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Abstract

Enhancement techniques in binaural hearing aids are crucial to
improve speech understanding for hearing impaired persons in
reverberation and noise. Since reverberation and noise can be
commonly modeled as diffuse sound fields, many state-of-the-
art techniques require an estimate of the diffuse power spec-
tral density (PSD). In this paper we evaluate the performance
of binaural dereverberation and noise reduction techniques us-
ing several diffuse PSD estimators in realistic acoustic sce-
narios. Two state-of-the-art techniques are considered, i.e.,
the binaural multi-channel Wiener filter and the binaural min-
imum variance distortionless response beamformer with partial
noise estimation followed by a postfilter. The considered dif-
fuse PSD estimators are blocking matrix-based and eigenvalue
decomposition-based estimators. A least-squares generalization
of dual-channel blocking matrix-based estimators to the multi-
channel case is also presented, yielding the same diffuse PSD
estimate as a recently proposed maximum likelihood estimator.
Simulation results show the applicability of diffuse PSD estima-
tors for binaural dereverberation and noise reduction, with the
eigenvalue decomposition-based estimators always yielding the
best performance.

Index Terms: hearing aids, binaural cues, blocking matrix,
eigenvalue decomposition

1. Introduction

Dereverberation and noise reduction techniques in binaural
hearing aids are crucial to improve speech intelligibility for
hearing impaired persons [1]. In addition to reducing the in-
terference, i.e., reverberation and noise, another important ob-
jective of such techniques is the preservation of the listener’s
impression of the acoustical scene by preserving the binaural
cues of the speech source and of the interference [2, 3].

In [2] the binaural multi-channel Wiener filter (MWF) has
been presented, which can be decomposed into a binaural min-
imum variance distortionless response (MVDR) beamformer
and a single-channel Wiener postfilter. The binaural MWF and
MVDR beamformer preserve the binaural cues of the desired
speech source, but distort the cues of the interference such that
both the speech source and the residual interference are per-
ceived as coming from the same direction [4]. In order to also
(partially) preserve the binaural cues of the residual interfer-
ence, the binaural MWF with partial noise estimation (MWEF-
N) [4,5] and the binaural MVDR beamformer with partial noise
estimation (MVDR-N) [3] have been proposed, where a trade-
off parameter controls the trade-off between interference reduc-
tion and cue preservation. The trade-off parameter yielding
a desired cue preservation level can be analytically computed
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only for the binaural MVDR-N beamformer [3], making it a
computationally advantageous technique in comparison to the
MWPE-N. To further increase the interference reduction perfor-
mance, a single-channel Wiener postfilter can be applied at the
output of the MVDR-N beamformer [3]. Since reverberation is
commonly modeled as a diffuse sound field [6-11] and since
diffuse background noise is commonly encountered in binaural
applications, these binaural speech enhancement techniques re-
quire (among other parameters) an estimate of the diffuse power
spectral density (PSD).

Several multi-channel diffuse PSD estimators have been
proposed, such as blocking matrix-based estimators [6, 8, 12—
15] and eigenvalue decomposition-based estimators [10, 11].
Blocking matrix-based estimators estimate the diffuse PSD by
blocking the target signal using knowledge of the direction
of arrival (DOA) of the speech source [6, 8, 15], blind source
separation methods [13], or blind system identification meth-
ods [14]. The multi-channel blocking matrix-based estimator
in [6] uses a maximum likelihood formulation to estimate the
diffuse PSD from multiple reference signals, whereas the dual-
channel blocking matrix-based estimators in [13—15] estimate
the diffuse PSD by solving an equation based on a single refer-
ence signal. Figenvalue decomposition-based estimators on the
other hand do not require a blocking matrix and directly esti-
mate the diffuse PSD using the eigenvalues of the prewhitened
input PSD matrix.

The objective of this paper is to evaluate the performance of
the binaural MVDR beamformer followed by a postfilter (i.e.,
the binaural MWF) and the binaural MVDR-N beamformer fol-
lowed by a postfilter using blocking matrix-based and eigen-
value decomposition-based diffuse PSD estimators. In addi-
tion, a least-squares generalization of the dual-channel block-
ing matrix-based estimators from [13-15] to the multi-channel
case is presented, which happens to be equivalent to the multi-
channel estimator from [6]. The blocking matrix is constructed
based on the DOA of the speech source, which is estimated us-
ing the binaural DOA estimator proposed in [15]. Simulation
results show that the performance of all considered diffuse PSD
estimators is high, with the eigenvalue decomposition-based
PSD estimators resulting in the best performance. In addition,
it is shown that the performance of the blocking matrix-based
dual-channel estimator from [15] is very similar to the per-
formance of the blocking matrix-based multi-channel estimator
from [6], suggesting that increasing the number of microphones
within the blocking matrix-based framework does not increase
the diffuse PSD estimation accuracy.

