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Noisy and Reverberant Conditions
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Abstract— Identifying the target speaker in hearing aid
applications is an essential ingredient to improve speech
intelligibility. Recently, a least-squares-based method has
been proposed to identify the attended speaker from single-
trial EEG recordings for an acoustic scenario with two
competing speakers. This least-squares-based auditory
attention decoding (AAD) method aims at decoding auditory
attention by reconstructing the attended speech envelope
from the EEG recordings using a trained spatio-temporal
filter. While the performance of this AAD method has been
mainly studied for noiseless and anechoic acoustic condi-
tions, it is important to fully understand its performance in
realistic noisy and reverberant acoustic conditions. In this
paper, we investigate AAD using EEG recordings for differ-
ent acoustic conditions (anechoic, reverberant, noisy, and
reverberant-noisy). In particular, we investigate the impact
of different acoustic conditions for AAD filter training and
for decoding. In addition, we investigate the influence on
the decoding performance of the different acoustic compo-
nents (i.e., reverberation, background noise, and interfering
speaker) in the reference signals used for decoding and
the training signals used for computing the filters. First,
we found that for all considered acoustic conditions it is
possible to decode auditory attention with a considerably
large decoding performance. In particular, even when the
acoustic conditions for AAD filter training and for decoding
are different, the decoding performance is still compara-
bly large. Second, when using speech signals affected by
either reverberation and/or background noise there is no
significant difference in decoding performance (p > 0.05)
compared to when using clean speech signals as reference
signals. In contrast, when using reference signals affected
by the interfering speaker, the decoding performance signif-
icantly decreases. Third, the experimental results indicate
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that it is even feasible to use training signals affected
by reverberation, background noise and/or the interfering
speaker for computing the filters.

Index Terms— Auditory attention decoding, electroen-
cephalography (EEG), background noise, reverberation,
interfering speaker.

I. INTRODUCTION

IN COMPLEX acoustic conditions the human auditory sys-
tem has a remarkable ability to segregate a speaker of inter-

est from a mixture of speakers and background noise [1], [2].
In contrast with normal-hearing persons, hearing-impaired
persons typically have more difficulties with such auditory seg-
regation, particularly in multi-talker scenarios [3]. Although
many acoustic signal processing algorithms are available to
reduce background noise or to perform source separation in
multi-talker scenarios [4], [5], these algorithms typically need
to rely on assumptions about the target speaker to be enhanced.
For example, in hearing aid applications the target speaker
is typically assumed to be located in front of the user or is
assumed to be the loudest speaker. As in real-world conditions
such assumptions are often violated, the performance of these
algorithms may substantially decrease. Therefore, successfully
identifying the target speaker in hearing aid applications is
very important to improve speech intelligibility.

Recent studies have shown that auditory cortical responses
are correlated with the envelope of the attended speech
signal [6]–[8], based on which decoding and encoding prop-
erties of the speech signal, e.g. spectrotemporal features and
perceptual unites, have been studied in the brain auditory
pathway [9], [10]. Based on this finding, an auditory attention
decoding (AAD) method has been proposed in [11] to identify
the attended speaker from single-trial EEG recordings. This
method aims at reconstructing the attended speech envelope
from the EEG recordings using a trained spatio-temporal filter.
In the training step, the clean speech signal of the attended
speaker is used to train a spatio-temporal filter by mini-
mizing the least-squares error between the attended speech
envelope and the reconstructed envelope. In the decoding
step, the clean speech signals of both the attended and the
unattended speaker are used as reference signals. In [11] it has
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been shown that for high-density EEG recordings it is possible
to decode auditory attention when presenting the clean speech
signals of the different speakers to different ears of a listener
(i.e. dichotic stimuli presentation). When presenting competing
speech signals in a simulated anechoic condition including
head filtering effects, it has been shown in [12] that a larger
AAD performance can be obtained compared to dichotic
presentation. Recently, a large research effort has focused on
investigating how to use AAD as part of a brain-computer
interface for real-world applications, e.g., to control a hear-
ing aid [12]–[24], mainly however for anechoic conditions.
Aiming at integrating a small-size EEG recording system in
hearing aids, in [13]–[15] the reliability of AAD using a low
number of EEG electrodes has been shown in an anechoic
condition. Aiming at investigating the effect of neurofeedback,
in [16] the feasibility of an online closed-loop system for AAD
has been shown in an anechoic condition. Instead of using
the clean speech signals of the attended and the unattended
speaker as reference signals for decoding, in [17]–[21] the
effect of different reference signals on the AAD performance
has been investigated for an anechoic condition. Using sim-
ulated noisy reference signals for decoding, in [17] we have
investigated the robustness of AAD to residual interference
and background noise. In [18] and [19] a neuro-steered noise
reduction algorithm has been proposed to suppress the unat-
tended speaker based on the AAD decision for an anechoic
condition. In [20] an AAD-based sound source separation
algorithm using deep neural networks has been presented to
suppress the unattended speaker. In [21], we have investigated
steerable beamformers to generate reference signals for AAD
in an anechoic condition.

