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Abstract—To identify the attended speaker from single-trial EEG
recordings in an acoustic scenario with two competing speakers,
an auditory attention decoding (AAD) method has recently been
proposed. The AAD method requires the clean speech signals
of both the attended and the unattended speaker as reference
signals for decoding. However, in practice only the binaural
signals, containing several undesired acoustic components (rever-
beration, background noise and interference), and influenced by
anechoic head-related transfer functions (HRTFs), are available.
To generate appropriate reference signals for decoding from the
binaural signals, it is important to understand the impact of these
acoustic components on the AAD performance. In this paper, we
investigate this impact for decoding several acoustic conditions
(anechoic, reverberant, noisy, and reverberant-noisy) by using
simulated speech signals in which different acoustic components
have been reduced. The experimental results show that for
obtaining a good decoding performance the joint suppression of
reverberation, background noise and interference as undesired
acoustic components is of great importance.

Keywords—auditory attention decoding; noisy and reverberant
signal; speech envelope; noise reduction; dereverberation; EEG
signal; brain computer interface

I. INTRODUCTION

During the last decades significant advances in acoustic
signal processing algorithms have been achieved to improve
speech intelligibility for hearing-impaired listeners. Neverthe-
less understanding speech in complex listening conditions, par-
ticularly in multi-talker acoustic scenarios, is still a challenging
problem since many acoustic signal processing algorithms need
to rely on predefined assumptions about the target speaker
to be enhanced. For example, it is typically assumed that
the target speaker is in front of the hearing aid user or is
the loudest speaker. As such assumptions are mostly violated
in real-world conditions, the performance of these algorithms
may dramatically decrease. Therefore, identifying the target
speaker in hearing aid applications is an essential ingredient
to successfully improve speech understanding.

Recently, an auditory attention decoding (AAD) method
has been proposed for identifying the attended speaker from
single-trial EEG recordings [1]. The AAD method aims to
reconstruct the attended speech envelope from EEG recordings
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using a spatio-temporal filter. During the training step, the filter
coefficients are computed by minimizing the least-squares error
between the attended speech envelope and the reconstructed
envelope. In the decoding step, the clean speech signals of
both the attended and the unattended speaker are required
as reference signals. However, in practice only the binaural
signals, containing several undesired acoustic components (re-
verberation, background noise and interference), and influenced
by head-related transfer functions (HRTFs), are available. In
[2], [3] it was shown that the considered AAD method was to
some extent robust to (simulated) residual noise at the output
of a source separation algorithm, although it should be realized
that this noise was not presented to the listeners during the
EEG recordings. The feasibility of AAD using unprocessed, i.e.
reverberant and noisy, binaural signals as reference signals was
shown in [4], although the obtained decoding performance was
significantly lower than when using the clean speech signals
as reference signals. In this paper we study the case where
noisy and reverberant binaural signals are presented to listeners
during EEG recordings while using processed binaural signals
as reference signals for decoding.

Many acoustic signal processing algorithms are available
to reduce background noise, reverberation and interference
sources [5], [6]. However, for most algorithms there is typically
a trade-off between reducing each of these undesired acoustic
components [7]. In order to use the most appropriate acoustic
signal processing strategy for generating reference signals,
the impact of reducing each undesired acoustic component
on the AAD performance needs to be determined. In this
paper we address this issue for different acoustic conditions
(anechoic, reverberant, noisy, and reverberant-noisy) by using
simulated speech signals in which different undesired acoustic
components have been reduced.

For an acoustic scenario comprising two competing speakers
and diffuse noise at different SNRs and reverberation times, 64-
channel EEG responses with 18 participants were recorded. The
experimental results show that in order to obtain a sufficient
decoding performance the joint suppression of reverberation,
background noise and interference as undesired acoustic com-
ponents is of great importance.

