late reverberation PSD estimators [21]–[28]. The ana-
lytical derivations provided in this paper are also based on this
assumption. It should however be noted that (8) does not hold
in practice, since 1) the late reverberation is typically not a per-
fect spatially homogeneous sound field and 2) the early and late
reverberation components are not perfectly uncorrelated.

Given the M -dimensional filter vector w(k, l) = [W1(k, l)
W2(k, l) . . . WM (k, l)]T , the output signal Z(k, l) of the
speech enhancement system in Fig. 1 is equal to the sum of
the filtered microphone signals, i.e.,

Z(k, l) = wH (k, l)y(k, l). (9)

Dereverberation and noise reduction techniques aim at design-
ing the filter w(k, l) such that the output signal Z(k, l) is as
close as possible to the target signal S(k, l). Many such tech-
niques require (among other quantities) an estimate of the late
reverberation PSD Φr(k, l), e.g., [19]–[21]. For conciseness,
the frequency bin k and the frame index l are omitted in the
remainder of this paper, unless explicitly required.

III. ML-BASED AND EVD-BASED LATE REVERBERATION

POWER SPECTRAL DENSITY ESTIMATORS

In this section, the ML-based late reverberation PSD esti-
mator from [23] and the EVD-based late reverberation PSD

estimator from [36] are reviewed and analytical insights on the
equivalence of both estimators are provided. For simplicity, in
the following we assume a noise-free scenario, i.e., y = x and
Φy = Φx . However, it should be noted that the considered late
reverberation PSD estimators can also be used in a noisy sce-
nario if an estimate of the reverberant speech PSD matrix Φx

can be obtained (cf. Section V-E).

A. ML-Based PSD Estimator

In [23] an ML-based estimator for the late reverberation PSD
has been derived, assuming the spectral coefficients of the com-
ponents xe and xr to be circularly-symmetric complex Gaussian
distributed. Maximizing the likelihood function computed using
these distributions results in the late reverberation PSD estimate

Φml
r =

1
M − 1

tr
{(

I − d
dH Γ−1

dH Γ−1d

)

ΦxΓ−1
}

, (10)

where tr{·} denotes the trace operator and I denotes the
M × M -dimensional identity matrix. Estimating the late rever-
beration PSD using (10) requires knowledge of the RTF vector
d, the spatial coherence matrix Γ, and the reverberant speech
PSD matrix Φx . While Γ can be computed assuming a diffuse
sound field model and Φx can be estimated from the microphone
signals, accurately estimating d may not be straightforward, par-
ticularly in highly reverberant and noisy environments. As will
be analytically shown in Section IV-A, erroneous RTFs degrade
the accuracy of the ML-based PSD estimate, hence resulting in
a degradation of the dereverberation performance of the speech
enhancement system (cf. simulation results in Section V-D).

B. EVD-Based PSD Estimator

Aiming to remove the dependency on the RTF vector d,
in [36] we proposed to estimate the late reverberation PSD
using the eigenvalues of the reverberant speech PSD matrix
prewhitened with the diffuse spatial coherence matrix. Using
the Cholesky decomposition of the positive definite spatial co-
herence matrix Γ, i.e.,

Γ = LLH , (11)

with L an M × M -dimensional lower triangular matrix, the
prewhitened reverberant speech PSD matrix can be computed
as

Φw
x = L−1ΦxL−H . (12)

Substituting (8) in (12), it can be observed that the matrix Φw
x

is equal to the sum of a rank-1 matrix and the identity matrix
scaled by the late reverberation PSD, i.e.,

Φw
x = Φs L−1d

︸ ︷︷ ︸

dw

dH L−H
︸ ︷︷ ︸

dH
w

+ΦrL−1ΓL−H (13)

= ΦsdwdH
w + ΦrI, (14)

with the vector dw introduced in order to simplify the notation.
Due to the structure in (14), the eigenvalues of the matrix Φw

x
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(arranged in descending order) are equal to

λ1{Φw
x } = σ + Φr , (15a)

λj{Φw
x } = Φr , j = 2, . . . , M, (15b)

with σ the only non-zero eigenvalue of the rank-1 matrix
ΦsdwdH

w . Based on (15), in [36] we proposed to estimate the
late reverberation PSD using either any of the last M − 1 eigen-
values of the matrix Φw

x , i.e.,

Φevd
r,j = λj{Φw

x }, j = 2, . . . , M, (16)

or the mean of the last M − 1 eigenvalues of the matrix Φw
x ,

i.e.,

Φevd
r,μ =

1
M − 1

(tr {Φw
x } − λ1 {Φw

x }) , (17)

with (17) derived using the fact that the trace of a matrix is equal
to the sum of its eigenvalues. Obviously, when the true spatial
coherence matrix Γ and the true reverberant speech PSD matrix
Φx are known, the EVD-based PSD estimates in (16) and (17)
are equal.

Estimating the late reverberation PSD using (16) or (17) only
requires knowledge of the spatial coherence matrix Γ and the
reverberant speech PSD matrix Φx . Unlike the ML-based PSD
estimator in (10), it is important to note that our EVD-based
PSD estimator does not require an estimate of the RTF vector
d, which is advantageous in order to avoid propagation of RTF
estimation errors into the late reverberation PSD estimate (cf.
sensitivity analysis in Section IV-A and simulation results in
Section V-D).

