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Abstract—For blind speech dereverberation, two frameworks
are commonly used: on the one hand, the multi-channel linear
prediction (MCLP) framework, and on the other hand, data-
dependent beamforming, e.g., the generalized sidelobe canceler
(GSC) framework. The MCLP framework is designed to perform
deconvolution and hence has gained increased prominence in blind
speech dereverberation. The GSC framework is commonly used for
noise reduction, but may be applied for dereverberation as well. In
previous work, we have shown that for the noiseless case, MCLP
and the GSC yield in theory mathematically equivalent results
in terms of dereverberation. In this paper, we assume additional
coherent as well as incoherent-noise components and formally an-
alyze and compare both frameworks in terms of dereverberation
and noise reduction performance. Both the theoretical analysis and
time domain simulation results demonstrate that unlike the GSC,
MCLP expectably shows limited performance in terms of noise
reduction, while both perform equally well in terms of derever-
beration, provided that the GSC blocking matrix achieves com-
plete blocking of the early reverberant-speech component and suf-
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ficiently many microphones are available. In case of incomplete
blocking, however, the GSC performs inferior to MCLP in terms
of dereverberation, as shown in short-time Fourier transform do-
main simulations.

Index Terms—Multi-channel linear prediction, data-dependent
beamforming, dereverberation, noise reduction.

I. INTRODUCTION

I T IS well known that reverberation, caused by reflections
against room boundaries and objects, and background noise

may have a deteriorating effect on the quality and intelligibility
of a speech signal recorded by a microphone [1]. Speech
dereverberation accompanied by noise reduction is therefore
needed in many applications ranging from hands-free mobile
telephony to distant automatic speech recognition.

Dereverberation approaches based on multiple microphones
take advantage of spatial diversity and, according to the multi-
ple input/output inverse theorem (MINT) [2], theoretically al-
low complete inversion of the (presumed time-invariant) room
impulse responses (RIRs) between the speech source and the mi-
crophone array, provided that the corresponding transfer func-
tions do not share common zeros. In practical applications how-
ever, the RIRs are unknown – and since MINT is very sensitive
to RIR estimation errors [3], which are unavoidable in practice,
especially in noisy environments [4], [5], explicit inversion is
not favorable. In recent years instead, assuming no or limited
prior knowledge on the RIRs, multi-channel linear prediction
(MCLP) [6]–[17], beamforming [18]–[25] and combinations
thereof [26]–[28] have been most commonly and successfully
used for (blind) speech dereverberation, while partly including
noise reduction [17], [21], [22], [25]–[28]. In the following, we
briefly review these approaches.

The MCLP framework is designed to perform deconvolution,
and is hence suited for dereverberation, while noise reduction
is not targeted. It operates blindly on the microphone signals,
i.e., does not require any prior knowledge on the RIRs. A
block diagram of MCLP is shown in Fig. 1. The framework
relies on the premise that the reverberant component to be
canceled can be modeled as a filtered version of the delayed
microphone signals, i.e., as a linear prediction component. The
prediction delay is a design parameter defining the number
of early reflections to be maintained. The sole task in MCLP
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Fig. 1. The MCLP framework employing the prediction delay δ in the data-
dependent filter path.

Fig. 2. The GSC framework employing the blocking matrix B in the data-
dependent filter path.

therefore consists in estimating the multi-channel prediction
filter from the microphone signals. When the prediction filter
is of sufficient order, MCLP is theoretically able to completely
equalize the RIRs [7]. Nowadays, MCLP is commonly
implemented in frequency sub-bands using the short-time
Fourier transform (STFT) [8]–[17], [26]–[28]. Incorporating
the power spectral density (PSD) of the speech-source signal
in the cost function has been shown to be beneficial, as, e.g., in
the weighted prediction error (WPE) method [10], [11], where
the speech-source signal is modeled as time-varying Gaussian
[8]–[11] or using sparse priors [13]. Adaptive approaches based
on recursive least squares [12], [15] and the Kalman filter
[14], [16], [17], [28] have been proposed. In [17], given noisy
microphone signals, the reverberant-speech component and
the prediction-filter coefficients are estimated in an alternating
fashion. To reduce noise after dereverberation, it has been pro-
posed to cascade MCLP with minimum-variance distortionless
response (MVDR) beamforming [26], [27], which became a
popular approach in the recent CHiME-5 challenge [29].

Beamforming is designed to perform spatial filtering, and
is hence commonly used for noise reduction, but may also be
applied for dereverberation [30]. One can distinguish between
data-independent (e.g., superdirective) beamforming and data-
dependent (e.g., MVDR) beamforming. Although beamforming
traditionally does not target channel inversion, it may be consid-
ered equivalent to MINT if the (presumably known) RIRs are in-
corporated in the filter design [18]. The so-called MINTFormer
[20] provides a trade-off between the performance of MINT and
the robustness of beamforming. In [25], a MINT-based multi-
channel Wiener filter for joint dereverberation and noise reduc-
tion has been proposed. The analysis in [19] shows that for
MVDR beamforming incorporating known RIRs, an inherent
performance trade-off exists between dereverberation and noise
reduction in case of incoherent as well as mixed coherent- and
incoherent-noise fields. In this work, we are mainly concerned
with the generalized sidelobe canceller (GSC) [31], [32], an
implementation of the minimum-power distortionless response
(MPDR) beamformer and widely employed in noise reduction.
Fig. 2 depicts a block diagram of the GSC, which consists of

three components: a filter-and-sum beamformer (FSB) steering
a beam into the target direction, a blocking matrix blocking the
speech component, and a data-dependent filter minimizing the
output power and thereby suppressing residual noise compo-
nents. The ability to block the speech component is essential
to the GSC, as speech leakage through the blocking matrix
may lead to partial speech cancellation. Employing the GSC for
dereverberation, the blocking matrix should block the early (but
not the late) reverberant-speech component. In [21] therefore a
blocking matrix is used incorporating the relative early trans-
fer functions (RETFs) of the speech source in order to jointly
perform dereverberation and noise reduction. In the nested GSC
[22], an inner GSC is employed for dereverberation and an outer
GSC for noise reduction. In [28], we have proposed to integrate
the GSC and MCLP in a parallel manner, and compared to the
corresponding MCLP-GSC cascade, cf. also [26], [27].

A comparison of the block diagrams in Fig. 1 and 2 readily re-
veals the major difference between the two frameworks, which
is due to their different objective. Where MCLP – designed
for deconvolution – applies a simple delay to the microphone
signals in the data-dependent filter path, the GSC instead – de-
signed for spatial filtering – applies a blocking matrix. On the
one hand, regarding dereverberation, the need for a blocking ma-
trix is certainly a drawback of the GSC as compared to MCLP,
as its design requires prior knowledge. On the other hand, re-
garding noise reduction, the blocking matrix distinguishes the
speech source from potential localized noise sources, which is
not possible in MCLP. For the noiseless dereverberation task,
we have shown in [24] that the MCLP and GSC framework
theoretically lead to the mathematically equivalent results for
stationary source signals. In practice, additional noise may al-
ways be present. In this paper therefore, using pre-whitened
least squares (LS) filter estimates, we formally analyze and
compare the behavior of both frameworks in case of noise,
both in terms of dereverberation and noise reduction. The main
intention is to provide a better understanding of the theoreti-
cal performance limitations of both frameworks depending on
a number of boundary conditions, such as noise levels, filter
length and number of microphones, which cannot be done by
naive comparison. In our theoretical analysis, we assume com-
plete blocking of the early reverberant-speech component in the
GSC blocking matrix, which requires prior knowledge of the
early part of the speech-source RIRs or the RETFs. We de-
rive that if the number of microphones is sufficiently large, the
GSC theoretically achieves complete coherent-noise cancella-
tion if incoherent noise is absent, while MCLP cancels the late
coherent-noise components only, as expected by design. Further,
in case of complete blocking, the GSC performs equally well
as MCLP in terms of dereverberation; theoretically achieving
complete reverberation cancellation if incoherent noise is ab-
sent. These theoretical findings are confirmed by time domain
simulations. In addition, in case of incomplete blocking, based
on STFT domain simulations using estimated RETFs, we show
that the GSC instead performs inferior to MCLP in terms of
dereverberation.