2. Configuration and Notation

We consider a binaural hearing aid configuration consisting of
M = M. + Mg microphones, with M}, denoting the number of
microphones of the left hearing aid and M denoting the num-
ber of microphones of the right hearing aid. In the short-time
Fourier transform domain, the M -dimensional vector of the re-



ceived microphone signals at frequency index k and frame in-
dex [ can be written as

y(k, l) = [YL’l(k‘, l) e YLJ\/IL(IC, l)
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with Y{1 ry,m (K, ) the m-th microphone signal of the left and
right hearing aid. In a reverberant and noisy acoustic scenario,
y(k,1) is given by

vk, 1) = x(k, 1) +d(k, 1) + v(k,1D), )

with x(k, 1) the direct and early reverberation speech compo-
nent, d(k, ) the diffuse sound component, and v(k, [) the noise
component. The diffuse sound component d(k, ) models the
late reverberation [6—11] as well as any noise which can be
well approximated by a diffuse sound field, such as background
noise in large crowded rooms. The noise component v(k, )
represents any remaining noise which cannot be modeled by a
diffuse sound field, such as uncorrelated sensor noise. For con-
ciseness, the frequency index k will be omitted in the remainder
of this paper.

For a single-source scenario, the direct and early reverber-
ation speech component x () can be expressed in terms of the
target signals Si(!) and Sg(l) (i.e., direct and early reverber-
ation speech components) in the reference microphones of the
left and right hearing aids as

x(l) = Sry(Dagry (1), 3)

with a;(!) and ar(l) the M-dimensional vectors of relative
early transfer functions (RETFs) of the target signals from the
reference microphones to all M microphones. The target sig-
nal Sy ry (1) is often defined as the direct speech component
only [6-11], such that the vector af ry(I) can be constructed
based on a DOA estimate and head models or measurements of
anechoic acoustic transfer functions (ATFs). The PSD matrix
of the microphone signals is defined as

@y () = EyWy" (1)}, ©)

with £{-} the expected value operator. As in many speech en-
hancement techniques, in the following it is assumed that the
components in (2) are mutually uncorrelated, such that ®y (1)
can be written as

Dy (1) = Px(l) + 2a(l) + 24(1), Q)
with ®4 (1), ®a(l), and P+ (I) denoting the PSD matrices of

x(1), d(1), and v (1), respectively. Using (3), ® () can be ex-
pressed as

Dy (1) = sy (Dary Dafley (D) + Pa(DT +@4 (1), (6)
N——
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with @5, ., () the time-varying PSD of the target signal, i.e.,
Psppy (1) = E{|SLry(D)]?}, @a(l) the time-varying PSD of
the diffuse sound component, and I' the time-invariant spa-
tial coherence matrix of the diffuse sound field. The spatial
coherence matrix I' is assumed to be known, since it can be
constructed based on head models [16] or measurements of
anechoic ATFs [9, 17]. In order to simplify the notation, in
the following we define the interference component u(l) =
d(l) + v(I) and the interference PSD matrix

®u(l) = Da(I)T + By (1). %

The objective of binaural speech enhancement techniques is to
suppress the interference and obtain estimates of the target sig-

nals S (1) and Sk ({) by applying M-dimensional filter vectors
wi (1) and wg(!) to all microphone signals (cf. Section 3), i.e.,

Sry(l) = witzy Dy (0). (8

The time-varying input interaural coherence (IC) of the inter-
ference is defined as

_ ef ®.(l)er

Vel ®u(l)eLel ®u(l)er ’
with e ry an M-dimensional selector vector with one ele-
ment equal to 1 and all other elements equal to O such that

e{TL_R}a{L,R}(l) = 1. The time-varying output IC of the in-
terference is defined as

ICin(1) )
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Since the IC is complex-valued, binaural speech enhance-
ment techniques typically aim at preserving the real-valued
magnitude-squared coherence (MSC) of the interference, de-
fined as

ICou (1) (10)

MSC(1) = [IC(1)|?. (11)

3. Binaural Speech Enhancement

In this section the derivation of the filter wy; g} () based on
the binaural MVDR and MVDR-N beamformers followed by a
Wiener postfilter is briefly discussed.