II. AUDITORY ATTENTION DECODING

In this section the least-squares method used for decoding
auditory attention is presented. In Section II-A the different
acoustic conditions used for recording EEG responses are
defined. In Section II-B the training and evaluation steps are
discussed.
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A. Acoustic scenario

Consider an acoustic scenario comprising two competing
speakers and background noise in a reverberant environment,
where the ongoing EEG responses of a listener to these acoustic
stimuli are recorded (cf. Fig. 1). The binaural signals at the
ears hence consist of a mixture of both clean speech signals
sj [n] , with j = a denoting the attended speaker and j = u
denoting the unattended speaker, incorporating head filtering
effect, reverberation and background noise. The signal at the
m-the ear ym [n], with m = 1 denoting the left ear and m = 2
denoting the right ear, at the discrete time index n can be
written as

ym [n] =
∑

j=a, u

hjm [n] ∗ sj [n]︸ ︷︷ ︸
xj
m[n]

+ vm [n] , (1)

with hjm [n] the acoustic impulse response between the j-th
speaker and the m-th ear, ∗ the convolution operation, xjm [n]
the reverberant speech signal of the j-th speaker at the m-th ear,
and vm [n] the background noise component at the m-th ear.
The reverberant speech signal xjm [n] consists of the anechoic
speech signal xj,anm [n] (encompassing the head filtering effect
with the anechoic HRTF [8]) and a reverberant component. For
notational conciseness the time index n will be omitted in the
remainder of this paper.

For the EEG recordings we will consider four differ-
ent acoustic conditions, i.e. anechoic, reverberant, noisy and
reverberant-noisy. Depending on the acoustic condition, the
signal at the m-th ear obviously comprises different compo-
nents, i.e. reverberation, background noise, and interference
(for the attended speech signal the unattended speech signal is
defined as interference, while for the unattended speech signal
the attended speech signal is defined as interference). For the
anechoic condition, it is referred to as anechoic speech signal
with interference and equal to

xanm =
∑

j=a, u

xj,anm , (2)

for the reverberant condition it is referred to as reverberant
speech signal with interference and equal to

xm =
∑

j=a, u

xjm, (3)

for the noisy condition it is referred to as anechoic-noisy speech
signal with interference and equal to

xnom = xanm + vm, (4)

and for the reverberant-noisy condition it is referred to as
reverberant-noisy speech signal with interference and equal to

ym = xm + vm. (5)

For investigating the impact of reducing undesired acoustic
components on the AAD performance we will consider several

Figure 1. The binaural acoustic configuration used for stimuli presentation in
different acoustic conditions.

Table I
SIGNALS USED FOR EXPERIMENTAL ANALYSIS.

Signal Definition
Reverberant-noisy speech signal with interference ym

Reverberant speech signal with interference xm

Anechoic-noisy speech signal with interference xno
m

Anechoic speech signal with interference xan
m

Reverberant-noisy speech signal xj,rn
m

Anechoic-noisy speech signal xj,no
m

Reverberant speech signal xj
m

Anechoic speech signal xj,an
m

Clean speech signal sj

simulated signals, i.e. the reverberant speech signal with inter-
ference xm in which noise has been reduced, the anechoic-noisy
speech signal with interference xnom in which reverberation has
been reduced, the anechoic speech signal with interference xanm
in which noise and reverberation have jointly been reduced,
the reverberant-noisy speech signal xj,rnm = xjm + vm in which
interference has been reduced, the anechoic-noisy speech signal
xj,nom in which interference and reverberation have jointly been
reduced, the reverberant speech signal xjm in which interference
and noise have jointly been reduced, the anechoic speech
signal xj,anm in which interference, noise and reverberation have
jointly been reduced, and the clean speech signal sj in which
interference, noise and reverberation have jointly been reduced
and the head filtering effect has been canceled. A summary of
all discussed signals is shown in Table I.

It should be noted that in the experiments (cf. Section III)
the positions of the attended and the unattended speaker are not
always the same, i.e. sometimes the attended speaker is on the
left side of the listener (and the unattended speaker is on the
right side), while sometimes the attended speaker is on the right
side (and the unattended speaker is on the left side). Due to the
head filtering effect this implies that the broadband energy ratio
between the attended speech component and the unattended
speech component at the side of the attended speakers always
larger than at the side of the unattended speaker. Therefore,
we will consider the speech signals at the side of the attended
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speaker as the attended speech signals and the speech signals
at the side of the unattended speaker as the unattended speech
signals.