In Section II, the signal model for both frameworks is
presented. In Section III, the filter estimation is discussed.
Section IV and V proceed with the performance analysis of
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the MCLP and the GSC framework, respectively. A compara-
tive summary of the two frameworks is presented in Section VI,
followed by simulation results in Section VII.

II. SIGNAL MODEL

In this section, we define the signal model for both MCLP and
the GSC. For simplicity, we employ the same notation for those
signals and filters that correspond in both frameworks, cf. Fig. 1
and 2. As outlined before, the major difference between both
consists in the use of a prediction delay δ in MCLP (cf. Fig. 1)
and a blocking matrix B in the GSC (cf. Fig. 2) in the data-
dependent filter path. In addition, the GSC speech reference is
typically created by applying an FSB, whereas in MCLP a par-
ticular microphone signal is traditionally selected [6]–[16], [26],
[27]. Both cases are covered generically by the filter g (cf. Fig. 1
and 2). The signal model equivalently applies in the time domain
and the STFT domain, where l respectively denotes the time or
frame index. In case of the STFT domain, throughout the paper,
the frequency sub-band index is omitted as we treat all frequency
sub-bands independently. Subsequently, vectors are denoted by
lower-case boldface letters, matrices by upper-case boldface let-
ters, IL×L and 0L1 ×L2 denote identity and zero matrices with
the (optional) superscript indicating their dimensions, A∗, AT ,
AH ,A+ , and E[A] denote the complex conjugate, the transpose,
the complex conjugate transpose, the pseudoinverse and the ex-
pected value of a matrix A, blkdiag[A1 , . . . , AN ] constructs
a block-diagonal matrix from its arguments, and tplz[a, L] cre-
ates a Toeplitz matrix ofL columns with the first column defined
by the vector (aT 01×(L−1))T .

The acoustic scenario is presented in Section II-A, while
in Section II-B the speech reference signal and its individual
components are defined. In Section II-C and Section II-D, the
data-dependent filter input signal is discussed for MCLP and
the GSC, respectively. In Section II-E, the filter output and the
enhanced signal are generically defined.

A. Acoustic Scenario

We assume an acoustic scenario comprising one speech
source emitting the signal s1(l), and N − 1 localized noise
sources emitting the signals sn (l), n = 2 . . . N, in a reverberant
environment withM microphones. Themth microphone signal
ym (l),m = 1 . . .M , consists of the reverberant-speech compo-
nent, reverberant-noise components, referred to as coherent-
noise components hereafter, as well as an incoherent-noise
component (originating from spatially uncorrelated noise, e.g.,
sensor noise), i.e.,

ym (l) =
N∑

n=1

Lh −1∑

k=0

h∗n,m (k)sn (l − k)

︸ ︷︷ ︸
xn ,m (l)

+ vm (l), (1)

with hn,m (k) denoting the time-invariant (sub-band) RIR be-
tween the nth source and the mth microphone of length Lh
(neglecting the dead time common to all RIRs), k the tap in-
dex, xn,m (l) the reverberant components (reverberant-speech
and coherent-noise components), and vm (l) the incoherent-

noise component. Note that in the STFT case, the sub-band
convolution model in (1) poses an approximation of the time-
domain convolution [33], where the sub-band RIR length Lh
is roughly RST F T times smaller than the corresponding time
domain RIR length, with RST F T denoting the hop size in the
STFT analysis [33]. We define the stacked multi-microphone
vector y(l) ∈ CMLy ,

y(l) =
(
yT1 (l) · · · yTM (l)

)T
, (2)

ym (l) =
(
ym (l) · · · ym (l − Ly + 1)

)T
, (3)

with Ly the number of samples/frames per microphone. With
xn (l) and v(l) defined in a similar manner as in (2), we obtain

y(l) =
N∑

n=1

xn (l) + v(l) = x(l) + v(l). (4)

With the blockwise Toeplitz matrix H ∈ CNLs×MLy and the
stacked source-signal vector s(l) ∈ CNLs defined by

H =

⎛

⎜⎜⎝

H1,1 · · · H1,M

...
...

HN,1 · · · HN,M

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

H1

...

HN

⎞

⎟⎟⎠, (5)

Hn,m = tplz
[ (
hn,m (0) · · · hn,m (Lh − 1)

)T
, Ly

]
, (6)

s(l) =
(
sT1 (l) · · · sTN (l)

)T
, (7)

sn (l) =
(
sn (l) · · · sn (l − Ls + 1)

)T
, (8)

Ls = Lh + Ly − 1, (9)

the vector x(l) can then be written as

x(l) =
N∑

n=1

HH
n sn (l) = HH s(l). (10)

We assume sn (l) and v(l) to be mutually independent, i.e., with
the correlation matrices Ψsn (l) = E[sn (l)sHn (l)] and Ψv (l)
equivalently, using (4), (7), (10), we find

Ψs(l) = blkdiag[Ψs1 (l), . . . , ΨsN (l)], (11)

Ψx(l) = HHΨs(l)H, (12)

Ψy (l) = Ψx(l) + Ψv (l). (13)

The matrices Ψsn (l) are assumed to be invertible, such
that Ψ−1

s (l) = blkdiag[Ψ−1
s1

(l), . . . , Ψ−1
sN

(l)]. Note that in the
STFT domain, it is commonly assumed that E[s1(l)s∗1(l − k)] =
0 for k �= 0 if the STFT hop size is sufficiently large, i.e., Ψs1 (l)
becomes a diagonal matrix. Similar assumptions could be made
for other source signals, but are not required in our analysis.
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Fig. 3. Schematic of the (sub-band) IR relating sn (l) and qsn (l), separated
in early part ĊHn g [ ] applied to sn (l) and late part C̈dHn g [ ]
applied to sn (ld).

B. Speech Reference Signal

With the filter g ∈ CMLy , we define the speech reference
signal q(l) for both frameworks as

q(l) = gHy(l)

=
N∑

n=1

(Hng)H sn (l)︸ ︷︷ ︸
qs n (l)

+gHv(l)︸ ︷︷ ︸
qv (l)

, (14)

where qsn (l) and qv (l) denote the individual source compo-
nents of q(l). Defining the parameter d� Lh as the boundary
between early and late reverberation, the reverberant-speech and
coherent-noise components qsn (l) may further be decomposed
into early and late components q̇sn (l) and q̈sn (l), i.e.,

qsn (l) = (ĊHng)H sn (l)︸ ︷︷ ︸
q̇s n (l)

+ (C̈Hng)H sn (l)︸ ︷︷ ︸
q̈s n (l)

, (15)

with Ċ ∈ CLs×Ls and its complement C̈ defined as

Ċ =
(

Id×d 0d×(Ls−d)

0(Ls−d)×d 0(Ls−d)×(Ls−d)

)
, (16)

C̈ = ILs×Ls − Ċ. (17)

For later derivations throughout Section IV and Section V, we
note that q̈sn (l) in (15) may alternatively be expressed as

q̈sn (l) = (C̈dHng)H sn (l − d), (18)

where C̈d is derived from C̈ by shifting d rows upwards, i.e.,

C̈d =

(
0(Ls−d)×d I(Ls−d)×(Ls−d)

0d×d 0d×(Ls−d)

)
. (19)

Based on the above definitions, the (sub-band) impulse response
(IR) relating sn (l) and qsn (l) is graphically represented in Fig. 3.
The parameter d can be controlled by design choices in the
MCLP and the GSC framework, as shown in Section II-C and
Section II-D, respectively.

We now define the early reverberant-speech component q̇s1 (l)
as the target component to be maintained, and the remain-
ing late reverberant-speech component plus all noise compo-
nents q̈s1 (l) +

∑N
n=2 qsn (l) + qv (l) as the component to be

canceled. Note that in a different acoustic scenario, e.g., withN
speech sources instead of one speech source plus N − 1 noise
sources, the target component could be defined differently, e.g.,
by
∑N

n=1 q̇sn (l).