While the performance of the aforementioned least-squares-
based AAD method has been extensively investigated for
noiseless and anechoic acoustic conditions, in practice also
background noise and reverberation, i.e. acoustic reflections
against walls and objects, are present. Reverberation is
known to spectro-temporally distort speech signals, causing
the binaural spatial cues and pitch to become less reliable
for performing auditory attention tasks [25]–[28]. In addi-
tion, interfering speakers and background noise degrade the
attended speech signal, possibly leading to a severe speech
encoding degradation at the level of the auditory nerve and the
brainstem [29], [30]. Since in noisy and reverberant conditions
the available signals at the ears contain several acoustic com-
ponents (i.e. reverberation, background noise and interfering
speaker), fully understanding the impact of each acoustic
component on AAD is of crucial importance, e.g., in order
to generate appropriate reference signals for decoding from
these signals. Recently, in [31] the performance of the least-
squares-based AAD method was investigated for noisy and
reverberant acoustic conditions. In [31] the same acoustic
condition was used for AAD filter training and for decoding
and the feasibility of using reverberant speech signals both
as training and as reference signals was investigated. It was
shown that in this way a comparable decoding performance for
the reverberant condition as for the anechoic condition can be
obtained. In this paper, we perform a more detailed analysis
of the performance of the least-squares-based AAD method

Fig. 1. Acoustic simulation setup and EEG experiment setup. The
acoustic simulation setup was used for simulating the presented stimuli
in different acoustic conditions. For the EEG experiment setup, MATLAB
was used for sending the acoustic stimuli to the audio interface and
the event markers to the Brain-Vison recorder software. The acoustic
stimuli were presented to the participants via earphones using the
audio interface. The EEG responses were amplified using BrainAmp and
recorded together with the event markers using Brain-Vision.

for an acoustic scenario comprising two competing speakers,
background noise and reverberation. Compared to [31] we
consider more acoustic conditions, especially with regard to
background noise, and we specifically investigate the impact of
different acoustic conditions for the training and the decoding
steps. In addition, we investigate the influence on the decod-
ing performance of the different acoustic components in the
reference signals used for decoding and the training signals
used for computing the filters. Some preliminary results were
presented in [32], where we investigated the feasibility of using
the (unprocessed) signals at the ears, containing reverberation,
background noise and the interfering speaker, as reference and
training signals.

The paper is organized as follows. In Section II the different
acoustic conditions used for recording the EEG responses and
the different acoustic signals used for the experimental analysis
are introduced. In Section III the training and decoding steps
of the least-squares-based AAD method are briefly reviewed.
Section IV describes the acoustic and EEG measurement setup
used for the experiments. In Section V the experimental results
are presented and discussed, exploring the influence on the
decoding performance of the different acoustic conditions and
acoustic components.

II. ACOUSTIC CONDITIONS AND COMPONENTS

We consider an acoustic scenario comprising two competing
speakers and background noise in a reverberant environment
(see left part of Fig. 1). The clean speech signal of the attended
speaker is denoted as sa [i ], while the clean speech signal of
the unattended speaker is denoted as su [i ], with i the discrete
time index. The signals at the ears of the listener consist of
a mixture of both speakers, including head filtering effects,
reverberation and background noise. The signal ym [i ] at the
m-th ear, with m = 1 denoting the left ear and m = 2 denoting
the right ear, can be written as

ym [i ] = ha
m [i ] ∗ sa [i ]

︸ ︷︷ ︸

xa
m[i]

+ hu
m [i ] ∗ su [i ]

︸ ︷︷ ︸

xu
m [i]

+vm [i ] , (1)
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TABLE I
ACOUSTIC SIGNALS USED FOR EXPERIMENTAL ANALYSIS

where ha
m [i ] and hu

m [i ] denote the (reverberant) acoustic
impulse response between the m-th ear and the attended and
the unattended speaker, respectively, ∗ denotes the convolution
operation, and vm [i ] denotes the background noise compo-
nent at the m-th ear. The reverberant speech signal of the
attended and the unattended speaker at the m-th ear is denoted
as xa

m [i ] and xu
m [i ], respectively. These reverberant speech

signals consist of an anechoic speech signal encompassing
the (anechoic) head filtering effect, i.e. xa,an

m [i ] and xu,an
m [i ],

and a reverberation component. For notational conciseness the
index i will be omitted in the remainder of this paper, except
where explicitly required.

For the EEG recordings we will consider four differ-
ent acoustic conditions, i.e. anechoic, reverberant, noisy and
reverberant-noisy. We refer to the EEG data recorded in a
specific acoustic condition as the EEG condition. Depending
on the acoustic condition, the stimuli presented at the ears of
the listener obviously comprise different acoustic components:

• in the anechoic condition (an), the mixture of the ane-
choic speech signals of the attended and the unattended
speaker is presented.

• in the noisy condition (no), the mixture of the anechoic
speech signals of the attended and the unattended speaker
and background noise is presented.

• in the reverberant condition (re), the mixture of the rever-
berant speech signals of the attended and the unattended
speaker is presented.

• in the reverberant-noisy condition (rn), the mixture of
the reverberant speech signals of the attended and the
unattended speaker and background noise is presented.

To investigate the impact of the different acoustic com-
ponents on the AAD performance, we will consider several
acoustic signals (see Table I) to compute envelopes for filter
training and evaluation:

• the clean speech signals sa and su .
• the anechoic speech signals xa,an

m and xu,an
m , i.e. the clean

speech signals affected by head filtering effects.
• the reverberant speech signals xa

m and xu
m , i.e. the ane-

choic speech signals affected by reverberation.
• the interfered speech signals, i.e. the anechoic speech

signals affected by an interfering speaker

xan
m = xa,an

m + xu,an
m . (2)

• the noisy speech signals, i.e. the anechoic speech signals
affected by background noise

xa,no
m = xa,an

m + vm , xu,no
m = xu,an

m + vm . (3)

• the binaural speech signals ym in (1), i.e. the anechoic
speech signals affected by reverberation, background
noise and an interfering speaker.