B. Training step

For the training step, the attended speaker is assumed to be
known and the attended speech envelope ea [i], with i = 1 . . . I
the sub-sampled time index, is used for filter training. The
attended clean speech signal sa is typically used for computing
the attended speech envelope ea [i].

The AAD method proposed in [1] uses a spatio-temporal
filter to estimate the attended speech envelope êa [i] from C-
channel EEG recordings rc [i] (c = 1 . . . C) as

êa [i] =

C∑
c=1

L−1∑
l=0

wc,l rc [i+ ∆ + l] , (6)

with wc,l the l-th filter coefficient in the c-th channel, L the
number of filter coefficients per channel, and ∆ modeling the
latency of the attentional effect in the EEG responses to the
speech stimuli. In vector notation, (6) can be written as

êa [i] = wT r [i] , (7)

with
w =

[
wT

1 wT
2 . . .w

T
C

]T
, (8)

wc = [wc,0 wc,1 . . . wc,L−1]
T
, (9)

r [i] =
[
rT1 [i] rT2 [i] . . . rTC [i]

]T
, (10)

rc [i] = [rc [i+ ∆] rc [i+ ∆ + 1] . . . rc [i+ ∆ + L− 1]]
T
,

(11)
with (.)

T the transpose operation. During the training step,
the filter w is computed by minimizing the least-squares error
between the attended speech envelope ea [i] (assumed to be
known) and the reconstructed envelope êa [i], regularized with
the squared l2-norm of the derivatives of the filter coefficients
to avoid over-fitting [1], i.e.

J (w) =
1

I

I∑
i=1

(
ea [i]−wT r [i]

)2
+ βwTDw, (12)

with

D =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 , (13)

and β the regularization parameter. The filter minimizing the
regularized cost function in (12) is equal to [2], [9]

w = (Q + βD)
−1

q, (14)

with the correlation matrix Q and the the cross-correlation
vector q equal to

Q =
1

I

I∑
i=1

(
r [i ] rT [i ]

)
, q =

1

I

I∑
i=1

(r [i ] ea [i ]). (15)

For each acoustic condition, the complete set of EEG recordings
is segmented into Ttr trials. The correlation matrix and the
cross-correlation vector corresponding to trial t are denoted as
Qt and qt, respectively, where t denotes the trial index. The
filter to decode trial t is computed as

w̃t =
(
Q̃t + βD

)−1

q̃t, (16)

with Q̃t the average correlation matrix of trial t, computed by
averaging all correlation matrices except Qt (known as leave-
one-out averaging), and q̃t the average cross-correlation vector
of trial t, computed by averaging all cross-correlation vectors
except qt. Since EEG responses are recorded for different
acoustic conditions, in this paper we will consider several
training conditions (tc) for computing the filter w̃t, i.e. tc = an
using EEG responses in the anechoic condition, tc = re using
EEG responses in the reverberant condition, tc = no using
EEG responses in the noisy condition, and tc = rn using EEG
responses in the reverberant-noisy condition. For all considered
training conditions, we will consider the anechoic attended
speech signal as training signal.

C. Evaluation step

To decode to which speaker a listener attended during trial
t, first an estimate of the the attended speech envelope êat is
computed using the (trained) filter w̃t in (16), i.e.

êat = w̃T
t rt, (17)

with rt the EEG recordings of trial t. Based on the attended
and the unattended correlation coefficients, i.e.

ρat = ρ (eat , ê
a
t ) , ρut = ρ (eut , ê

a
t ) , (18)

with eut the unattended speech envelope, it is then decided that
auditory attention has been correctly decoded when ρat > ρut .
Accordingly, a larger difference between the attended and
the unattended correlation coefficient ρat − ρut (correlation
difference) is indicative of a more reliable AAD decision. The
decoding performance is defined as the percentage of correctly
decoded trials over all considered trials and over all participants.