C. MCLP Filter Input

In the MCLP framework, the filter input signal u(l) ∈ CMLw

is a delayed version of the microphone signals y(l). The pre-
diction delay δ is chosen as δ = d, i.e.,

u(l) = y(l−d)
= HH s(l−d) + v(l−d). (20)

Hence, the length Ly in (9) equals the length Lw of a single
filter channel of the data-dependent filter w, i.e.,

Ly = Lw . (21)

With (9), (21), we determine that H ∈ CNLs×MLy is a fat ma-
trix if the MCLP filter length Lw satisfies the condition

Lw ≥ N(Lh − 1)
M −N

, (22)

which obviously requires M > N microphones. If Lw is cho-
sen according to (22) and the (sub-band) RIRs meet the MINT
requirements (i.e., no common zeros), which is commonly as-
sumed [2], [7], then the system is invertible and H has full row
rank [2]. As it is crucial for our derivations in Section IV-B, full
row rank of H is assumed in the remainder. Since our simula-
tion results in Section VII support our theoretical conclusions
in Section IV, we consider this assumption to be reasonable.

D. GSC Filter Input

In the GSC framework, the filter input signal u(l) ∈
C(M−1)Lw is constructed by applying a blocking matrix B ∈
CMLy ×(M−1)Lw to the microphone signal, i.e.,

u(l) = BHy(l)
= (HB)H s(l) + BHv(l),

(23)

where Lw again describes the length of a single filter chan-
nel of the filter w. Eq. (23) is the GSC counterpart to (20)
for MCLP. We intend to completely block all components in
x1(l) = HH

1 s1(l) correlated to the target component q̇s1 (l) as
defined in (15). A matrix B satisfying1 this condition may be
defined in the following manner,

B =

⎛

⎝
−Ḣ1,2 · · · − Ḣ1,M

blkdiag
[
Ḣ1,1 , . . . , Ḣ1,1

]
⎞

⎠, (24)

Ḣ1,m = tplz
[ (
h1,m (0) · · · h1,m (Lb − 1)

)T
, Lw

]
, (25)

where Lb denotes the length of the blocking filters, such that in
the GSC, we find for Ly in (9),

Ly = Lb + Lw − 1. (26)

1Many definitions of B achieving complete blocking exist. In the STFT
domain, for Lb = 1, the blocking matrix may also be defined using RETFs

[21]. If the target component is instead defined as
∑N

n=1 q̇sn (l) as in the
different acoustic scenario mentioned in Section II-B, then also the definition of
B needs to change accordingly.
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The definition in (24)–(25) ensures that all components corre-
sponding to the firstd ≥ Lb taps of the speech-source (sub-band)
RIRs h1,m (k) are nullified, where the case d > Lb occurs if the
first Lb taps of h1,m (k) are succeeded by one or more zeros.
The product HB takes the form

HB =

(
0d×(M−1)Lw

HB

)
, (27)

where, using (9), (26), HB ∈ CNLs−d×(M−1)Lw is a fat matrix
if the GSC filter length Lw satisfies the condition

Lw ≥ N(Lh − 2) + (N − 1)d
M −N − 1

, (28)

which obviously requires M > N + 1 microphones. If Lw is
chosen according to (28) and the M − 1 (sub-band) impulse
responses in HB meet the MINT requirements, i.e., the nullity
of (HB)H does not exceed d, then HB has full row rank ac-
cording to the rank-nullity theorem [34]. As it is crucial for our
derivations in Section V-B1, full row rank of HB is assumed
in the remainder. Since our simulation results in Section VII
support our theoretical conclusions in Section V, we consider
this assumption to be reasonable. Comparing Lw for the GSC
and MCLP in (28) and (22), respectively, we find that the GSC
requires longer filters. Note however that the GSC employs one
filter channel less.

E. Enhanced Signal

For both frameworks, the filter output signal z(l) and the
enhanced signal e(l) are given by

z(l) = wHu(l), (29)

e(l) = q(l) − z(l), (30)

with u(l) given by (20) in MCLP or (23) in the GSC. For
MCLP, z(l) is the linear prediction of q(l), and e(l) accordingly
the linear prediction residual. The estimation of the filter w is
discussed in Section III.

III. FILTER ESTIMATION

We now present the pre-whitened LS estimate of w in
Section III-A and discuss the choice of the pre-whitening matrix
in Section III-B. In Section III-C, we present the corresponding
Wiener solution, which is then used in the theoretical analysis
in the subsequent Section IV and Section V.

A. Pre-Whitened LS

With l = 0 . . . Lobs − 1 and Lobs denoting the number of
observations used in the filter estimation, let q( ··) ∈ C1×Lo b s and
U( ··) ∈ CMLw ×Lo b s denote correspondingly stacked versions of
q(l) and u(l), i.e.,

q( ··) =
(
q(0) · · · q(Lobs − 1)

)
, (31)

U( ··) =
(
u(0) · · · u(Lobs − 1)

)
, (32)

and let Y( ··) , S( ··) , Sn |( ··) , and V( ··) be defined equivalently to

U( ··) in (32). Further, let Ω−1/2
( ··) ∈ CLo b s×Lo b s denote some pre-

whitening matrix with Ω( ··) = ΩH/2
( ··) Ω1/2

( ··) to be defined explic-
itly in Section III-B. Let Ũ( ··) and q̃( ··) denote correspondingly
pre-whitened versions of U( ··) and q( ··) , i.e.,

q̃( ··) = q( ··)Ω
−1/2
( ··) =

(
q̃(0) · · · q̃(Lobs − 1)

)T
, (33)

Ũ( ··) = U( ··)Ω
−1/2
( ··) =

(
ũ(0) · · · ũ(Lobs − 1)

)
, (34)

and let Ỹ( ··) , S̃( ··) , S̃n |( ··) , and Ṽ( ··) as well as their respective
column vectors ỹ(l), s̃(l), s̃n (l), and ṽ(l) be defined equiva-
lently to (34). Based on these definitions, the pre-whitened data
q̃(l) and ũ(l) may be expressed equivalently to q(l) in (14)
and u(l) in (20), (23), where ỹ(l), s̃(l), and ṽ(l) replace y(l),
s(l), and v(l), respectively. Based on (29)–(30), (33)–(34), we
generically define the LS cost function,

JLS (w) =
∥∥∥∥q̃( ··) − wH Ũ( ··)︸ ︷︷ ︸

∥∥∥∥
2

2
,

ẽ( ··) = (ẽ(0) · · · ẽ(Lobs − 1)) (35)

leading to the the LS filter estimate wLS ,

wLS = arg min
w
JLS (w)

=
(
Ũ( ··)ŨH

( ··)

)−1
Ũ( ··) q̃H( ··)

=
(
U( ··)Ω−1

( ··) U
H
( ··)
)−1

U( ··)Ω−1
( ··) q

H
( ··) . (36)

Note that with (33)–(34), wLS in (36) may alternatively be
written as

wLS =

(
Lo b s−1∑

l=0

ũ(l)ũH (l)

)−1 Lo b s−1∑

l=0

ũ(l)q̃∗(l). (37)

B. Choice of Pre-Whitening Matrix

The pre-whitening matrix Ω−1/2
( ··) may be used to mitigate an

estimation bias due to the speech source-signal statistics. E.g.,
for the two cases ε( ··) ∈ {q̇s1 |( ··) , s1|( ··)} with q̇s1 |( ··) and s1|( ··)
defined equivalently to (31), an unbiased estimate is achieved if

Ω( ··) = Ψε|( ··) , (38)

where Ψε|( ··) = E[εH( ··)ε( ··) ]. Eq. (36) then corresponds to the
(unbiased) generalized LS estimator of w for the data model
q( ··) = wHU( ··) + ε( ··) , where ε( ··) resembles the observation
noise. In the time domain, Ψq̇s 1 |( ··) and Ψs1 |( ··) are generally
non-diagonal. The choice Ω( ··) = Ψs1 |( ··) here corresponds to
the pre-whitening paradigms proposed in [6] for MCLP and
[23] for the GSC. The choice Ω( ··) = I generally yields a biased
estimate, as demonstrated in the simulations in Section VII-B1.

In the STFT domain, Ψq̇s 1 |( ··) may be modeled as a matrix
with 2d− 1 non-zero diagonals and Ψs1 |( ··) may be modeled as
a fully diagonal matrix, cf. Section II-A, where the lth diagonal
element of Ψs1 |( ··) corresponds to the PSD ψs1 (l) = E[|s1(l)|2 ].
In this case, with (31)–(32), wLS in (36) may therefore be
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written as

wLS =

(
Lo b s−1∑

l=0

u(l)uH (l)
ψs1 (l)

)−1 Lo b s−1∑

l=0

u(l)q∗(l)
ψs1 (l)

, (39)

i.e., each frame q(l) and u(l) is weighted by the inverse of
ψs1 (l), which, in case of MCLP, corresponds to the WPE cri-
terion [10], [11]. Note that ψs1 (l) varies over time for non-
stationary source signals.