It should be noted that in the experiments (see Section IV-B)
the positions of the attended and the unattended speaker are
not always the same, i.e. for some participants the attended
speaker is on the right side (and the unattended speaker on the
left side), whereas for some participants the attended speaker is
on the left side (and the unattended speaker on the right side).
Due to the head filtering effect, the broadband energy ratio
between the attended speech component and the unattended
speech component in the signals at the ears is always smaller
at the side of the unattended speaker than at the side of
the attended speaker for the considered scenario. Therefore,
the speech signals in Table I at the side of the attended speaker
will be referred to as attended speech signals and the speech
signals at the side of the unattended speaker as unattended
speech signals.

III. AUDITORY ATTENTION DECODING METHOD

This section briefly reviews the least-squares-based AAD
method proposed in [11]. This method aims at reconstruct-
ing the attended speech envelope from the EEG recordings
using a trained spatio-temporal filter. Section III-A describes
the training step, where the envelope of a training signal
is used together with the EEG recordings to compute the
filter. Section III-B describes the decoding step, where the
envelopes of two reference signals (attended and unattended)
are compared with an estimate of the attended speech envelope
computed using the trained filter.

A. Training Step
In the training step, the attended speaker is assumed to be

known and an attended speech signal (e.g., the clean speech
signal of the attended speaker sa) is used as training signal.
From this signal the attended speech envelope ea [k], with k =
1 . . . K the sub-sampled time index, is extracted, e.g., based
on the Hilbert transform [33]. The attended speech envelope
is then estimated from the EEG recordings rc [k], c = 1 . . . C ,
using a spatio-temporal filter as

êa [k] =
C

∑

c=1

L−1
∑

l=0

gc,l rc [k + l + �] , (4)

with gc,l the l-th filter coefficient in the c-th channel, L the
number of filter coefficients per channel, and � modeling
the latency of the attentional effect in the EEG responses to
the speech stimuli. In vector notation, (4) can be written as

êa [k] = gT r [k] , (5)

with

g =
[

gT
1 gT

2 . . . gT
C

]T
, (6)

gc = [

gc,0 gc,1 . . . gc,L−1
]T

, (7)

r [k] =
[

rT
1 [k] rT

2 [k] . . . rT
C [k]

]T
, (8)

rc [k] = [rc [k + �] rc [k + 1 + �] . . . rc [k + L − 1 + �]]T ,

(9)
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with (.)T denoting the transpose operation. The spatio-
temporal filter g is computed by minimizing the least-squares
error between the attended speech envelope ea [k] and the
reconstructed envelope êa [k], regularized with the squared
l2−norm of the derivatives of the filter coefficients to avoid
over-fitting [11], [13], [32], [33], i.e.

J (g) = 1

K

K
∑

k=1

(

ea [k] − gT r [k]
)2 + βgT Dg, (10)

with D denoting the derivative matrix [13] and β denoting a
regularization parameter. The filter minimizing the regularized
least-squares cost function in (10) is equal to

g = (Q + βD)−1 q, (11)

with the correlation matrix Q and the cross-correlation vector
q given by

Q = 1

K

K
∑

k=1

(

r [k] rT [k]
)

, q = 1

K

K
∑

k=1

(

r [k] ea [k]
)

. (12)

In this paper we will consider several EEG training con-
ditions (tc) for computing the filter g, i.e. tc = an using
EEG responses recorded in the anechoic condition, tc = re
using EEG responses recorded in the reverberant condition,
tc = no using EEG responses recorded in the noisy condition,
and tc = rn using EEG responses recorded in the reverberant-
noisy condition. In addition, we will consider the EEG training
condition tc = ac, in which EEG responses from all condi-
tions are used for computing the filter.

Aiming at investigating the influence of each acoustic
component, in this paper we will consider different attended
speech signals (see Table I) as training signals, more in
particular the clean attended speech signal sa , the anechoic
attended speech signal xa,an

m , the reverberant attended speech
signal xa

m , the interfered attended speech signal xan
m , the noisy

attended speech signal xa,no
m , and the binaural attended speech

signal ym .

B. Decoding Step
For each acoustic condition, the complete set of EEG

responses is segmented into T trials (see Section IV-D for
more details). To decode to which speaker a listener attended
during trial t , first an estimate of the attended speech envelope
êa

t [k] is computed using the (trained) filter gt , i.e.

êa
t [k] = (gt )

T rt [k] , (13)

with rt [k] denoting the EEG recordings of trial t . Next,
the correlation coefficients between the estimated attended
speech envelope êa

t [k] and the envelope of two reference
signals, i.e. namely the attended and the unattended reference
signal, are computed as

ρa
t = ρ

(

ea
t [k] , êa

t [k]
)

, ρu
t = ρ

(

eu
t [k] , êa

t [k]
)