In most previous work, e.g. [1], [10], it has been assumed
that the attended and the unattended clean speech signals sa

and su are available as reference signals for computing the
speech envelopes eat and eut in (18), which is quite unrealistic in
practice. To generate reference signals from the binaural signals
at the ears, the impact of reducing each acoustic components
on the AAD performance needs to be determined. In this paper
we address this issue by using the simulated (attended and
unattended) signals (cf. Table I) as reference signals for several
acoustic conditions ec, ec ∈ {an, re, no, rn}.
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Table II
ACOUSTIC CONDITIONS USED FOR EXPERIMENTAL ANALYSIS AND STIMULI

PRESENTATION.

Experimental Analysis Acoustic Condition SNR [dB] T60 [s]

Anechoic Anechoic [11] ∞ < 0.05

Reverberant Reverberant I [11] ∞ 0.5
Reverberant II [12], [13] ∞ 1.0

Noisy Noisy I [11] 9.0 < 0.05
Noisy II [11] 4.0 < 0.05

Reverberant-Noisy
Reverberant-Noisy I [11] 9.0 0.5
Reverberant-Noisy II [11] 4.0 0.5

Reverberant-Noisy III [12], [13] 9.0 1.0

Please note that all analyses in this paper are performed with
the same training and evaluation conditions, i.e. tc = ec, such
that the influence of acoustical differences between training and
evaluation conditions are excluded. Investigating the influence
of such acoustical differences on AAD is beyond the scope of
this paper.

In [2] it has been shown that tuning the parameters involved
in the filter design (L, ∆, β) plays a key role in optimizing
the decoding performance. In order not to favour one specific
acoustic condition, in this paper the parameters have been
tuned to optimize the average decoding performance over all
considered acoustic conditions (per participant).

III. ACOUSTIC AND EEG MEASUREMENT SETUP

Eighteen native German-speaking participants aged between
21 and 34 years with normal hearing took part in this study. Two
stories in German, uttered by two different male speakers, were
simultaneously presented to the participants using earphones
at a sampling frequency of 48 kHz. Among all participants,
8 participants were instructed to attend to the left speaker,
while 10 participants were instructed to attend to the right
speaker. The stimuli were presented in 11 sessions, each of
length 10 minutes, interrupted by short breaks. The participants
were instructed to look ahead and minimize eye blinking.
During the breaks, the participants were asked to fill out a
questionnaire consisting of 10 multiple-choice questions related
to each story. Two participants were excluded from the analysis,
one participant due to poor attentional performance (as revealed
by the questionnaire results) and the other one due to a technical
hardware problem.

The presented stimuli at both ears were simulated by
convolving the clean speech signals (stories) with (non-
individualized) binaural acoustic impulse responses, either from
[11] or [12], and adding diffuse noise, generated according to
[14]. The left and the right speakers were simulated at −45◦

and 45◦, respectively. Eight different acoustic conditions were
considered (cf. Table II): anechoic, reverberant with a moderate
and a large reverberation time (T60 = 0.5 s, T60 = 1 s),
noisy with two different signal-to-noise ratios (SNR = 9.0
dB, SNR = 4.0 dB), and three combinations of reverberation
and noise. For each participant, the anechoic condition was
assigned to the first session and subsequently to every other
third session (i.e. session 4, 7, and 10). Aiming at minimizing

the influence of the speech material on AAD, the acoustic
conditions (except for the anechoic condition) were randomly
assigned to the other sessions. For experimental analysis, the
acoustic conditions were grouped based on acoustic similarity
as shown in Table II, resulting in four experimental analysis
conditions, i.e. anechoic, reverberant, noisy, and reverberant-
noisy.