In Section VII-B2, we present STFT-domain simulations for
d = 1 and Ω( ··) = Ψq̇s 1 |( ··) ∝ Ψs1 |( ··) . Herein, prior to estimat-
ing w according to (36), the PSDs ψq̇s 1

(l) on the diagonal of
Ψq̇s 1 |( ··) are estimated as proposed in [28], [35], i.e., by apply-
ing the generalized eigenvalue decomposition (GEVD) to the
spatial correlation matrix of the microphone signals in each
frame l, where it is assumed that the spatial coherence matrix of
the late reverberant component may be modeled as diffuse, cf.
Section VII-A3.

Note that in the different acoustic scenario mentioned in
Section II-B with the target component defined as

∑N
n=1 q̇sn (l)

instead of q̇s1 (l), in order to achieve an unbiased filter esti-
mate, one has to change Ω( ··) accordingly, e.g., using ε( ··) =∑N

n=1 q̇sn |( ··) in (38).

C. Convergence to Wiener Filter Solution

For the purpose of the analysis in Section IV and Section V,
we assume wide-sense stationarity for the pre-whitened signals
ũ(l) and q̃(l), i.e., their statistics are independent of l. Then, for
Lobs → ∞, the estimate wLS in (37) converges to the Wiener
filter solution wW F ,

wW F = Ψ+
ũ ψũ q̃ , (40)

with Ψũ = E[ũ(l)ũH (l)] and ψũ q̃ = E[ũ(l)q̃∗(l)]. Here, the
inverse in (37) is replaced by the pseudoinverse, as in the GSC,
Ψũ becomes rank-deficient in absence of incoherent noise and
in case of complete blocking, i.e., if (27) holds, cf. Section V-B1
and Appendix A-1.

IV. MCLP ANALYSIS

For w = wW F , we now derive the MCLP filter output signal
z(l) in Section IV-A and then derive and discuss the enhanced
signal e(l) under different noise conditions in Section IV-B.

A. MCLP Filter Output

Using (14), (20), and noting that E[ỹ(l − d)ỹH (l − d)] =
E[ỹ(l)ỹH (l)], the terms Ψũ and ψũ q̃ in (40) become

Ψũ = Ψỹ , (41)

ψũ q̃ = Ψỹ |dg, (42)

Ψỹ |d = E
[
ỹ(l − d)ỹH (l)

]
. (43)

Inserting (20) in (29) and substituting w by wW F in (40), we
obtain for the filter output signal,

z(l) = (Ψ+
ỹ Ψỹ |dg)Hy(l − d). (44)

Fig. 4. Schematic of the correlation matrices Ψ s̃ n and Ψ s̃ n |d as different
submatrices of a larger correlation matrix.

Let the shifted correlation matrices Ψs̃n |d , Ψs̃|d , and Ψṽ |d be
defined equivalently to Ψỹ |d in (43), with relations equivalent
to (11)–(13). We now introduce the following relation between
Ψs̃n |d and Ψs̃n , which is used in the subsequent derivations
in Section IV-B. For this, note that we can interpret Ψs̃n |d and
Ψs̃n as different submatrices of a larger correlation matrix, as
shown in Fig. 4. The submatrix defining Ψs̃n |d is shifted left by
d columns as compared to the submatrix defining Ψs̃n. Noting
that the autocorrelation width of s̃n (l) is typically much smaller
than Lh in both the time and STFT domain, we assume that
the autocorrelation of s̃n (l) is zero for lags greater than Ls − d,
where Ls − d ≥ M

M−N (Lh − 1) − d and d� Lh , cf. (9), (21)–
(22). Using (16), (19), we then express Ψs̃n |d in terms of Ψs̃n

by

Ψs̃n |d = Ψs̃n C̈d + C̈dΨs̃n Ċ. (45)

The product Ψs̃n C̈d shifts the elements in Ψs̃n right by d
columns. The product C̈dΨs̃n C replaces the resulting zero
columns by the first d columns of Ψs̃n shifted up by d rows.

B. MCLP Enhancement

We now analyze the behavior of MCLP considering two sce-
narios: absence and presence of incoherent noise.

1) Absence of Incoherent Noise: The absence of incoher-
ent noise corresponds to v(l) = 0, i.e., y(l) = x(l). In this
case, using (10) and relations equivalent to (11)–(13), the in-
dividual terms in (44) are equal to y(l − d) = HH s(l − d),
Ψỹ = HHΨs̃H, and Ψỹ |d = HHΨs̃|dH. Inserting these in
(44) and noting that H+ = HH (HHH )−1 and hence HH+ = I
since H is assumed to have full row rank yields

z(l) = (Ψ+
s̃ Ψs̃|dHg)H s(l − d), (46)

which, using (11), (45), (14)–(15), may be written as

z(l) =
N∑

n=1

(
q̈sn (l) + ϑHn |dsn (l−d)

)
,

with ϑn |d = Ψ−1
s̃n

C̈dΨs̃n ĊHng.

(47)

(48)

As apparent from (47)–(48), all reverberant source components
are treated mutually independently and equally. This holds as
long as (22) is satisfied and H has full row rank. Inserting (47)
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Fig. 5. Schematic of the (sub-band) IR relating sn (l) and esn (l), separated in
early part ĊHn g [ ] applied to sn (l) and bias part −ϑn |d [ ] applied
to sn (l−d).

into (30) yields the MCLP output signal,

e(l) =
N∑

n=1

⎛

⎜⎜⎝ q̇sn (l) − ϑHn |dsn (l − d)
︸ ︷︷ ︸

es n (l)

⎞

⎟⎟⎠ . (49)

From (49), we observe that e(l) equals the sum of the early com-
ponents q̇sn (l) and a (potential) bias term −ϑHn |dsn (l − d) per
source, with ϑn |d ∈ CLs and Ls = Lh + Lw − 1 according to
(9), (26). Therefore, as only the late components q̈sn (l) are can-
celed, the MCLP framework suits best in the different acoustic
scenario mentioned in Section II-B with the target component
defined as

∑N
n=1 q̇sn (l) instead of q̇s1 (l). Combining (15) and

(18), we can compare the individual components esn (l) in (49)
to

qsn (l) = q̇sn (l) + (C̈dHng)H sn (l − d), (50)

i.e., the bias term replaces the late component q̈sn (l) =
(C̈dHng)H sn (l − d). Similarly as for the (sub-band) IR Hng
relating sn (l) and qsn (l) in Fig. 3, we visualize the (sub-band)
IR relating sn (l) and esn (l), composed of the early part ĊHng
and the bias part −ϑn |d , in Fig. 5. In the following we interpret
the bias term in more detail, which has also partly been done in
our previous work [24]. Firstly, from ĊHng in (48), we observe
that the bias term −ϑHn |dsn (l − d) depends on the first d taps
of Hng only, i.e., on its early part, but not its late part. Sec-
ondly, we note that ϑn |d depends on the correlation matrix Ψs̃n

of the pre-whitened version s̃n (l) of sn (l), cf. Section III-A.
We can hence argue that for Ω( ··) = Ψq̇s 1 |( ··) as defined in (38),

with q̇s1 (l) = (ĊH1g)H s1(l), cf. (15), the coloration of the
pre-whitened speech-source signal s̃1(l) is inverse to the filter
ĊH1g, such that only the first element of the vector Ψs̃1 ĊH1g
is non-zero. Similarly, we can argue that for Ω( ··) = Ψs1 |( ··) , the
matrix Ψs̃1 becomes diagonal, such that only the first d ele-
ments of Ψs̃1 ĊH1g are non-zero. In both cases, with C̈d as
in (19), we find C̈dΨs̃1 ĊH1g = 0, and therefore ϑ1|d = 0 in
(48) and finally es1 (l) = q̇s1 (l) in (49). Hence, the estimator is
indeed unbiased for Ω( ··) ∈ {Ψq̇s 1 |( ··) , Ψs1 |( ··)}, as anticipated in
Section III.

Note that the remaining early components may still be bi-
ased, i.e., ϑn |d �= 0 for n �= 1. In general, for Ω( ··) = I, the term
ϑHn |dsn (l − d) in (49) represents a (delayed) linear prediction
component of q̇sn (l), i.e., the output signal component esn (l)
may be understood as a (partially) whitened version of q̇sn (l).
This effect is also known as excessive whitening [7].