C. Equivalence of the ML-Based and EVD-Based PSD
Estimators

In the following, it is shown that when the true RTF vector
d, the true spatial coherence matrix Γ, and the true reverberant
speech PSD matrix Φx are known, the ML-based PSD estimate
in (10) and the EVD-based PSD estimates in (16) and (17) are
equivalent and equal to the true late reverberation PSD.

Since the trace is invariant under cyclic permutations, the
ML-based PSD estimate in (10) can be written as

Φml
r =

1
M − 1

(

tr
{

ΦxΓ−1} − dH Γ−1ΦxΓ−1d
dH Γ−1d

)

. (18)

Using Φx from (8), the terms in (18) can be simplified to

tr
{

ΦxΓ−1} = ΦsdH Γ−1d + ΦrM, (19)

dH Γ−1ΦxΓ−1d
dH Γ−1d

= ΦsdH Γ−1d + Φr . (20)

Substituting (19) and (20) in (18), it can be observed that when
the true d, Γ, and Φx are known, the ML-based PSD estimate
is equal to the true late reverberation PSD, i.e.,

Φml
r =

1
M − 1

(

ΦsdH Γ−1d + ΦrM − ΦsdH Γ−1d − Φr
)

(21)

= Φr . (22)

Clearly, when the true Γ and Φx are known, the EVD-based
PSD estimates in (16) and (17) are also equal to the true late
reverberation PSD (cf. (15)), i.e.,

Φevd
r,j = Φevd

r,μ = Φr , j = 2, . . . , M. (23)

In summary, when the true RTF vector, spatial coherence
matrix, and speech PSD matrix are known (which is rarely the
case in practice, cf. Section IV), the ML-based and EVD-based
estimators are equivalent and yield the true late reverberation
PSD. It should be noted that this analytical result applies in
practice only to scenarios where the late reverberation is a per-
fect spatially homogeneous sound field and the early and late
reverberation components are perfectly uncorrelated.

IV. IMPACT OF MODELING AND ESTIMATION ERRORS ON THE

ML-BASED AND EVD-BASED PSD ESTIMATORS

The analysis in Section III-C is based on the assumption that
the true RTF vector, spatial coherence matrix, and reverberant
speech PSD matrix are known. In practice however, modeling
and estimation errors typically occur in all quantities. First, the
RTF vector may differ from the true RTF vector, e.g., due to
DOA estimation errors in highly reverberant and noisy sce-
narios [39]–[42]. Second, since the spatial coherence matrix is
typically computed assuming a perfectly diffuse sound field for
the late reverberation whereas this is not the case in practice, it
typically differs from the true spatial coherence matrix. Third,
since the reverberant speech PSD matrix is typically estimated
via recursive averaging of a single realization of the microphone
signals or by subtracting the noise PSD matrix from the reverber-
ant and noisy PSD matrix (cf. Section V), it will also typically
differ from the true reverberant speech PSD matrix. In this sec-
tion, we analyze the impact of modeling and estimation errors
in the RTFs, spatial coherence matrix, and reverberant speech
PSD matrix on the estimation accuracy of the ML-based and
EVD-based PSD estimators. It should again be noted that the
analytical results derived in this section apply in practice only
to scenarios where the late reverberation is a perfect spatially
homogeneous sound field and the early and late reverberation
components are perfectly uncorrelated.

The estimated RTF vector, spatial coherence matrix, and re-
verberant speech PSD matrix are denoted by d̂, Γ̂, and Φ̂x ,
respectively. Using the estimated quantities d̂, Γ̂, and Φ̂x , the
ML-based PSD estimate in (18) is given by

Φ̂ml
r =

1
M − 1

(

tr
{

Φ̂xΓ̂
−1

}

− d̂H Γ̂
−1

Φ̂xΓ̂
−1

d̂

d̂H Γ̂
−1

d̂

)

. (24)

Using Φ̂x and the Cholesky decomposition of Γ̂, i.e.,

Γ̂ = L̂L̂H , (25)

the estimated prewhitened reverberant speech PSD matrix Φ̂
w
x

can be defined similarly to (12), i.e.,

Φ̂
w
x = L̂−1Φ̂xL̂−H , (26)
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such that the EVD-based PSD estimates in (16) and (17) are
given by

Φ̂evd
r,j = λj{Φ̂w

x }, j = 2, . . . , M, (27)

Φ̂evd
r,μ =

1
M − 1

(

tr{Φ̂w
x } − λ1{Φ̂w

x }
)

. (28)

In the presence of modeling and estimation errors in the spa-
tial coherence matrix and reverberant speech PSD matrix, i.e.,
Γ̂ �= Γ and Φ̂x �= Φx , the EVD-based PSD estimates in (27)
and (28) are (typically) not equal, i.e., Φ̂evd

r,j �= Φ̂evd
r,μ . The theo-

retical analysis in this section is conducted for the EVD-based
PSD estimate Φ̂evd

r,μ in (28). In the simulation results in Section V,
the performance also when using the EVD-based PSD estimate
Φ̂evd

r,2 (j = 2) in (27) will be investigated. It should be noted

that Φ̂evd
r,2 ≥ Φ̂evd

r,μ , with equality holding when using M = 2
microphones.