, (14)

where ρa
t and ρu

t denote the attended and the unattended cor-
relation coefficient, respectively, and ea

t [k] and eu
t [k] denote

the attended and the unattended speech envelope, respec-
tively. When ρa

t > ρu
t , it is decided that auditory attention

has been correctly decoded. Accordingly, a larger difference
between the attended and the unattended correlation coefficient
ρa

t − ρu
t (referred to as correlation difference) is indicative

of a more reliable AAD decision. The decoding performance
P is defined as the percentage of correctly decoded trials
over all considered trials and all participants. To compute
the correlation coefficients in (14), EEG recordings in dif-
ferent acoustic conditions can be used for computing êa

t [k].
In addition, aiming at investigating the influence of each
acoustic component on the decoding performance, different
reference signals (see Table I) can be used for computing the
attended and the unattended speech envelope ea

t [k] and eu
t [k],

respectively.
In this paper we will investigate the decoding per-

formance for several EEG evaluation conditions ec ∈
{an, re, no, rn, ac}, with Pec denoting the decoding perfor-
mance for a specific EEG evaluation condition. To decode trial
t of an EEG evaluation condition using the filter trained in
a specific EEG training condition which is not necessary the
same as the EEG evaluation condition, the filter gt is computed
as follows:

• when the trial t to be decoded is part of the trials
in the EEG training condition, the filter is computed
using (11) as

gt =
(

Q̃t + βD
)−1

q̃t , (15)

with Q̃t the average correlation matrix, computed by
averaging all correlation matrices corresponding to trials
in the EEG training condition except trial t , and q̃t the
average cross-correlation vector, computed by averaging
all cross-correlation vectors corresponding to trials in the
EEG training condition except trial t , i.e.

Q̃t = 1

T − 1

T
∑

n=1, n �=t

Qn, q̃t = 1

T − 1

T
∑

n=1, n �=t

qn . (16)

This procedure corresponds to leave-one-out cross vali-
dation.

• when the trial t to be decoded is not part of the trials in
the EEG training condition, the filter is computed using
(11) as

gt = (

Q̄ + βD
)−1

q̄, (17)

with Q̄ the average correlation matrix, computed by
averaging all correlation matrices corresponding to tri-
als in the EEG training condition, and q̄ the average
cross-correlation vector, computed by averaging all cross-
correlation vectors corresponding to trials in the EEG
training condition, i.e.

Q̄ = 1

T

T
∑

n=1

Qn, q̄ = 1

T

T
∑

n=1

qn, (18)

Since the number of trials across acoustic conditions is differ-
ent (see Section IV-B), for tc = ac the average correlation
matrix and the average cross-correlation vector (Q̃t , Q̄, q̃t

and q̄) are computed in such a way that the contribution of
trials from each acoustic condition is considered equally.
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TABLE II
ACOUSTIC CONDITIONS USED FOR EXPERIMENTAL ANALYSIS AND STIMULI PRESENTATION

In [17] it has been shown that the parameters involved in
the filter design (�, L, β) play an important role in obtaining a
good decoding performance. In order not to favour one specific
EEG evaluation condition, the filter parameters have been
determined to optimize the average decoding performance Pac

over all considered acoustic conditions. Please note that the
filter parameters have been optimized per participant and for
each EEG training condition (see Section IV-B and IV-D).

IV. ACOUSTIC AND EEG MEASUREMENT SETUP

In this section, we describe the acoustic and EEG measure-
ment setup used for the experiments and information about
the participants and the used paradigm.

A. Participants
Eighteen native German-speaking participants (right-handed

and aged between 21 and 34 years) took part in this study. All
participants were normal-hearing as was confirmed by pure
tone audiometry. The participants reported no past or present
neurological or psychiatric conditions. All participants signed
an informed consent form and were paid for their participa-
tion. Two participants were excluded from the analysis, one
participant due to poor attentional performance (as revealed
by the questionnaire results) and the other participant due to
a technical hardware problem.

B. Acoustic Stimuli
Two German audio stories, uttered by two different male

speakers, were used as the clean speech signals (sampling
frequency of 16 kHz). One story was from the German audio
book website [37] and the other story was from a selection
of audio books [38]. Speech pauses that exceeded 0.5 s
were shortened to 0.5 s. Before performing the experiment,
the participants reported no, or very limited, knowledge of
the audio stories. The acoustic stimuli were simulated by
convolving the clean speech signals (i.e. the audio stories)
with non-individualized binaural acoustic impulse responses,
either from [34], [35], or [36], and by adding diffuse babble
noise, generated according to [39]. The competing speakers
were simulated at −45◦ (left) and 45◦ (right). Eight differ-
ent acoustic conditions were considered for the stimuli (see
Table II): anechoic, reverberant with a moderate and a large
reverberation time (T60 = 0.5 s, T60 = 1 s), noisy with two
different broadband signal-to-noise ratios (SNR = 9.0 dB,

SNR = 4.0 dB), and three combinations of reverberation
and noise. The SNR is defined as the broadband energy ratio
between the reverberant speech signal of the attended and
the unattended speaker at the ears and the background noise
component at the ears, i.e.

SNR=10 log10

∑

i

|xa
1 [i ] |2+|xu

1 [i ] |2+|xa
2 [i ] |2+|xu

2 [i ] |2
∑

i

|v1 [i ] |2+|v2 [i ] |2
.

(19)

For the experimental analysis, the acoustic conditions were
grouped based on acoustic similarity as shown in Table II,
resulting in four experimental analysis conditions, i.e. ane-
choic, reverberant, noisy, and reverberant-noisy. The acoustic
stimuli were presented to the participants via insert earphones
(E-A-RTONE 3A) using an RME HDSP 9632 PCI Audio
Interface, Tucker Davis Technologies programmable attenu-
ators, and MATLAB, which was also used for generating the
EEG marker stream (see Fig. 1).