2) Presence of Incoherent Noise: If additional incoherent
noise v(l) �= 0 is present, the pseudoinverse of the sum Ψỹ =
Ψx̃ + Ψṽ in the filter Ψ+

ỹ Ψỹ |dg in (44) cannot be decomposed
into its individual components, such that further simplification
of (44) is not possible. In this more general case, MCLP can-
cels the linear prediction of the sum of gHx(l) and gHv(l).
Noting that the incoherent noise acts as M additional indepen-
dent sources, we find that the condition (22) for complete linear
prediction in the MCLP framework, where M is required to ex-
ceed the number of independent sources N , cannot be fulfilled,
resulting in decreased performance.

V. GSC ANALYSIS

Similarly to Section IV, for w = wW F , we now derive the
GSC filter output signal z(l) in Section V-A and then derive and
discuss the enhanced signal e(l) under different noise conditions
in Section V-B.

A. GSC Filter Output

Following a derivation similar to Section IV-A, using (14)
and (23), Ψũ and ψũ q̃ in (40) can be written as

Ψũ = BHΨỹB, (51)

ψũ q̃ = BHΨỹg. (52)

Inserting (23) in (29) and substituting w by wW F in (40), we
obtain for the filter output signal,

z(l) =
(
B(BHΨỹB)+BHΨỹg

)H
y(l). (53)

B. GSC Enhancement

Similarly to Section IV-B, we now analyze the behavior of the
GSC, again considering two scenarios: absence and presence of
incoherent noise.

1) Absence of Incoherent Noise: For the case v(l) = 0, i.e.,
y(l) = x(l), using (10) and relations equivalent to (11)–(13),
the individual terms in (53) are equal to y(l) = HH s(l) and
Ψỹ = HHΨs̃H. Inserting in (53) yields

z(l) =
(
HB

(
(HB)HΨs̃HB

)+
(HB)HΨs̃Hg

)H
s(l).

(54)

In Appendix A-1, assuming complete blocking such that (27)
holds, it is shown that (54) can be reformulated as

z(l) = q̈s1 (l) + ϑH1|ds1(l−d) +
N∑

n=2

qsn (l),

with ϑ1|d = (C̈dΨs̃1 C̈
H
d )+C̈dΨs̃1 ĊH0g.

(55)

(56)

Inserting (55) into (30) yields the GSC output signal,

e(l) = q̇s1 (l) − ϑH1|ds1(l − d). (57)

Eqs. (55)–(57) form the GSC counterpart to (47)–(49) for
MCLP. From (57), we observe that e(l) consists of two terms: the
target component q̇s1 (l) and a bias term −ϑH1|ds1(l − d). This
implies that not only the late reverberant-speech component, but
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TABLE I
COMPARATIVE SUMMARY OF THE MCLP FRAMEWORK VERSUS THE GSC FRAMEWORK

∗if incoherent noise absent (reduced performance otherwise).

also the coherent-noise components are completely canceled in
the GSC, which is in contrast to MCLP, where only the late,
but not the early coherent-noise components could be canceled.
In Appendix A-2, it is shown that ϑ1|d in (56) for the GSC is
indeed equal to ϑ1|d in (48) for MCLP. Hence, the discussion
on the bias term in MCLP in Section IV-B1 similarly applies to
the GSC, implying that for Ω( ··) ∈ {Ψq̇s 1 |( ··) , Ψs1 |( ··)} in (36),
we find ϑ1|d = 0 and e(l) = q̇s1 (l), i.e., we achieve complete
and unbiased cancellation. Note that if the target component
was defined as

∑N
n=1 q̇sn (l) instead of q̇s1 (l) as in the different

acoustic scenario mentioned in Section II-B and B was changed
accordingly, for the same Ω( ··) , the GSC would yield the same
result as MCLP. Also note that the above conclusions hold for
complete blocking, i.e., if (27) is satisfied. For incomplete block-
ing, partial speech cancellation may appear. In Section VII, we
simulate both cases.

2) Presence of Incoherent Noise: Similarly to the MCLP
framework, if additional incoherent noise v(l) �= 0 is present,
a simplification of (53) is not possible. We may therefore apply
the same reasoning as in Section IV-B2. Noting that the inco-
herent noise acts as M additional independent noise sources,
we find that the condition for complete cancellation in the GSC
framework (28), where M − 1 is required to exceed the num-
ber of independent sources N , cannot be fulfilled, resulting in
decreased performance. These conclusions are compliant with
the analysis in [19], which demonstrates that in MVDR beam-
forming, there is an inherent trade-off between dereverberation
and noise reduction for incoherent and mixed-coherent-plus-
incoherent noise fields.

VI. COMPARATIVE SUMMARY

Table I summarizes the theoretical findings from Section IV
and Section V. For a given pre-whitening matrix Ω−1/2

( ··) , MCLP
does not further distinguish between the speech source and the
localized noise sources, while the GSC does so by means of
the spatial pre-processing in the blocking matrix. MCLP hence
treats all source components qsn (l) the same, suppressing the
late components q̈sn (l), but none of the early components q̇sn (l).
By contrast, the GSC suppresses all coherent-noise components
qsn (l) on the one hand, and the late reverberant-speech compo-
nent q̈s1 (l) on the other hand, provided that the blocking matrix
B achieves complete blocking of the early reverberant-speech
component. In both frameworks, an unbiased speech compo-

nent with ϑ1|d = 0 may be obtained by pre-whitening q(l) and
u(l) accordingly. The presence of incoherent noise decreases
the performance.

The spatial pre-processing of the GSC naturally comes at a
cost. The blocking matrix requires spatial information, which
needs to be acquired in practice. Further, as to be demonstrated
in simulations, cf. Section VII-B, in case of incomplete block-
ing, the GSC performs inferior in terms of dereverberation as
compared to MCLP. Compared to MCLP, the minimum number
of required microphones is increased by one, as the blocking
matrix creates M − 1 independent output signals only from M
input signals. In the GSC, the number of filter channels is ac-
cordingly decreased by one, where a higher filter length Lw is
required per channel.

VII. SIMULATIONS

In this section, we present simulation results comparing
MCLP and the GSC in terms of dereverberation and noise reduc-
tion performance. The simulation setup is described in VII-A,
and the results are discussed in VII-B.

A. Simulation Setup

In order to confirm the theory in Section IV–V and to further
assess the practical relevance we respectively perform simula-
tions for time domain and STFT domain implementations. The
reasons for this are as follows: in the time domain, using oracle
knowledge on the early RIRs, complete blocking can be sim-
ulated for the GSC, cf. Section VII-A3a. Further, unweighted
global power-ratio measures can be well defined and evaluated,
cf. Section VII-A4a. Therefore, in order to confirm the theory,
we perform simulations on the time domain implementation,
employing an ideal blocking matrix in the GSC yielding com-
plete blocking, and evaluate the performance using unweighted
global power-ratio measures. In the STFT domain, complete
blocking cannot be simulated, since the sub-band convolution
model in (1) poses an approximation of the time-domain convo-
lution only [33]. Instead of using oracle knowledge in the block-
ing matrix, we estimate the RETFs from the microphone signals,
such that the GSC performance also depends on the estimation
quality of the RETFs, cf. Section VII-A3b. As, due to incom-
plete blocking, power-ratio measures equivalent to those used
in the time domain cannot be well defined, and as unweighted
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global power-ratio measures are further known to relate com-
parably poorly to the perceived speech quality, we instead use
perceptually motivated freqeuncy-weighted segmental power-
ratio measures [36]. Therefore, in order to address the practical
relevance, we perform simulations on the STFT domain imple-
mentation, employing an estimated blocking matrix in the GSC
yielding incomplete blocking, and evaluate the performance us-
ing weighted segmental power-ratio measures.