In order to evaluate the estimation accuracy of the PSD esti-
mators in (24) and (28), we define the ML-based and EVD-based
PSD estimation errors ξml

r and ξevd
r,μ as

ξml
r = | Φ̂ml

r − Φr
︸ ︷︷ ︸

δml
r

|, ξevd
r,μ = | Φ̂evd

r,μ − Φr
︸ ︷︷ ︸

δ evd
r , μ

|, (29)

where | · | denotes the absolute value. If δml
r > 0 and δevd

r,μ >
0, the estimators overestimate the true late reverberation PSD,
whereas if δml

r < 0 and δevd
r,μ < 0, the estimators underestimate

the true late reverberation PSD.

A. Impact of Erroneous RTFs

In the following, the estimation accuracy of the ML-based
PSD estimator in (24) is analyzed for erroneous RTFs, i.e.,
d̂ �= d, but perfect knowledge of the spatial coherence matrix
and reverberant speech PSD matrix, i.e., Γ̂ = Γ and Φ̂x = Φx .
Since the EVD-based PSD estimator in (28) does not depend
on the RTF vector, and hence, is not affected by RTF estimation
errors, it always yields the true late reverberation PSD for Γ̂ = Γ
and Φ̂x = Φx (cf. (15)).

The ML-based PSD estimate in (24) using d̂ �= d, Γ̂ = Γ,
and Φ̂x = Φx is given by

Φ̂ml
r =

1
M − 1

(

tr
{

ΦxΓ−1} − d̂H Γ−1ΦxΓ−1 d̂

d̂H Γ−1 d̂

)

. (30)

Substituting Φx from (8), the second term in (30) can be ex-
pressed as

d̂H Γ−1ΦxΓ−1 d̂

d̂H Γ−1 d̂
= Φs

(d̂H Γ−1d)2

d̂H Γ−1 d̂
+ Φr . (31)

Using (19) and (31), the ML-based PSD estimate in (30) can be
written as

Φ̂ml
r =

Φs

M − 1

(

dH Γ−1d − (d̂H Γ−1d)2

d̂H Γ−1 d̂

)

︸ ︷︷ ︸

δml
r

+Φr , (32)

with δml
r the difference between the ML-based PSD estimate

and the true PSD in the presence of RTF estimation errors. In

the following, the Cauchy-Schwarz inequality is used to show
that δml

r ≥ 0 and ξml
r ≥ 0.

In order to simplify the notation, we use the vector dw in (14)
and additionally define the vector d̂w as

d̂w = L−1 d̂, (33)

such that the difference δml
r in (32) can be expressed as

δml
r =

Φs

M − 1
(dH

w dw)(d̂H
w d̂w) − (d̂H

w dw)2

d̂H
w d̂w

. (34)

Based on the Cauchy-Schwarz inequality, it can be shown that1

(dH
w dw)(d̂H

w d̂w) − (d̂H
w dw)2 > 0. (35)

Given (35) and since Φs ≥ 0, M − 1 > 0, and d̂H
w d̂w > 0 (as-

suming that d̂w �= 0, i.e., d̂ �= 0), we conclude that in the pres-
ence of RTF estimation errors

δml
r ≥ 0 and ξml

r ≥ 0, (36)

with equality only holding when the target signal PSD is equal
to zero, i.e., Φs = 0.

In summary, in the presence of RTF estimation errors but per-
fect knowledge of the spatial coherence matrix and reverberant
speech PSD matrix, the ML-based PSD estimate is larger than or
equal to the true late reverberation PSD, whereas the EVD-based
PSD estimate is obviously still equal to the true late reverber-
ation PSD. Overestimation of the true late reverberation PSD
will lead to undesired speech distortion when used in a speech
enhancement algorithm, e.g., a postfilter. This derivation can
hence be valuable in practice to decide against using the ML-
based PSD estimate in applications where the RTF is difficult
to estimate accurately and speech distortion is unacceptable.

B. Impact of Modeling and Estimation Errors in All Quantities

In the following, the estimation accuracy of the ML-based
and EVD-based PSD estimators in (24) and (28) is analyzed in
the presence of modeling and estimation errors in the RTFs, spa-
tial coherence matrix, and reverberant speech PSD matrix, i.e.,
d̂ �= d, Γ̂ �= Γ, and Φ̂x �= Φx . Note that the analytical results
derived in this section also hold for scenarios when modeling
and estimation errors occur only in one (or two) of the required
quantities, with the remaining quantities (or quantity) perfectly
estimated. In realistic acoustic scenarios however, modeling and
estimation errors typically occur in all quantities.