3.1. Binaural MVDR and MVDR-N beamformers

The binaural MVDR beamformer [2] aims at minimizing the
output PSD of the interference while preserving the target sig-
nal in the left and right reference microphones. The binaural
MVDR beamformer can be computed as

. (Dagry (1) .
afl oy O2u Ve (1)

As shown in [4], the beamformer in (12) preserves the binaural
cues of the speech source but distorts the output MSC of the in-
terference such that both the speech source and the residual in-
terference are perceived as coming from the same direction. In
order to better preserve the interference output MSC, and hence,
the impression of the acoustical scene, the binaural MVDR-N
beamformer has been proposed [3]. Aiming at preserving both
the target signal as well as a scaled version of the interference in
the left and right reference microphones, the binaural MVDR-N
beamformer can be computed as

Wit = [1 = nOIWIRE () + n(Dewry,  (13)

where 7(1) denotes a (real-valued) scaling parameter between
0 and 1 which provides a trade-off between interference reduc-
tion and MSC preservation. The value of the parameter 7(l)
yielding a desired user-defined interference output MSC can be
computed analytically [3].

witRy () =

12)

3.2. Wiener postfilter

In order to further increase the interference reduction perfor-
mance, a single-channel Wiener postfilter can be applied at the
output of the MVDR and MVDR-N beamformers [3, 18], i.e.,

L,R l
Gury(l) = Sy (1)

Tl Ery (D) ’ a4



with £ g} (1) the a-priori signal-to-interference ratio (SIR) at
the beamformer output in the left and right hearing aid. The
a-priori SIR can be estimated using the decision-directed ap-
proach based on an estimate of the interference PSD at the
beamformer output [19]. The interference PSD at the beam-
former output can be computed as

DYy u(l) = WLy (D Pu()wiLry (1), (15)

with w gy (I) the MVDR beamformer in (12) or the MVDR-
N beamformer in (13). In order to preserve the binaural cues of
the speech source and interference, a common postfilter G(1) is
applied to both hearing aids, with

G(1) = /GL()Gr (D). (16)

In summary, in Section 5 we consider two different methods for
computing the filter wy g} (1), ie.,

1. using an MVDR beamformer and a Wiener postfilter:

wiw () = WitR} (0G(0) a7)
2. using an MVDR-N beamformer and a Wiener postfilter:
wiry () = witey (DG (18)

Computing the filters in (17) and (18) requires estimates of the
diffuse PSD ®4(1), noise PSD matrix ®- (I), and RETF vector

a{L,R} (l)
4. Diffuse PSD Estimators

In this section it is assumed that estimates of the noise PSD ma-
trix @ (1) and RETF vector ay g} () are available, such that
only the diffuse PSD ®4(!) needs to be estimated. The noise
PSD matrix ® () can in practice be estimated from the mi-
crophone signals using e.g. a multi-channel speech presence
probability estimator [20]. The RETF vector a g} () can in
practice be estimated as in Section 5, i.e., using a DOA esti-
mator and measurements of anechoic ATFs [15]. To estimate
the diffuse PSD ®4(1), we consider blocking matrix-based and
eigenvalue decomposition-based estimators.

4.1. Blocking matrix-based estimators

In [13-15] dual-channel (i.e., M = 2) diffuse PSD estimators
using a single reference signal at the output of a blocking matrix
have been proposed. In the following, a least-squares general-
ization of these estimators for M > 2 is presented.

In order to estimate the diffuse PSD, an M x (M — 1)-
dimensional blocking matrix B(l) can be used to generate a
set of M — 1 reference signals containing only the interference
component, i.e.,

a(l) =B )y (1), (19)
with B(I) such that B” (1)ar(I) = 0 or B (1)ag(l) = 0.
Using ay (1), a blocking matrix can be computed from the first
M — 1 columns of the matrix T'(1) defined as

H

1) =1 20a ) 20

0=t e 0

where I denotes the M x M-dimensional identity matrix. It

should be noted that many blocking matrices exist and one can

also be computed using ar(l) instead of ar(l) in (20). Based

on (6), the PSD matrix of the M — 1 reference signals at the
blocking matrix output is equal to

®a(l) = 2a() BY()IB() + B ()@, (1)B(1). (21

) &5 (1)