1) Acoustic Scenario: In order to generate multi-channel
RIRs, the randomized image method [37] is used at a sampling
frequency of 16 kHz, whereby the image sources are randomly
displaced within a sphere of 8 cm. Multi-channel RIRs are gen-
erated using the randomized image method [37] at a sampling
frequency of 16 kHz, with the image sources randomly displaced
within a sphere of 8 cm. A fractional delay low-pass filter with
a relative cut-off frequency of 0.9 and a length of 11 taps is
applied, such that the energy of each acoustic wave, i.e., of the
direct component and each reflection, is spread over 11 samples.
The room dimensions are 5×4 × 3 m, the reverberation time
is 0.5 s. The room impulse responses are truncated after 8000
taps. A linear array of 8 microphones with inter-microphone
distances of (4, 4, 4, 8, 4, 4, 4) cm is used. The simulations com-
prise one speech source and one localized noise source. In total,
128 scenarios are generated. In each scenario, the position and
orientation of the microphone array is randomized. The speech
source is located at a random position in broadside direction at
2 m distance to the center of the microphone array (i.e., on a
circle around its axis). The position of the localized noise source
is randomized, with the constraint that the distance to the center
of the microphone array is at least 1 m and the angle between
the localized noise source and the speech source, seen from the
center of the microphone array, is at least 15◦.

2) Source Signals: We define two different source signal
settings. In the first one, both the speech-source signal and the
localized noise source signal are chosen to be temporally corre-
lated, i.e., colored signals. The (non-stationary) speech-source
signal s1(l) is composed of male and female speech of in total
51 s duration [38], while for the localized noise source signal
s2(l), stationary pink noise is used. This setting is evaluated for
both the time domain and the STFT domain implementations.
In the time domain, for the chosen setup, cf. Section VII-A3,
the coloration of the source signals causes a biased filter esti-
mate. In the second setting, both s1(l) and s2(l) are chosen to
be temporally uncorrelated, i.e., white, stationary signals, and
have been generated independently from the source signals in
the first setting. This setting is evaluated in the time domain
implementations only, leading to an unbiased filter estimate and
serving as a reference in order to illustrate the effect of the
bias in the first setting. Since sensor noise is always present
in practice, spatially and temporally uncorrelated noise v(l) is
added in all simulations. Note that due to the incoherent noise,
the time domain simulation results may at most approximately
reach the theoretical limits discussed in Section IV-B1 and
Section V-B1.

The power of the noise components is defined via the signal-
to-coherent-noise ratio SNRcoh

y and the signal-to-incoherent-

noise ratio SNRinc
y in the first microphone, i.e.,

SNRcoh
y = 10 log10

∑
l |x1,1(l)|2∑
l |x2,1(l)|2 dB, (58)

SNRinc
y = 10 log10

∑
l |x1,1(l)|2∑
l |v1(l)|2 dB, (59)

where the reverberant-speech component x1,1(l) in the first mi-
crophone is considered to be the useful signal.

3) MCLP and GSC Implementation:
a) Time domain: In the time domain, we define the direct

speech component to be the target component, i.e., we choose
δ = Lb = 11 samples, corresponding to the energy spread of
a single acoustic wave, cf. Section VII-A1, yielding d = 11
for MCLP and d ≥ 11 for the GSC, cf. Section II-C and
Section II-D. An ideal GSC blocking matrix B was designed,
cf. (24)–(25). The filter g is chosen to be a matched filter (MF)
such that BH g = 0, both for the GSC and MCLP. We choose
Ω( ··) = I in (36), leading to a biased filter estimate for colored
source signals. The effect of the bias is shown by comparing the
performance for both colored and white source signals.

b) STFT domain: In the STFT domain, using square-root-
Hann windows of 512 samples with 50% overlap, we choose
δ = Lb = 1 frame. The GSC blocking matrix B uses an es-
timate of the RETFs, which we obtain as presented in [28],
[35], [39]: we estimate the average spatial correlation matrix
of the microphone signals using the whole batch, and the spa-
tial correlation matrix of the stationary noise components using
5 s noise-only frames, such that the spatial speech-component
correlation matrix can be estimated by subtraction. Then, from
the spatial speech-component correlation matrix estimate, the
RETF relative to the first microphone is estimated using the
GEVD, assuming that the spatial coherence matrix of the late
reverberant-speech component in frame l may be modeled as
diffuse [28], [35]. Again, the filter g is chosen to be an MF
with BH g = 0, i.e., g is a normalized version of the RETF es-
timate. For Ω( ··) in (36), we use an estimate of Ψq̇s 1 |( ··) , which
in the STFT domain is diagonal for d = 1, cf. Section III-B.
Since g is a normalized version of the RETF estimate, esti-
mating the PSDs ψq̇s 1

(l) in Ψq̇s 1 |( ··) corresponds to estimating
the early-reverberant speech component in the first microphone.
Again, this can be done using the GEVD [28], [35], now ap-
plied to a recursive estimate of the spatial speech-component
correlation matrix in frame l. See, e.g., [28], [35] for a detailed
and more formal discussion on GEVD-based RETF and PSD
estimation.

4) Performance Measures:
a) Time domain: In the time domain, equivalently to

qs1 (l), qs2 (l), qv (l) and q̇s1 (l), we define the individual source
components of e(n) as es1 (l), es2 (l), ev (l) and ės1 (l), where
ės1 (l) = q̇s1 (l), cf. (49), (57). With σ ∈ {q, e}, the signal-to-
coherent-noise ratio SNRcoh

σ , the signal-to-incoherent-noise
ratio SNRinc

σ , the signal-to-total-noise ratio SNRtot
σ , and the

signal-to-reverberation ratio SRRσ at the MF output and the
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MCLP and GSC output are defined as

SNRtot
σ = 10 log10

∑
l |σ̇s1 (l)|2∑

l |σs2 (l) + σv (l)|2 dB, (60)

SRRσ = 10 log10

∑
l |σ̇s1 (l)|2∑

l |σs1 (l) − σ̇s1 (l)|2
dB, (61)

where the component σ̇s1 (l) is considered to be the useful signal.
Please note that q(l), and hence for σ = q also the measures in
(58)–(61), are independent of the particular framework. Further,
note that in the denominator of (61), for σ = q, the difference
qs1 (l) − q̇s1 (l) equals the late reverberant-speech component
q̈s1 (l), while for σ = e, the difference es1 (l) − ės1 (l) comprises
not only residual reverberation, but also a bias term in the general
case. For evaluation, we use the improvement in SNRtot and
SRR, i.e.,

ΔSNRtot = SNRtot
e − SNRtot

q , (62)

ΔSRR = SRRe − SRRq . (63)

b) STFT domain: In the STFT domain, the target com-
ponent q̇s1 (l) cannot be observed separately, since the sub-
band convolution model in (1) poses an approximation of the
time-domain convolution only [33]. Further, due to overlap-
ping frames in the STFT processing and incomplete blocking
in the GSC, the target component q̇s1 (l) may not be com-
pletely maintained in e(l), such that the measures in (60)–(63)
are not suitable in the STFT domain. Instead, we define the
direct-component in q(l) as a reference signal, which cannot
be assumed to be equivalent to q̇s1 (l). Then, with σ ∈ {q, e},
for σ(l) and σs1 (l), respectively, we compute the frequency-
weighted segmental signal-to-noise-plus-reverberation ratio and
the frequency-weighted segmental signal-to-reverberation ratio
[36], denoted as SNRRfwseg and SRRfwseg and indicating
the dereverberation-plus-noise-reduction performance and the
dereverberation-only performance.

5) Varied Parameters: In the time domain, simulations are
carried out for different values of the following parameters:
SNRcoh

y , SNRinc
y , Lw , and M . The filter length Lw is pre-

sented relatively to the theoretical minimum given in (22), (28),
denoted by Lrel

w . While one parameter is varied, the others are
fixed at SNRcoh

q = 0 dB, SNRinc
q = 90 dB, Lrel

w = 1, and
M = 8, i.e., all simulations intersect at this point. For N = 2,
the minimum number of microphones required by MCLP and
the GSC is given by M = 3 and M = 4, respectively, cf. (22),
(28). If the number of microphones M falls below this required
minimum, the filter length is computed setting the denominators
in (22), (28) to one. Simulations posing nearly ideal conditions,
i.e., sufficiently high SNRinc

q , Lrel
w ≥ 1 and sufficiently many

microphones M , validate the theoretical results in Section IV
and Section V, with minor deviations occurring due to the LS
approximation in (36) of the Wiener solution in (40) and re-
maining low-level incoherent noise.

In the STFT domain, simulations are carried out for different
values of SNRcoh

y only, with SNRinc
q = 90 dB, Lrel

w = 1, and
M = 8. Since complete blocking is not achieved in the STFT
domain, decreased performance is expected for the GSC.