Based on the Cholesky decomposition of Γ̂ in (25) and since
the trace is invariant under cyclic permutations, the first term in
the ML-based estimate in (24) can be written as

tr{Φ̂xΓ̂
−1} = tr{L̂−1Φ̂xL̂−H } = tr{Φ̂w

x }. (37)

In order to simplify the notation, we define the vector û as

û = L̂−1 d̂, (38)

1It should be noted that since the RTF vectors d and d̂ are linearly in-
dependent, the vectors dw and d̂w are also linearly independent, hence, the
Cauchy-Schwarz inequality in (35) is sharp.
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and express the second term in (24) as

d̂H Γ̂
−1

Φ̂xΓ̂
−1

d̂

d̂H Γ̂
−1

d̂
=

ûH L̂−1Φ̂xL̂−H û
ûH û

=
ûH Φ̂

w
x û

ûH û
. (39)

Substituting (37) and (39) in (24), the ML-based PSD estimate in
the presence of modeling and estimation errors in all quantities
can be written as

Φ̂ml
r =

1
M − 1

(

tr{Φ̂w
x } −

ûH Φ̂
w
x û

ûH û

)

. (40)

It is well known that the Rayleigh quotient of a matrix is bounded
by its maximum eigenvalue, i.e.,

ûH Φ̂
w
x û

ûH û
≤ λ1{Φ̂w

x }, (41)

with equality only holding when the vector û corresponds to
the (scaled) eigenvector of Φ̂

w
x associated with its largest

eigenvalue λ1{Φ̂w
x }. By comparing the PSD estimates in (28)

and (40), it can now be observed that for erroneous RTFs, spatial
coherence matrix, and reverberant speech PSD matrix, the ML-
based PSD estimate is larger than or equal to the EVD-based
PSD estimate, i.e.,

Φ̂ml
r ≥ Φ̂evd

r,μ . (42)

In order to compare the ML-based and EVD-based PSD esti-
mation errors ξml

r and ξevd
r,μ , we use (42) and distinguish between

the following cases:
� If the true late reverberation PSD is overestimated by both

estimators, i.e., if δml
r > 0 and δevd

r,μ > 0, the ML-based PSD
estimation error is larger than or equal to the EVD-based
PSD estimation error, i.e., ξml

r ≥ ξevd
r,μ . As already men-

tioned, overestimation of the true late reverberation PSD
is particularly detrimental to the speech quality, since it
results in speech distortion.

� If the true late reverberation PSD is underestimated by both
estimators, i.e., if δml

r < 0 and δevd
r,μ < 0, the ML-based PSD

estimation error is smaller than or equal to the EVD-based
PSD estimation error, i.e., ξml

r ≤ ξevd
r,μ . Underestimation of

the true late reverberation PSD results in an unnecessary
amount of residual reverberation in the output signal of
the speech enhancement algorithms, while preserving the
speech quality.

� If the true late reverberation PSD is overestimated by the
ML-based estimator but underestimated by the EVD-based
estimator, i.e., if δml

r > 0 and δevd
r,μ < 0, no conclusions can

be drawn on the PSD estimation errors ξml
r and ξevd

r,μ .
These derivations can be valuable in practice to decide 1) to

use the ML-based PSD estimate in applications where late re-
verberation suppression is more important than speech quality
preservation, or 2) to use the EVD-based PSD estimate in ap-
plications where speech quality preservation is more important
than late reverberation suppression.

C. Computational Complexity

In this section, we provide some insights on the computational
complexity of the ML-based and EVD-based PSD estimators.

The computational complexity of the ML-based PSD estimator
in (10) is dominated by matrix multiplication, for which the best
known upper bound is O(M 2.373) [43]. In contrast, the dom-
inating operation for the EVD-based PSD estimators in (16)
and (17) is the computation of the eigenvalues using an EVD.
Although many algorithms exist for computing the EVD, we
consider the QR decomposition-based algorithm [44], which is
one of the most widely used algorithms to compute eigenvalues.
The complexity of the QR decomposition-based algorithm for
Hermitian matrices is O(M 3) [45], also when the matrix is first
transformed into real tridiagonal form using Householder reflec-
tions [44]. However, it should be noted that the EVD-based PSD
estimators in (16) or (17) require only a single eigenvalue, for
which more efficient algorithms exist, e.g., based on subspace
tracking [46].

V. SIMULATION RESULTS

In this section, the impact of modeling and estimation errors in
the RTFs, spatial coherence matrix, and reverberant speech PSD
matrix on the ML-based and EVD-based PSD estimates is exper-
imentally validated. In addition, the performance of the MWF
using the considered PSD estimators is compared for several
realistic acoustic scenarios with and without background noise.
In Section V-A the considered acoustic systems, algorithmic
settings, and instrumental performance measures are presented.
In Section V-B the analytical results of Sections III-C and IV are
experimentally validated. For noise-free scenarios, Section V-C
compares the dereverberation performance of the MWF using
the ML-based and EVD-based PSD estimators when the true
RTF vector is known, whereas Section V-D compares the dere-
verberation performance of the MWF using the ML-based and
EVD-based PSD estimators in the presence of RTF estima-
tion errors. For noisy scenarios, the dereverberation and noise
reduction performance of the MWF using the ML-based and
EVD-based PSD estimators is investigated in Section V-E. The
computation of the required quantities (RTF vector, spatial co-
herence matrix, reverberant speech PSD matrix) as well as the
MWF implementation is presented at the beginning of each
section.