C. Paradigm
The stimuli were presented in 11 sessions, each of length

10 minutes, interrupted by short breaks. Among all partic-
ipants, 8 participants were instructed to attend to the left
speaker, while 10 participants were instructed to attend to the
right speaker. The participants were also instructed to look at a
fixation cross on a screen and minimize eye blinking. For each
participant, the anechoic condition was always assigned to
the first session and subsequently to every other third session
(i.e. session 4, 7, and 10). Aiming at minimizing the influence
of the speech material on AAD, the acoustic conditions (except
for the anechoic condition) were randomly assigned to the
other sessions. Following each session, the participants were
asked to fill out a questionnaire consisting of 10 multiple-
choice questions related to each story. The questionnaire was
aimed to indicate whether the participants attended to the
instructed speaker and whether the audio story was intelligible
in the different acoustic conditions. The experiment for each
participant took place on two different days.

D. EEG Setup and Signal Pre-Processing
The EEG responses were recorded using a BrainAmp

system, provided by BrainProducts GmbH, Germany, and
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C = 64 channels, provided by Easycap GmbH, Germany,
with a sampling frequency of 500 Hz (see EEG experiment
setup in Fig. 1). The EEG responses were referenced to the
nose electrode and recorded using the Brain-Vision recorder
software. The EEG recordings were re-referenced offline to a
common average reference, band-pass filtered between 2 Hz
and 8 Hz using a third-order Butterworth band-pass filter
(as in [11], [13], [14]), and subsequently downsampled to
fs = 64 Hz. The envelopes of all considered 16 kHz speech
signals were obtained using a Hilbert transform [33], followed
by low-pass filtering at 8 Hz and downsampling to fs = 64 Hz.
For the training and decoding steps (see Section III), the EEG
recordings of each session were split into 10 trials, each of
length 60 seconds (see Table II). For filter training, the fil-
ter was computed using all considered trials based on (15)
and (17), as proposed in [32] and [33], instead of computing
a filter per trial and averaging per-trial filters as proposed
in [11]. For filter training and evaluation, each participant’s
own data were used. The decoding performance was computed
by averaging the percentage of correctly decoded trials over
all considered trials and all participants.

V. RESULTS AND DISCUSSION

In this section, the decoding performance of the least-
squares-based AAD method is investigated for different
acoustic conditions (see Table II) using the experimental setup
discussed in the previous section. Section V-A discusses the
results of the questionnaire. In Section V-B the impact of dif-
ferent acoustic conditions for the training and decoding steps
is investigated. In Section V-C the impact of the head filtering
effect is explored by comparing the decoding performance
using either the clean or the anechoic speech signals. Finally,
in Section V-D the influence of each acoustic component is
investigated by comparing the decoding performance using
reference and training signals affected by background noise,
reverberation, and/or interfering speaker.

A. Questionnaire Analysis
For all considered acoustic conditions, Fig. 2 presents the

correct answer scores related to the attended story, averaged
across all participants. The highest score is obtained for
the anechoic condition, while the lowest score is obtained
for the reverberant-noisy condition. The statistical multiple
comparison test (Kruskal-Wallis test followed by the post-
hoc Dunn and Sidak test [40]) showed a significant difference
(Kruskal-Wallis test: χ2 = 19.0, p = 0.002) in terms of
the correct answer score between the anechoic condition and
either the noisy or the reverberant-noisy condition (post-hoc
Dunn and Sidak test: p = 0.022 and p = 0.000, respectively)
and between the reverberant condition and the reverberant-
noisy condition (post-hoc Dunn and Sidak test: p = 0.013),
implying that – as expected – the noisy and the reverberant-
noisy condition are more challenging.

B. Impact of Acoustic Conditions
For all considered EEG evaluation conditions, Fig. 3

presents the decoding performance for different EEG training

Fig. 2. The correct answer scores related to the attended story,
averaged across all participants, for different acoustic conditions. Error
bars represent one standard error around the mean and ∗ indicates a
significant difference (p < 0.05) between acoustic conditions, based on
the Kruskal-Wallis test followed by the post-hoc Dunn and Sidak test [40].

Fig. 3. The decoding performance for different EEG training and
evaluation conditions when using the clean speech signals. The plus
signs represent the upper boundary of the confidence interval corre-
sponding to chance level, based on a binomial test at the 5% significance
level, the error bars represent the bootstrap confidence interval at the
5% significance level, ∇ indicates the decoding performance when the
EEG training and evaluation conditions are equal, and the dashed
line separates the decoding performance obtained with filters trained
in a specific acoustic condition and with filters trained in all acoustic
conditions. A multiple comparison test (the Kruskal-Wallis test followed
by the post-hoc Dunn and Sidak test) was performed across Pac where
∗ indicates a significant difference (p < 0.05).

conditions when the clean speech signals are used as reference
and training signals.