B. Simulation Results

We now discuss the time and STFT domain simulation results
in Section VII-B1 and Section VII-B2, respectively.

1) Time Domain: The performance of both frameworks in
terms of ΔSRR and ΔSNRtot are shown in Fig. 6. We first
discuss the dereverberation performance, followed by the noise
reduction performance.

a) Dereverberation: From Fig. 6(a)–(d) we observe that
under favorable conditions with predominantly late-reverberant-
speech interference, i.e., for high SNRcoh

y , high SNRinc
y ,

Lrel
w ≥ 1 and sufficiently highM , theSRR improvement of both

MCLP and GSC converge to the same value of around 31 dB for
white source signals, respectively denoted by [ ] and [ ].
This upper limit is determined by the LS approximation (36) of
the Wiener Solution of the (40). In all conditions, for colored
source signals, the target component q̇s1 (l) is partially whitened
due to the biased filter estimate, leading to a performance drop
for both MCLP [ ] and the GSC [ ], cf. Section IV-B1
and Section V-B1 and Table I. The GSC reaches up to 18 dB
ΔSRR, outperforming MCLP by 3 dB. This is due to the poten-
tial delay between the direct component and the first reflection,
increasing d for the GSC and thereby decreasing the bias, cf.
Section VII-A3. The higher standard deviation of ΔSRR for
the GSC is a result of the variation of this delay over different
source and microphone array positions.

As can be seen in Fig. 6(a), for white source signals, MCLP
shows a rather high sensitivity towards coherent noise for
SNRcoh

y < 10 dB, whereas the GSC is somewhat less sensi-
tive. This can be explained by the limited number of observations
Lobs used in the LS approximation (36) of the Wiener solution
(40), causing LS to focus on the suppression of components
with higher power, i.e., here on (late) coherent-noise suppres-
sion. For colored source signals, the effect is less pronounced in
both frameworks.

While it can be observed from Fig. 6(b) that both MCLP
and GSC are highly sensitive to incoherent noise, the results
also indicate an up to 2.5 dB lower performance of the GSC
as compared to MCLP for SNRinc

y < 90 dB and < 55 dB for
white and colored source signals, respectively. The reason for
this may lie in the GSC blocking matrix, which by construction
causes a cross-correlation of the incoherent-noise components
in the data-dependent filter input u(l), as opposed to the mere
delay in MCLP. Hence, for the GSC, not only the autocorrelation
submatrices of Ψũ are affected by incoherent noise, but also the
cross-correlation submatrices.

As shown in Fig. 6(c), ΔSRR saturates for both MCLP and
GSC above Lrel

w = 1, both for white and colored source sig-
nals, as expected from theory. The GSC performs slightly better
than MCLP if Lrel

w < 1. We may however state that for both
frameworks, undermodeling is not extremely critical, as even
at Lrel

w = 0.7, we obtain ΔSRR values above 22 dB for white
source signals, while the performance is hardly affected for col-
ored source signals.

From Fig. 6(d), we note that ΔSRR drops sharply for both
MCLP and GSC if the number of microphones is smaller than
required, i.e., M < 3 and M < 4, respectively. This holds for
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Fig. 6. Dereverberation/noise reduction performance ΔSRR/ΔSNR tot versus (a)/(e) the signal-to-coherent-noise ratio SNR coh
q , (b)/(f) the signal-to-

incoherent-noise ratio SNR in c
q , (c)/(g) the relative filter length Lrel

w and (d)/(h) the number of microphones M for colored and white source signals of the MCLP
framework, respectively denoted by [ ] and [ ], and the GSC framework, respectively denoted by [ ] and [ ]. The vertical grid lines indicate the
intersection point of the individual subplots. The shaded areas represent the standard deviation.

both white and colored source signals. MCLP reaches saturation
at M = 3, while the GSC saturates at M = 5 only instead of
M = 4. This may be caused by remaining low-level incoherent
noise and possibly nearly common zeros in the transfer functions
corresponding to HB in (27) for M = 4.

b) Noise reduction: From Fig. 6(e)–(h) we observe that
under favorable conditions with predominantly coherent-noise
interference, i.e., for low SNRcoh

y , high SNRinc
y , Lrel

w ≥ 1
and sufficiently high M , the GSC [ , ] shows increas-
ing improvement in terms of ΔSNRtot for decreasing values
of SNRcoh

y , while for MCLP [ , ], ΔSNRtot is lim-
ited to at most 15 dB. the GSC [ , ] clearly outper-
forms MCLP [ , ] in terms of ΔSNRtot . This is due
to the GSC suppressing the entire coherent-noise component
qs2 (l), while MCLP suppresses the late coherent-noise com-
ponent q̈s2 (l) only, cf. (47)–(49), (55)–(57) and Table I. Note
that MCLP exhibits a stronger standard deviation in ΔSNRtot

than the GSC. This is caused by the varying power of the early
coherent-noise component q̇s2 (l), as the power of the individual
direct components at the output of the MF may be distributed
over a range potentially larger than d, depending on the angle
between the speech source and the coherent-noise source. In
all conditions, the GSC performs somewhat worse for colored

signals than white signals, while no significant difference is
found for MCLP.

Fig. 6(e) indicates that the GSC exceeds MCLP for
SNRcoh

y < 20 dB, while both frameworks perform similarly
for high SNRcoh

y values. For the GSC, ΔSNRtot decreases
at a rate of slightly less than 10 dB ΔSNRtot per 10 dB
SNRcoh

y , such that the noise power at the output is almost
constant throughout the simulated range. This implies that for
SNRcoh

y ≥ 35 dB, the total noise power is in fact even boosted
as compared to the output of the MF, both for MCLP and the
GSC. Again, this effect can be explained by the limited number
of observations Lobs in the LS estimate (36), here causing LS
to focus on reverberant-speech suppression.

As can be seen from Fig. 6(f), for both white and colored
source signals, the GSC exceeds MCLP for higher SNRinc

y

values, while the difference reduces for lower values.
As shown in Fig. 6(g), for both white and colored source

signals, both MCLP and the GSC again saturate for Lrel
w ≥ 1.

Again, undermodeling does not appear to be extremely critical.
From Fig. 6(h), for both white and colored source signals, we

once more find a sharp performance drop for both MCLP and
the GSC if M < 3 and M < 4, respectively. Again, saturation
is reached at M = 3 and M = 5, respectively.
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Fig. 7. (a) Dereverberation-only/(b) dereverberation-plus-noise-reduction
performance in terms of SRR f w seg /SNRR f w seg versus the signal-to-
coherent-noise ratio SNR coh

y of the MF, the MCLP and the GSC framework,
respectively denoted by [ ], [ ], and [ ]. The shaded areas repre-
sent the standard deviation.

2) STFT Domain: The performance of both frameworks in
terms of SRRfwseg and SNRRfwseg are shown in Fig. 7,
where the performance of the MF serves as a reference.

From Fig. 7(a), we note that the dereverberation-only perfor-
mance of the MF [ ] in terms of SRRfwseg remains almost
constant around 4.1 dB. At high SNRcoh

y values with predom-
inantly late-reverberant-speech interference, MCLP [ ] and
the GSC [ ] outperform the MF by up to 3.1 dB and 4.1 dB,
respectively. Note that in theory, for complete blocking, i.e., if
(27) is satisfied, the GSC is expected to perform as effectively
as MCLP in terms of dereverberation, cf. (47)–(49), (55)–(57),
Table I, and the time domain simulation results in Section VII-
B1. However, since the sub-band convolution model in (1) poses
an approximation of the time-domain convolution only, and
since the RETFs used in the GSC blocking matrix are subject
to estimation errors, cf. Section VII-A3b, complete blocking is
not achieved in the STFT domain. Due to incomplete blocking,
the GSC hence suffers from some amount of early reverberant-
speech cancellation and in addition from incomplete prediction
of the late reverberant-speech component q̈s1 (l), leading to re-
duced dereverberation performance in comparison to MCLP. At
low SNRcoh

y values with predominantly coherent-noise inter-
ference, we find that both MCLP and the GSC perform worse
than the MF, indicating speech distortion. Again, this effect can
be explained by the limited number of observations Lobs used

in the LS estimate (36), causing LS to focus on (late) coherent-
noise suppression, cf. Section VII-B1. Since the GSC is able
to suppress the early coherent-noise component q̇s2 (l) also, the
GSC performance is less affected.