A. Acoustic Systems, Algorithmic Settings, and Instrumental
Performance Measures

We have considered two acoustic systems with a single speech
source and M ∈ {2, 4} microphones. The first acoustic sys-
tem AS1 consists of a circular microphone array with a radius
of 10 cm [47] and the second acoustic system AS2 consists
of a linear microphone array with an inter-microphone dis-
tance of 6 cm [48]. Table I presents the room reverberation
time T60 , the DOA θ of the speech source, and the direct-to-
reverberation ratio (DRR) for both considered acoustic systems.
The sampling frequency is fs = 16 kHz. The speech compo-
nents are generated by convolving a 38 s long clean speech
signal with the measured room impulse responses (RIRs). The
noise components either consist of non-stationary diffuse bab-
ble noise, representing background noise typically encoun-
tered in large crowded rooms, or stationary uncorrelated noise,
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TABLE I
CHARACTERISTICS OF THE CONSIDERED ACOUSTIC SYSTEMS

Acoustic system T60 [s] θ DRR [dB]

AS1 0.73 45◦ 1.43
AS2 1.25 −15◦ −0.05

representing e.g. microphone self-noise. The speech-plus-noise
signal is preceded by a 1 s long noise-only segment. The signals
are processed in the STFT domain using a weighted overlap-add
framework with a Hamming window, a frame size N = 1024
samples, and an overlap of 75%. The target signal is defined
as the direct component only, such that the RTF vector can be
computed based on the DOA of the speech source. The first
microphone is arbitrarily selected as the reference microphone.

In order to evaluate the performance, we use the per-
ceptual evaluation of speech quality (PESQ) measure [49],
the frequency-weighted segmental signal-to-noise ratio
(fSNR) [50], the cepstral distance (CD) [51], and the short-time
objective intelligibility measure (STOI) [52]. These instrumen-
tal performance measures are intrusive measures generating a
similarity score between a test signal and a reference signal. The
reference signal used in this paper is the clean speech signal.
The improvement in these instrumental measures, i.e., ΔPESQ,
ΔfSNR, ΔCD, and ΔSTOI, is computed as the difference be-
tween the PESQ, fSNR, CD, and STOI values of the output
signal and the reference microphone signal. Note that a positive
ΔPESQ, ΔfSNR, and ΔSTOI and a negative ΔCD indicate a
performance improvement.

B. Validation of Analytical Results

In this section, the analytical results of Sections III-C,
IV-A, and IV-B are experimentally validated for the exemplary
acoustic system AS1 with M = 4 microphones. It is experi-
mentally validated that when the true RTF vector, spatial co-
herence matrix, and reverberant speech PSD matrix are known,
the ML-based and EVD-based PSD estimates are equal to the
true late reverberation PSD. In addition, it is experimentally
validated that for erroneous RTFs but perfect knowledge of the
spatial coherence matrix and reverberant speech PSD matrix,
the ML-based PSD estimate is larger than or equal to the true
late reverberation PSD, whereas the EVD-based PSD estimate
is still equal to the true late reverberation PSD. Finally, it is
experimentally validated that in the presence of modeling and
estimation errors in all quantities, the ML-based PSD estimate
is larger than or equal to the EVD-based PSD estimate.

In this section, the true quantities d, Γ, and Φx are computed
as follows. The true RTF vector d is computed using the true
DOA θ = 45◦ of the speech source as

d = [1 e−j2πf τ2 (θ) . . . e−j2πf τM (θ) ]T , (43)

with f the frequency and τm (θ) the relative time delay of arrival
between the m-th microphone and the 1st (reference) micro-
phone. The true spatial coherence matrix Γ is computed from

the late reverberation components as

Γp,q (k) =
∑L−1

l=0 Xr,p(k, l)X∗
r,q (k, l)

√
(
∑L−1

l=0 |Xr,p(k, l)|2
) (

∑L−1
l=0 |Xr,q (k, l)|2

)
,

(44)

with Γp,q (k) the {p, q}-th element of Γ(k), L the total number
of time frames, and the late reverberation components generated
by convolving the clean speech signal with the late reverberant
tail of the measured RIRs (and transforming the resulting signal
to the STFT domain). Using d and Γ, the true reverberant speech
PSD matrix Φx is computed as

Φx = ΦsddH + ΦrΓ, (45)

where the PSDs Φs and Φr are computed from the target signal
Xe,1 and the late reverberation component Xr,1 using recursive
averaging with a smoothing factor α as

Φs(k, l) = α|Xe,1(k, l)|2 + (1 − α)Φs(k, l − 1), (46)

Φr(k, l) = α|Xr,1(k, l)|2 + (1 − α)Φr(k, l − 1). (47)

The target signal Xe,1 is generated by convolving the clean
speech signal with the direct part of the RIR (and transforming
the resulting signal to the STFT domain). The used smoothing
factor is α = 0.67, corresponding to a time constant of 40 ms.
It should be noted that since the objective of this section is only
to validate the analytical results, the true Φx is computed as
in (45) in order to ensure that (8) perfectly holds.

The estimated quantities d̂, Γ̂, and Φ̂x are computed as fol-
lows. The estimated RTF vector d̂ is computed using an exem-
plary erroneous DOA θ̂ = 30◦. The estimated spatial coherence
matrix Γ̂ is computed assuming a spherically diffuse sound field
as [38]

Γ̂p,q (k) = sinc
(

2πkfs

Nc
rpq

)

, (48)

with c = 340 m/s the speed of sound and rpq the distance be-
tween the p-th and q-th microphone. The reverberant speech
PSD matrix Φ̂x is estimated from the received microphone sig-
nals using recursive averaging as

Φ̂x(k, l) = αX(k, l)XH (k, l) + (1 − α)Φ̂x(k, l − 1). (49)

Equivalence of the ML-based and EVD-based PSD estima-
tors (d̂ = d, Γ̂ = Γ, Φ̂x = Φx ): Using the true RTF vector d
in (43), the true spatial coherence matrix Γ in (44), and the true
reverberant speech PSD matrix Φx in (45), the late reverbera-
tion PSD is estimated using the ML-based estimator in (24) and
the EVD-based PSD estimator in (28). Fig. 2 depicts the true
late reverberation PSD Φr , the ML-based PSD estimate Φ̂ml

r ,
and the EVD-based PSD estimate Φ̂evd

r,μ averaged over all time
frames. Obviously, in this case both PSD estimates are equal to
the true late reverberation PSD, confirming the derivations in
Section III-C.