First, we investigate the feasibility of decoding EEG
responses in different acoustic conditions ec ∈ {an, re, no,
rn, ac} when using filters trained using EEG responses in a
specific acoustic condition tc ∈ {an, re, no, rn} (i.e. left part
of Fig. 3, separated by dashed line). When the EEG evaluation
and training conditions are equal (indicated by ∇), it can
be observed that a very good decoding performance (>96%)
is obtained for all EEG evaluation conditions. These results
are consistent with previous findings for the anechoic con-
dition [12], [14], [16]–[19] as well as with recent findings
for the reverberant and the reverberant-noisy conditions [32].
For each EEG training condition tc ∈ {an, re, no, rn},
it can be observed that the decoding performance when the
EEG evaluation and training conditions are equal (indicated
by ∇) is among the highest decoding performances for all
EEG evaluation conditions. When the EEG evaluation and
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Fig. 4. The decoding performance Pac per participant obtained with
filters trained in all acoustic conditions and using clean speech signals.
The plus signs represent the upper boundary of the confidence interval
corresponding to chance level, based on a binomial test at the 5%
significance level, the error bars represent the bootstrap confidence
interval at the 5% significance level, the solid circles represent the
minimum decoding performance and the void circles represent the
maximum decoding performance.

training conditions are not equal, typically a lower decoding
performance is obtained (except in some cases for the anechoic
and the reverberant EEG training conditions). For example,
for the reverberant-noisy EEG training condition the highest
decoding performance is obtained for the reverberant-noisy
EEG evaluation condition (>97%), while a lower decoding
performance is obtained for the anechoic, reverberant, and
noisy EEG evaluation conditions (>90%). In addition, for
all EEG training conditions tc ∈ {an, re, no, rn} it can
be observed that the average decoding performance for all
conditions Pac is considerably high (>93%).

Secondly, we investigate the feasibility of decoding EEG
responses in different acoustic conditions ec ∈ {an, re,
no, rn, ac} when using filters trained using EEG responses
in all acoustic conditions tc = ac (i.e. right part of Fig. 3,
separated by dashed line). It can be observed that a very good
decoding performance (>95%) is obtained for all EEG eval-
uation conditions and that the decoding performance across
EEG evaluation conditions is more consistent compared to
when using filters trained in a specific acoustic condition.
In addition, the average decoding performance for all con-
ditions Pac obtained with filters trained in all conditions is
occasionally significantly larger than with filters trained in
a specific acoustic condition.1 For example, the decoding
performance Pac obtained with filters trained in all conditions
(tc = ac) is significantly larger than with filters trained either
in the reverberant condition (tc = re) or in the reverberant-
noisy condition (tc = rn) (Kruskal-Wallis test: χ2 = 16.5,
p = 0.002; post-hoc Dunn and Sidak test comparisons of
tc = ac with tc = re and tc = rn: p = 0.020, p = 0.001,
respectively). To investigate how much the average decoding
performance for all conditions Pac varies across participants,
Fig. 4 presents Pac per participant, obtained with filters
trained in all conditions. It can be observed that the decoding
performance per participant ranges between 80% and 100%.

1We also performed the AAD experiment using filters trained with 40 trials
that were arbitrarily selected from different acoustic conditions and observed
similar findings.

Fig. 5. Average correlation differences for different EEG training and
evaluation conditions when using the clean speech signals. The error
bars represent the bootstrap confidence interval at the 5% significance
level.

The feasibility of using either filters trained in a specific
acoustic condition or filters trained in all acoustic condi-
tions to perform AAD in different acoustic conditions may
be explained by considering the robust neural responses
to degraded – but still intelligible – speech signals. Sev-
eral studies have shown that auditory cortical responses
resemble the clean attended speech signal more than the
speech signal degraded by different acoustic components
(e.g., background noise, interfering speaker), suggesting a
robust neural representation of the clean attended speech
signal [6], [7], [30], [31], [41]. To decode auditory attention,
the trained filters aim at reconstructing the clean attended
speech envelope from EEG responses that are largely invariant
to degradations. Hence, the reconstructed attended envelope is
expected to be more correlated to the clean attended speech
envelope than to the clean unattended speech envelope, i.e. the
correlation difference (ρa − ρu) is expected to be larger
than zero. For all considered EEG evaluation conditions,
Fig. 5 presents the correlation difference for different EEG
training conditions, averaged across all considered trials and
participants (note that these average correlation coefficients
are not directly used for decoding). It can be observed that a
correlation difference significantly larger than zero is obtained
for all considered acoustic conditions, which is consistent with
a robust neural representation of the clean attended speech
signal.

Finally, we investigate the parameters involved in the filter
design (�, L, β) across EEG training conditions. Fig. 6
depicts the optimal parameter values (see Section III-B),
averaged across all considered trials and all participants.
It can be observed that the optimal value for � varies only
slightly between 93.8 ms to 101.6 ms, while the optimal
value for L varies more substantially between 109.3 ms
to 128.9 ms. Accordingly, the EEG responses contributing
most to the AAD performance are those with latencies between
93.8 ms and 230.5 ms, consistent with previous findings
in [13], [17], and [30]. In addition, the optimal value for
the regularization parameter β varies between 10−1 to 102.
It can be observed that the optimal regularization parameter is
smaller when using filters trained in all conditions than when
using filters trained in a specific acoustic condition. A possible
explanation may be that training in all conditions can by itself
be considered as some form of regularization, consistent with
previous finding in [33].
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Fig. 6. The optimal values for the filter parameters (a)Δ and L, and (b) the
regularization parameter β, averaged across all trials and all participants
when using the clean speech signal. The shaded area indicates the
bootstrap confidence interval at the 5% significance level.

In summary, the results in this section show the feasibility
of using either filters trained in a specific acoustic condition
or filters trained in all conditions to perform AAD in different
acoustic conditions.2 While these results were obtained using
the clean speech signals as training and reference signals,
in the next sections we will investigate in more detail the
influence of the different acoustic components (head filtering
effect, reverberation, background noise, interfering speaker) in
the training and reference signals.