From Fig. 7(b), we note that the dereverberation-plus-noise-
reduction performance of the MF in terms of SNRRfwseg

ranges between −8 dB for SNRcoh
y = −20 dB and 2.6 dB

for SNRcoh
y = 40 dB, where the upper limit is still affected

by the noise component, as can be seen by comparison to the
dereverberation-only performance in Fig. 7(a). At highSNRcoh

y

values MCLP and the GSC outperform the MF by up to 32.8 dB
and 2.1 dB, respectively. At low SNRcoh

y values, MCLP per-
forms only somewhat better than the MF, while the GSC in
contrast outperforms the MF by up to 5.1 dB. This difference
at low SNRcoh

y values is expected as MCLP suppresses the
late coherent-noise component q̇s2 (l) only, while the GSC sup-
presses the entire coherent-noise component qs2 (l), cf. (47)–
(49), (55)–(57), Table I, and the time domain simulation results
in Section VII-B1. Audio examples of the STFT domain simu-
lations are available online [40].

VIII. CONCLUSION

In this paper, we formally analyzed and compared the MCLP
and GSC frameworks in terms of blind dereverberation and
noise reduction performance. Both frameworks are theoretically
able to perform complete dereverberation if incoherent noise is
absent. Due to the use of a blocking matrix, the GSC is theoreti-
cally able to completely cancel coherent noise in the absence of
incoherent noise, while MCLP cancels the late coherent-noise
component only. For complete cancellation, the GSC requires
one additional microphone as compared to MCLP. Furthermore,
the blocking matrix design requires spatial information in form
of the early speech-source RIR or the RETF, which needs to
be acquired in practice. In order to confirm the theory and to
assess the practical relevance of the theoretical findings, we
carried out time domain simulations using oracle knowledge
on the early RIRs, resulting in complete blocking of the early
reverberant-speech component, and STFT domain simulations
using estimated REFTs, resulting in incomplete blocking.

The simulation results confirm that in terms of noise reduc-
tion, as opposed to the GSC performance, the performance of
MCLP is limited. In terms of dereverberation, the GSC performs
equally well if complete blocking is achieved, as expected from
the theoretical analysis, but performs inferior for incomplete
blocking. Both MCLP and the GSC exhibit strong sensitivity
to incoherent noise. For both frameworks, dereverberation and
noise reduction performance reach their maximum at a relative
filter length of about one, while moderate undermodeling of the
filter length does not appear to be extremely critical. The simu-
lations further confirm that for one coherent-noise component,
the GSC requires four microphones, while MCLP requires three
microphones only.

In summary, we can state that if sufficiently many micro-
phones are available and complete blocking is achieved, the
GSC performs superior to MCLP in terms of noise reduction
and equally well in terms of dereverberation, but inferior in
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terms of dereverberation for incomplete blocking. In practice
therefore, in acoustic conditions with only mild noise but pre-
dominantly late-reverberant-speech interference, MCLP is to
be preferred, while in case of predominantly noise but mild to
moderate late-reverberant-speech interference, the GSC is to be
preferred. In acoustic conditions with both strong reverberation
and strong noise, combined schemes may be most appropriate.

APPENDIX A

1): Analogously to (16)–(17), let Ċ ∈ C(NLs×NLs ) and its
counterpart C̈ be defined by

Ċ =

(
Id×d 0d×(NLs−d)

0(NLs−d)×d 0d×(NLs−d)

)
, (64)

C̈ = INLs×NLs − Ċ, (65)

and let Ψs̃ ∈ CNLs−d×NLs−d be the submatrix of Ψs̃ spanning
its last NLs − d rows and columns, such that

C̈Ψs̃C̈ =

(
0d×d 0d×(NLs−d)

0(NLs−d)×d Ψs̃

)
. (66)

With HB as given in (27), the expression
(
(HB)HΨs̃HB

)+

in (54) can then be written as
(
(HB)HΨs̃HB

)+
= (HH

B Ψs̃HB )+

= H+
BΨ−1

s̃ H+T
B . (67)

Inserting (27) and (67) in (54) while noting that HBH+
B = I

since HB is assumed to have full row rank, and further using
(66) and Lemma 1 from Appendix B, we obtain

z(l) =
(
HB

(
(HB)HΨs̃HB

)+
(HB)HΨs̃Hg

)H
s(l)

=

((
0d×d 0d×(NLs−d)

0(NLs−d)×d Ψ−1
s̃

)
Ψs̃Hg

)H

s(l)

=
(
(C̈Ψs̃C̈)+Ψs̃Hg

)H
s(l). (68)

With Ċ + C̈ = I, the matrix Ψs̃ may be written as

Ψs̃ = ĊΨs̃ + C̈Ψs̃

= ĊΨs̃ + C̈Ψs̃C̈ + C̈Ψs̃Ċ. (69)

Substituting (69) in (68), we find (C̈Ψs̃C̈)+(C̈Ψs̃C̈) = C̈ from
(66), while (C̈Ψs̃C̈)+ ĊΨs̃ = 0, such that (C̈Ψs̃C̈)+Ψs̃ in (68)
becomes

(C̈Ψs̃C̈)+Ψs̃ = C̈ + (C̈Ψs̃C̈)+ C̈Ψs̃Ċ. (70)

Using (64)–(65), (16)–(17), and Lemma 1 from Appendix B,
the term (C̈Ψs̃C̈)+ C̈Ψs̃Ċ in (70) takes the form

(C̈Ψs̃C̈)+ C̈Ψs̃Ċ

=

(
(C̈Ψs̃1 C̈)+C̈Ψs̃1 Ċ 0Ls×(N−1)Ls

0(N−1)Ls×Ls 0(N−1)Ls×(N−1)Ls

)
. (71)

Inserting (70) in (68), multiplying out, using (64)–(65) and (14)–
(17), it can be shown that

z(l) = (C̈Hg)H s(l) +
(
(C̈Ψs̃C̈)+ C̈Ψs̃ĊHg

)H
s(l)

=
N∑

n=2

qsn (l) + q̈s1 (l)

+
(
(C̈Ψs̃1 C̈)+C̈Ψs̃1 ĊH1g

)H
s0(l). (72)

With Lemma 1 from Appendix B and C̈d defined in (19),
(C̈0Ψs̃0 C̈0)+ can be written as

(C̈1Ψs̃1 C̈1)+ = C̈H
d (C̈dΨs̃1 C̈

H
d )C̈d , (73)

Substituting (73) into (72) and extracting C̈H
d on the left, we

obtain (55)–(56).
2): With Lemma 1 in Appendix B, the first term in (56),

(C̈dΨs̃0 C̈
H
d )+ , can be written as

(C̈dΨs̃1 C̈
H
d )+ =

(
Ψ−1
s̃1

0(Ls−d)×d

0d×(Ls−d) 0d×d

)
, (74)

where Ψs̃1
∈ CLs−d×Ls−d is the submatrix of Ψs̃1 spanning the

last Ls − d rows and columns, matching the first term in (48)
for n = 1. Note that for d = Lb , Ψ−1

s̃1
∈ CLs−d×Ls−d in (74)

and Ψ−1
s̃1

∈ CLs×Ls in (48) also correspond in terms of dimen-
sions: inserting (26) into (9) yields Ls − d = Lh + Lw − 1 in
the GSC, while inserting (21) into (9) yieldsLs = Lh + Lw − 1
in MCLP. Finally, since the second term in (56), C̈dΨs̃1 ĊH1g,
is equivalent to the second term in (48), both expressions (56)
and (48) yield the same bias component.

APPENDIX B

Lemma 1: The pseudoinverse A+ of a block-diagonal ma-
trix A defined by the blocks An , n = 1 . . . N , on its diagonal
is given by a block-diagonal matrix composed of the pseudoin-
verses A+

n of the individual blocks, i.e.,

if A = blkdiag
[
A1 , . . . , AN

]
,

then A+ = blkdiag
[
A+

1 , . . . , A+
N

]
.

This lemma can be proven easily by verifying the four
criteria defining the pseudoinverse A+ of the matrix A,
i.e., AA+A = A, A+AA+ = A+ , (AA+)H = AA+ , and
(A+A)H = A+A. It is further important to note that the pseu-
doinverse of a zero matrix is equal to its transpose.
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