Impact of erroneous RTFs (d̂ �= d, Γ̂ = Γ, Φ̂x = Φx ): Using
the estimated erroneous RTF vector d̂, the true spatial coherence
matrix Γ in (44), and the true reverberant speech PSD matrix
Φx in (45), the late reverberation PSD is estimated using the
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Fig. 2. True and estimated late reverberation PSDs averaged over all time
frames when the true RTF vector, spatial coherence matrix, and reverberant
speech PSD matrix are known (AS1 , M = 4).

Fig. 3. Difference between the ML-based PSD estimate and the true late rever-
beration PSD in the presence of RTF estimation errors but perfect knowledge of
the spatial coherence matrix and reverberant speech PSD matrix (AS1 , M = 4).

ML-based estimator in (24) and the EVD-based PSD estimator
in (28). Clearly, the EVD-based estimator is not affected by RTF
estimation errors and still yields the true late reverberation PSD
Φr as in Fig. 2. Fig. 3 illustrates the difference between the ML-
based PSD estimate and the true late reverberation PSD in dB,
i.e., 10 log10 Φ̂ml

r − 10 log10 Φr , for all time-frequency bins. For
the sake of clarity, the maximum difference has been limited to
20 dB. It can be observed that in the presence of RTF estimation
errors, the difference between the ML-based estimate and the
true late reverberation PSD is always larger than or equal to 0,
confirming the derivations in Section IV-A. For the considered
scenario, it appears that the difference between the ML-based
estimate and the true late reverberation PSD is larger at higher
frequencies.

Impact of errors in all quantities (d̂ �= d, Γ̂ �= Γ, Φ̂x �= Φx ):
Using the estimated erroneous RTF vector d̂, the estimated spa-
tial coherence matrix Γ̂ in (48), and the estimated reverberant
speech PSD matrix Φ̂x in (49), the late reverberation PSD is
estimated using the ML-based estimator in (24) and the EVD-
based estimator in (28). Fig. 4 illustrates the difference be-
tween the ML-based and EVD-based PSD estimates in dB, i.e.,
10 log10 Φ̂ml

r − 10 log10 Φ̂evd
r,μ , for all time-frequency bins. For

the sake of clarity, the maximum difference has been limited
to 20 dB. It can be observed that in the presence of modeling
and estimation errors in all quantities, the ML-based estimate is
larger than or equal to the EVD-based PSD estimate, confirming
the derivations in Section IV-B.

C. Dereverberation Performance for Perfectly Estimated RTFs

In this section, the dereverberation performance of the MWF
using different late reverberation PSD estimators is investigated

Fig. 4. Difference between the ML-based and EVD-based PSD estimates in
the presence of modeling and estimation errors in all quantities (AS1 , M = 4).

for the noise-free case assuming that the RTF vector is per-
fectly estimated, i.e., assuming that the true DOA of the speech
source is known. Both acoustic systems and configurations are
considered.

The MWF is implemented as an MVDR beamformer wMVDR

followed by a single-channel Wiener postfilter G applied to the
MVDR output, i.e.,

wMWF =
Γ̂
−1

d̂

d̂H Γ̂
−1

d̂
︸ ︷︷ ︸

wMVDR

Φ̂s

Φ̂s + Φ̂r

d̂H Γ̂
−1

d̂
︸ ︷︷ ︸

G

, (50)

with Γ̂ the diffuse spatial coherence matrix computed as in (48),
d̂ = d the RTF vector computed using the true DOA of the
speech source, Φ̂r the estimated late reverberation PSD, and Φ̂s
the target signal PSD estimated using the decision directed ap-
proach [53]. Using d̂ = d, Γ̂, and Φ̂x estimated using recursive
averaging as in (49), three different estimates are considered for
the late reverberation PSD Φ̂r , i.e., the ML-based PSD estimate
Φ̂ml

r in (24), the EVD-based PSD estimate Φ̂evd
r,μ in (28), and

the EVD-based PSD estimate Φ̂evd
r,2 (j = 2) in (27). Note that

Φ̂evd
r,2 ≥ Φ̂evd

r,μ , with equality holding for M = 2 microphones.
Figs. 5 and 6 depict the ΔPESQ, ΔfSNR, ΔCD, and ΔSTOI

values obtained using the MWF with different PSD estimators
for both acoustic systems and configurations. For complete-
ness, the performance of the MVDR beamformer implemented
as in (50) is also depicted. As expected, the performance of the
MVDR beamformer and the MWF improves with increasing
number of microphones for both acoustic systems. In addition,
for both acoustic systems it can be observed that the MWF
using any of the considered late reverberation PSD estimates
improves the performance in comparison to the MVDR beam-
former. When comparing the performance of the MWF for the
different late reverberation PSD estimates, it can be observed
that the performance is in general rather similar independently of
the used PSD estimate. In terms of ΔPESQ, the ML-based PSD
estimate Φ̂ml

r yields a slightly better performance for acoustic
system AS1 , whereas the EVD-based PSD estimate Φ̂evd

r,2 yields
a slightly better performance for acoustic system AS2 . In terms
of ΔfSNR, ΔCD, and ΔSTOI, the EVD-based PSD estimate
Φ̂evd

r,μ yields a slightly better performance than Φ̂ml
r and Φ̂evd

r,2 for
both acoustic systems.