C. Influence of Head Filtering Effect

In this section, we investigate the influence of the head
filtering effect by comparing the decoding performance when
using clean or anechoic speech signals either as training or as
reference signals. Fig. 7a presents the decoding performance
for the anechoic condition (ec = an) when using filters trained
in the anechoic condition (tc = an). Fig. 7b presents the
average decoding performance for all conditions (ec = ac)
when using filters trained in all conditions (tc = ac). A paired
Wilcoxon signed rank test revealed no significant difference
(p > 0.05) between using either the clean speech signals
or the anechoic speech signals as training or as reference
signals. These results indicate that for all considered acoustic
conditions head filtering effects have no significant influence
on the decoding performance.

2We also performed the AAD experiment using trial lengths of 30 seconds
and observed similar findings.

Fig. 7. Influence of head filtering effect on AAD. Comparison of decoding
performance using either the clean or the anechoic speech signals
when the EEG evaluation and training conditions are equal to (a) the
anechoic condition or (b) all conditions. The plus signs represent the
upper boundary of the confidence interval corresponding to chance level
based on a binomial test at the 5% significance level, the error bars
represent the bootstrap confidence interval at the 5% significance level.

D. Influence of Background Noise, Reverberation
and Interfering Speaker

To investigate the influence of each acoustic component
on AAD, Fig. 8 presents the decoding performance for all
considered acoustic conditions (anechoic, reverberant, noisy,
reverberant-noisy) using the following signals as training sig-
nals or as reference signals:

• the clean speech signals sa and su .
• the anechoic speech signals xa,an

m and xu,an
m .

• the anechoic speech signals affected by different acoustic
components, i.e. the noisy speech signals xa,no

m and xu,no
m

in (3) for the noisy condition, the reverberant speech
signals xa

m and xu
m in (1) for the reverberant condition,

the interfered speech signal xan
m (attended and unattended

side) in (2) for the anechoic condition,3 and the binaural
speech signals ym (attended and unattended side) in (1)
for the reverberant-noisy condition.

Similarly, Fig. 9 presents the correlation difference (ρa −ρu),
averaged across all considered trials and participants (note that
these average correlation coefficients are not directly used for
decoding).

First, we investigate the case where the clean or the anechoic
attended speech signal is used as training signal (i.e. left
part of Fig. 8 and 9, separated by dashed line). When using
the clean or anechoic speech signals as reference signals,

3The interfered speech signal is used in the anechoic condition to exclude
the influence of other acoustic components (background noise and reverbera-
tion) on the analysis.
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Fig. 8. Influence of different acoustic components (background noise, reverberation and interfering speaker) on AAD. Comparison of decoding
performance when using (a) the noisy speech signals in the noisy condition, (b) the reverberant speech signals in the reverberant condition, (c) the
interfered speech signals in the anechoic condition, (d) the binaural speech signals in the reverberant-noisy condition, either as training signal or as
reference signals. The plus signs represent the upper boundary of the confidence interval corresponding to chance level based on a binomial test
at the 5% significance level, and the error bars represent the bootstrap confidence interval at the 5% significance level. The dashed line separates
the case where the clean or the anechoic attended speech signals are used as training signals and the case where the attended speech signals
affected by different acoustic components are used as training signals. A paired Wilcoxon signed rank test was performed between the decoding
performance using the clean or the anechoic speech signals as reference signals and using the anechoic speech signals affected by different
acoustic components as reference signals. In addition, a paired Wilcoxon signed rank test was performed between the decoding performance using
the clean or the anechoic speech signals as training signals and using the anechoic speech signals affected by different acoustic components as
training signals. ∗ indicates a significant difference (p < 0.05) based on the paired Wilcoxon signed rank test.

a very good decoding performance (>94%) is obtained for
all acoustic conditions, as already shown in Fig. 7. When
using the noisy speech signals (in the noisy condition, Fig. 8a)
or the reverberant speech signals (in the reverberant con-
dition, Fig. 8b) as reference signals, there is no significant
difference in decoding performance ( p > 0.05) compared to
when using the clean or anechoic speech signals as refer-
ence signals. On the other hand, when using the interfered
speech signals (in the anechoic condition, Fig. 8c) or the
binaural speech signals (in the reverberant-noisy condition,
Fig. 8d) as reference signals, the decoding performance is
significantly lower (p < 0.05) than when using the clean or
anechoic speech signals as reference signals, although the
decoding performance is still considerably large (>87%). The
feasibility of using either the interfered speech signals or
the binaural speech signals as reference signals for AAD
can be explained by considering the broadband energy ratio
between the attended and unattended speech components in
the signals at the ears. As already mentioned in Section II,
due to the head filtering effect this broadband energy ratio
is smaller at the side of the unattended speaker than at
the side of the attended speaker. In summary, the results
in Fig. 8 (left side) show that when using reference signals

affected by reverberation or background noise, a comparable
decoding performance can be obtained as when using clean or
anechoic speech signals, whereas when using reference signals
affected by the interfering speaker the decoding performance
significantly decreases. This also suggests that in order to
generate appropriate reference signals, it is more important
to reduce the interfering speaker than to reduce background
noise or reverberation.