The EEG responses were recorded using C = 64 channels
at a sampling frequency of 500 Hz, and referenced to the
nose electrode. The EEG responses were offline re-referenced
to a common average reference, band-pass filtered between 2
and 8 Hz using a third-order Butterworth band-pass filter, and
subsequently downsampled to fs = 64 Hz. The envelopes of
the speech signals were obtained using a Hilbert transform,
followed by low-pass filtering at 8 Hz and downsampling to
fs = 64 Hz. For the training and evaluation steps, the EEG
recordings of each session were split into 10 trials, each of
length 60 seconds. Each participant’s own data were used for
filter training and evaluation.

IV. RESULTS AND DISCUSSION

For all considered signals used as reference signals (cf.
Table I), Fig. 2 presents the decoding performance for different
acoustic conditions (cf. Table II). It is noted the number of
bars in each acoustic condition corresponds to the number of
available reference signals in the underlying acoustic condition.
It can be observed that for all considered signals used as
reference signals a good decoding performance (larger than
86%) can be obtained. These results are consistent with the
previous findings in which either the clean speech signals (sj),
the anechoic speech signals (xj,anm ) [1], [4], [2], [10], [15], [16]
or the (unprocessed) binaural signals (xanm , xm, xnom , ym) [4]
were used as reference signals for decoding.

First, we investigate the impact of individual reduction of un-
desired acoustic components on the AAD performance. For all
acoustic conditions, when interference is reduced the decoding
performance is larger than when using the binaural signals as
reference signals, although the decoding performance difference
is only significant (p < 0.05) for the anechoic condition. For
the reverberant condition and the reverberant-noisy condition,
when reverberation is reduced the decoding performance is
larger than when using the binaural signals as reference sig-
nals, although the decoding performance difference is only
significant (p < 0.05) for the reverberant-noisy condition. For
the noisy condition and the reverberant-noisy condition, when
background noise is reduced there is no significant difference
(p > 0.05) in the decoding performance compared to when
using the binaural signals as reference signals.

Secondly, we investigate the impact of the joint reduction
of undesired acoustic components on the AAD performance.
For all acoustic conditions, the decoding performance can
significantly (p < 0.05) be improved when all undesired
acoustic components are reduced, i.e. reducing interference for
the anechoic condition, jointly reducing interference and noise
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(a) Anechoic condition

(b) Reverberant condition

(c) Noisy condition

(d) Reverberant-noisy condition

Figure 2. Impact of reducing noise, reverberation, and interference on the AAD
performance. Comparison of the decoding performance when different acoustic
components are reduced in (a) the anechoic condition, (b) the reverberant
condition, (c) the noisy condition, (d) the reverberant-noisy condition. The
dashed lines represent the upper boundary confidence interval of chance level
based on a binomial test at the 5% significance level, the error bars represent
the bootstrap confidence interval at the 5% significance level, the asterisks
represent the significant decoding performance difference (p < 0.05) using a
Kruskal-Wallis test followed by post-hoc paired Wilcoxon signed rank test, and
red. stands for reducing.

Figure 3. Impact of reducing noise, reverberation, and interference on the cor-
relation difference (averaged across trials and participants) in the reverberant-
noisy condition. The error bars represent the bootstrap confidence interval at
the 5% significance level and red. stands for reducing.

for the noisy condition, jointly reducing interference and rever-
beration for the noisy condition, jointly reducing interference,
noise and reverberation for the reverberant-noisy condition.
This can be explained by considering the impact of the joint
reduction of undesired acoustic components on the correlation
difference (ρat − ρut ). For all considered reference signals,
Fig. 3 presents the resulting correlation difference, averaged
across trials and participants, for the reverberant-noisy acoustic
condition as the most challenging listening condition (note that
these average correlation coefficients are not directly used for
decoding). It can be observed that the largest correlation differ-
ence can be obtained when all undesired acoustic components
are reduced, i.e., using either the clean speech signals (sj) or
the anechoic speech signals (xj,an) as reference signals.

V. CONCLUSION

In this paper, we have investigated the impact of unde-
sired acoustic components on the AAD performance for dif-
ferent acoustic conditions (anechoic, reverberant, noisy, and
reverberant-noisy). The experimental results show that for ob-
taining a good decoding performance the joint suppression of
reverberation, background noise and interference is of great
importance.
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