In summary, these simulation results show the applicability
of the EVD-based PSD estimator for dereverberation, yielding
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Fig. 5. Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS1 using the true RTF vector: (a) ΔPESQ, (b) ΔfSNR,
(c) ΔCD, and (d) ΔSTOI.

Fig. 6. Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS2 using the true RTF vector: (a) ΔPESQ, (b) ΔfSNR,
(c) ΔCD, and (d) ΔSTOI.

Fig. 7. Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS1 with M = 4 microphones using erroneous RTF vectors:
(a) ΔPESQ, (b) ΔfSNR, (c) ΔCD, and (d) ΔSTOI.

a similar or slightly better performance than the state-of-the-art
ML-based PSD estimator when the true RTFs are known.

D. Dereverberation Performance for Erroneous RTFs

In this section, the dereverberation performance of the MWF
using different late reverberation PSD estimators is investigated
for the noise-free case assuming that the RTF vector is erro-
neously estimated, i.e., using an erroneous DOA of the speech
source. We consider both acoustic systems and M = 4 micro-
phones. The MWF is implemented as in (50), with the estimated
RTF vector d̂ computed based on several erroneous DOAs

θ̂ ∈ {−90◦, −75◦, . . . , 90◦}, (51)

and the remaining quantities computed as in Section V-C. It
should be noted that independently of the estimator used for

the late reverberation PSD, the MWF implemented as in (50)
is sensitive to RTF estimation errors due to the sensitivity of
the MVDR beamformer to RTF estimation errors. However, as
will be shown, a significantly higher sensitivity of the MWF
is observed when the late reverberation PSD estimator is also
affected by RTF estimation errors.

Figs. 7 and 8 depict the ΔPESQ, ΔfSNR, ΔCD, and ΔSTOI
values obtained using the MWF with different late reverberation
PSD estimators for both acoustic systems in the presence of RTF
estimation errors. In addition, the performance obtained using
the true RTF vector (i.e., θ̂ = 45◦ for acoustic system AS1 and
θ̂ = −15◦ for acoustic system AS2) is depicted. For complete-
ness, the performance of the MVDR beamformer implemented
as in (50) is also presented. As expected, it can be observed that
the performance of the MVDR beamformer deteriorates in the
presence of RTF estimation errors in terms of all instrumental
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Fig. 8. Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS2 with M = 4 microphones using erroneous RTF vectors:
(a) ΔPESQ, (b) ΔfSNR, (c) ΔCD, and (d) ΔSTOI.

performance measures. Since the MWF is equivalent to an
MVDR beamformer followed by a single-channel Wiener
postfilter, cf. (50), it can be observed that RTF estimation
errors yield a performance deterioration also for the MWF
using any of the considered late reverberation PSD estimates.
However, since the ML-based PSD estimate additionally
relies on the RTF vector, Figs. 7 and 8 clearly show that
the performance of the MWF using the ML-based PSD
estimate is substantially lower than using any of the proposed
EVD-based PSD estimates. For large DOA estimation errors,
the performance of the MWF using the ML-based PSD
estimate can even be worse than the performance of the MVDR
beamformer, illustrating that PSD estimation errors arising
due to RTF estimation errors have a large impact on the MWF
performance. When comparing the performance of the MWF
using the EVD-based PSD estimates Φ̂evd

r,μ and Φ̂evd
r,2 , Figs. 7

and 8 show that the performance of the MWF is rather similar
independently of the EVD-based PSD estimate used. In terms of
ΔPESQ, both PSD estimates achieve a very similar perfor-
mance for acoustic system AS1 , while Φ̂evd

r,μ appears to achieve

a slightly better performance than Φ̂evd
r,2 for acoustic system AS2

(particularly for θ̂ ∈ {45◦, . . . , 90◦}). In terms of ΔfSNR and
ΔCD, Φ̂evd

r,μ appears to achieve a slightly better performance

than Φ̂evd
r,2 for both acoustic systems. In terms of ΔSTOI, both

PSD estimates achieve a very similar performance for both
acoustic systems.

In summary, the presented simulation results show that com-
pared to the ML-based PSD estimator, the EVD-based PSD
estimator yields a similar dereverberation performance when
the true RTF vector is known and a significantly better derever-
beration performance in the presence of RTF estimation errors,
making the EVD-based PSD estimator an advantageous PSD
estimator to use in realistic reverberant scenarios.