The decoding performance results in Fig. 8 can be further
explained by considering the influence of each acoustic com-
ponent on the correlation difference in Fig. 9. For the noisy
condition (Fig. 9a), there are no significant differences between
the considered reference signals, which corresponds to the
decoding performance results in Fig. 8a. For the reverberant
condition (Fig. 9b), it can be observed that the correlation
differences significantly decrease (ρa−ρu < 0.04) when using
the reverberant speech signals as reference signals, but only
when using the clean attended speech signal as training signal.
Nevertheless, this lower correlation difference does not result
in a significantly lower decoding performance in Fig. 8b. For
the anechoic condition (Fig. 9c) and the reverberant-noisy
condition (Fig. 9d), it can be observed that the correlation
differences significantly decrease when using the interfered



AROUDI et al.: IMPACT OF DIFFERENT ACOUSTIC COMPONENTS ON EEG-BASED AAD 661

Fig. 9. Influence of different acoustic components (background noise, reverberation and interfering speaker) on AAD. Comparison of correlation
difference when using (a) the noisy speech signals in the noisy condition, (b) the reverberant speech signals in the reverberant condition, (c) the
interfered speech signals in the anechoic condition, (d) the binaural speech signals in the reverberant-noisy condition, either as training signal
or as reference signals. The error bars represent the bootstrap confidence interval at the 5% significance level, and ∗ indicates a significant
difference (p < 0.05) based on the paired Wilcoxon signed rank test.

speech signals (ρa − ρu < 0.03) or the binaural speech
signals (ρa − ρu < 0.02) as reference signals. These lower
correlation differences are also reflected by significantly lower
corresponding decoding performances in Fig. 8c and 8d.

Secondly, we explore the potential of using the attended
speech signal affected by different acoustic components as
training signal (i.e. right part of Fig. 8 and 9, separated
by dashed line). On the one hand, when using the noisy
attended speech signal (in the noisy condition, Fig. 8a) or
the reverberant attended speech signal (in the reverberant
condition, Fig. 8b) as training signal, there is no significant
difference in decoding performance ( p > 0.05) compared to
when using the clean or the anechoic attended speech signal
as training signal (for all considered reference signals). On the
other hand, when using the interfered attended speech signal
(in the anechoic condition, Fig. 8c) or the binaural attended
speech signal (in the reverberant-noisy condition, Fig. 8d) as
training signal, the decoding performance is significantly lower
compared to when using either the clean or the anechoic
attended speech signal as training signal (for all considered
reference signals). Nevertheless, even when using the binaural
attended speech signal as training signal in the reverberant-
noisy condition, it is still feasible to perform AAD with a
decoding performance larger than 82%. The decoding perfor-
mance results in Fig. 8 when using attended speech signals
affected by different acoustic components as training signal
are mostly consistent with the correlation differences in Fig. 9.

TABLE III
ACOUSTIC SIGNAL AS TRAINING OR REFERENCE SIGNALS USING

WHICH THE LARGEST DECODING PERFORMANCE FOR

A SPECIFIC EEG (TRAINING AND EVALUATION)
CONDITION IS OBTAINED

In summary, the results in this section show that using
speech signals affected by background noise and reverber-
ation as training or reference signals results in a decoding
performance that is comparable to using the clean or anechoic
speech signals as training or reference signals. On the contrary,
using speech signals affected by the interfering speaker as
training or reference signals typically results in a significantly
lower decoding performance. Table III presents which training/
reference signals lead to the largest decoding performance for
a specific EEG training/evaluation condition.

VI. CONCLUSIONS

In this paper, we investigated the performance of the least-
squares-based AAD method for different acoustic conditions
(anechoic, reverberant, noisy, and reverberant-noisy), both
in the training step as well as in the decoding step. The
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experimental results showed that for all considered acoustic
conditions it is possible to decode auditory attention with
a considerably large decoding performance, even when the
acoustic conditions for training and decoding are different.
In addition, for most acoustic conditions there is no significant
difference in decoding performance when using filters trained
in all conditions or filters trained in a specific condition. This
suggests that for an unseen realistic acoustic condition AAD
can be performed using filters trained in, e.g., a laboratory
acoustic condition.

Furthermore, we investigated the influence of the head
filtering effect and of acoustic components (reverberation,
background noise and interfering speaker) on the decoding
performance. The experimental results showed that for all
considered acoustic conditions the head filtering effect has no
significant impact on the decoding performance. Moreover,
when using speech signals affected by either reverberation or
background noise as reference signals, a comparable decoding
performance is obtained as when using clean speech signals
as reference signals. On the contrary, when using speech
signals affected by the interfering speaker as reference sig-
nals, the decoding performance significantly decreases. This
suggests that for generating appropriate reference signals,
e.g., using acoustic signal pre-processing algorithms, it is more
important to reduce the interfering speaker than to reduce
background noise or reverberation. Furthermore, when using
the binaural speech signals as reference signals for decoding,
a relatively large decoding performance can be obtained.
This implies that decoding is feasible for the considered
scenario even based on the unprocessed noisy and reverberant
signals.

Finally, we explored the potential of using the attended
speech signal affected by different acoustic components as
training signal for computing the filter. When using attended
speech signals affected by either reverberation or by back-
ground noise as training signal, a comparable decoding per-
formance is obtained as when using the clean attended speech
signal as training signal. However, when using attended speech
signals affected by the interfering speaker as training signal,
the decoding performance may significantly decrease. Never-
theless, even when using the binaural attended speech signal
as training signal, it is still feasible to achieve a large decoding
performance.

While the discussion in this paper has been limited
to the least-squares-based AAD method, in which audi-
tory attention is decoded using an envelope reconstruc-
tion model, AAD approaches based on empirical mode
decomposition [42], [43], inherent fuzzy entropy [44] or a
neural encoding model [45], [46] have not been investi-
gated in this paper. Further work could therefore include a
study on how reverberation and noise influence these AAD
approaches.
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