E. Dereverberation and Noise Reduction Performance

In this section, the dereverberation and noise reduction per-
formance of the MWF using the ML-based and EVD-based
PSD estimates is investigated for two different additive noise
scenarios, i.e., non-stationary spherically diffuse babble noise
simulated using [54] and stationary temporally and spatially
uncorrelated noise. The broadband reverberant signal-to-noise

ratio (RSNR) for both considered noisy scenarios is varied
between 10 dB and 50 dB. We consider acoustic system AS1
with M = 4 microphones and compute the RTF vector using
the true DOA θ = 45◦ of the speech source as in (43).

For the diffuse noise scenario, the ML-based and EVD-based
PSD estimators can be readily used to estimate the joint late
reverberation and noise PSD by prewhitening the noisy PSD
matrix Φ̂y , such that the MWF can be implemented as in the
noise-free scenario in Section V-C. The PSD matrix Φ̂y can be
estimated from the received microphone signals using recursive
averaging, similarly as in (49). The MWF can then be imple-
mented as in (50) using the estimated joint late reverberation
and noise PSD, the diffuse spatial coherence matrix Γ̂ in (48)
(modeling both late reverberation and noise), and the RTF vector
d̂ computed using the true DOA.

For the uncorrelated noise scenario, the MWF is implemented
as

wMWF =
(Φ̂rΓ̂ + Φ̂v)

−1
d̂

d̂H (Φ̂rΓ̂ + Φ̂v)−1 d̂
︸ ︷︷ ︸

wMVDR

Φ̂s

Φ̂s + (d̂H (Φ̂rΓ̂ + Φ̂v)−1 d̂)−1
︸ ︷︷ ︸

G

,

(52)

with Φ̂v the estimated noise PSD matrix. Assuming stationary
noise, Φ̂v is estimated from Lv noise-only frames (correspond-
ing to 1 s) as

Φ̂v(k) =
1
Lv

Lv −1
∑

l=0

V(k, l)VH (k, l). (53)

Furthermore, the PSD matrix Φ̂x required for the late reverber-
ation PSD estimators is computed as

Φ̂x = Φ̂y − Φ̂v . (54)

Since the reverberant speech PSD matrix in (54) may not be pos-
itive semi-definite, particularly at low input RSNRs, the matrix
Φ̂x is forced to be positive semi-definite by setting its nega-
tive eigenvalues to 0. The MWF is then implemented as in (52)
using the estimated late reverberation PSD, the diffuse spatial
coherence matrix Γ̂ in (48), the noise PSD matrix Φ̂v in (53),
and the RTF vector d̂ computed using the true DOA.

For different broadband RSNRs, Figs. 9 and 10 depict the
ΔPESQ, ΔfSNR, ΔCD, and ΔSTOI values obtained using the
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Fig. 9. Dereverberation and noise reduction performance of the MWF in the presence of non-stationary diffuse babble noise (AS1 , M = 4).

Fig. 10. Dereverberation and noise reduction performance of the MWF in the presence of stationary uncorrelated noise (AS1 , M = 4).

MWF with the ML-based and EVD-based PSD estimates for the
diffuse and uncorrelated noise scenarios, respectively. It can be
observed that in terms of all instrumental performance measures,
all PSD estimators yield a similarly large dereverberation and
noise reduction performance. In terms of ΔPESQ, the ML-based
PSD estimate generally yields a slightly better performance than
the EVD-based PSD estimates. In terms of ΔfSNR, ΔCD, and
ΔSTOI, the EVD-based PSD estimate Φ̂evd

r,μ consistently yields

a slightly better performance than Φ̂ml
r and Φ̂evd

r,2 .
In summary, these simulation results show the applicability of

the EVD-based PSD estimator in realistic reverberant and noisy
scenarios, yielding a similar or slightly better performance than
the state-of-the-art ML-based PSD estimator when the true RTFs
are known.

VI. CONCLUSION

In this paper, the recently proposed EVD-based late rever-
beration PSD estimator has been analyzed and its estimation
accuracy has been analytically compared to a state-of-the-art
ML-based PSD estimator. It has been shown that when the
true RTFs, late reverberation spatial coherence matrix, and re-
verberant speech PSD matrix are known, the ML-based and
EVD-based PSD estimators are equivalent and yield the true
late reverberation PSD. Furthermore, it has been shown that in
the presence of RTF estimation errors but perfect knowledge of
the spatial coherence matrix and reverberant speech PSD matrix,
the ML-based PSD estimate is larger than or equal to the true
late reverberation PSD, whereas the EVD-based PSD estimate is
still equal to the true late reverberation PSD. Finally, it has been
shown that in the presence of modeling and estimation errors in
all quantities (which is typically the case in practice), the ML-
based PSD estimate is larger than or equal to the EVD-based
PSD estimate. Simulation results for several realistic reverber-
ant acoustic scenarios have demonstrated that compared to the

ML-based PSD estimator, the EVD-based PSD estimator yields
a similar dereverberation performance when the true RTF vector
is known and a significantly better dereverberation performance
in the presence of RTF estimation errors. In addition, it has been
experimentally validated that the EVD-based PSD estimator can
also be successfully used in reverberant and noisy scenarios, as
long as an estimate of the reverberant speech PSD matrix can
be obtained. Conveniently, if the noise can also be modeled
as a diffuse sound field, an estimate of the reverberant speech
PSD matrix is not required and the EVD-based estimator can
be readily used to estimate the joint late reverberation and noise
PSD.
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