The PSD matrix ®4 () can be directly estimated from a(l),
whereas the matrices I'(!) and ® () can be computed using
the available diffuse coherence matrix I' and the available noise
PSD matrix @+ (1). Since the only unknown quantity is the dif-
fuse PSD ®4(1), the system of equations in (21) represents an
overdetermined system of equations. A least-squares estimate
of the diffuse PSD can be obtained by minimizing the cost func-
tion

J(1) = [ @a(l) = Bs () — Sa(OTO)F, (22)

where || - || denotes the matrix Frobenious norm. Setting the
derivative of (22) with respect to ®4(l) equal to 0, the least-
squares estimate of the diffuse PSD can be computed as

&3 ()

_ trace{[@ﬁ(l) - "I)\?(l)}Hf(l)} (23)
l )

trace{T'H ()T'(1)}

where trace{-} denotes the trace operator. For M = 2, ®5M(1)
is equal to the PSD estimate derived in [13-15]. Interestingly,

for M > 2, ®5M(1) is equal to the maximum likelihood PSD
estimate derived in [6].

4.2. Eigenvalue decomposition-based estimators

While the estimator in Section 4.1 requires knowledge of the
RETF vector, an RETF-independent eigenvalue decomposition-
based PSD estimator is proposed in [10, 11]. This estimator
requires knowledge of the PSD matrix ®c(l) = ®x(I)+®a(l),
which can be computed as

Pc(l) = @y (1) — 2y (D), (24)

with @ (1) directly estimated from the microphone signals.
Based on (6), the prewhitened PSD matrix T'"*®. (1) is equal
to the sum of a rank-1 matrix and a scaled identity matrix, i.e.,

D' ®c(l) = sy, (DT ragry (Dafiry (D) + Pa(DI. (25)
As a result, the eigenvalues of '@, (1) are equal to

M{T '@ ()} = o(l) + ®a(l), (26)
M '@ ()} =Ba(l), j=2, ..., M, @7

with o(l) the only non-zero eigenvalue of the rank-1 term
in (25). In [11] it is proposed to estimate the diffuse PSD us-
ing any of the last M — 1 eigenvalues A\ {T " '®.(])}, j =
2, ..., M. Due to signal model violations and estimation
errors in ®.(1), the last M — 1 eigenvalues of T ' ®.(l) are
not equal in practice. In this paper we consider two alterna-
tive eigenvalue decomposition-based PSD estimates @gYﬁ )

and éﬁYEZ (1), with &EYEI (1) computed as the mean of the last

M —1 eigenvalues and égj’}i (1) computed as the second eigen-

value, i.e.,

_ trace{T '@ ()} — M {T ' & (1)}
B M—1 ’
SN, (1) = Ao{T ™ @ (D)} 29)

®in, (1)

(28)

Using any diffuse PSD estimate in (23), (28), or (29), the avail-
able coherence matrix I, and the available noise PSD matrix
P, (1), an estimate of the interference PSD matrix ® (1) in (7)
can now be computed.



5. Experimental Results

In this section the dereverberation and noise reduction perfor-
mance using the filters in (17) and (18) is investigated for differ-
ent reverberation times and signal-to-noise ratios (SNRs). In ad-
dition, the performance is investigated for a stationary speaker
as well as for a moving speaker. In order to focus on the dif-
fuse sound suppression, in the following it is assumed that the
microphone signals consist only of a direct and early reverber-
ation speech component and a diffuse sound component (i.e.,
late reverberation and diffuse background noise), i.e., v(I) = 0
and ®, (1) = @4())T'. For ®4(l) = ®4(I)T', the MVDR and
MVDR-N beamformers in (12) and (13) can be constructed us-
ing only the diffuse spatial coherence matrix I" (i.e., the scalar
D4 (1) cancels out).

5.1. Setup

Signals were recorded in a laboratory with variable acoustics
at the University of Oldenburg using two 2-channel behind-the-
ear hearing aid dummies placed on the ears of a head-and-torso
simulator (HATS), i.e., M. = 2, Mg = 2, and M = 4. The
stationary speaker was simulated by playing back clean speech
from a loudspeaker placed at a distance of 2 m from the cen-
ter of the head. Two stationary speaker scenarios were gener-
ated by placing the loudspeaker at two different angles ¢; and
62, with 61 = 35° and §; = —35°. The considered rever-
beration times for the stationary speaker scenarios were 1o €
{0.55,0.75 5,1 s}. The moving speaker was a human speaker
naturally walking in the frontal hemisphere of the HATS. The
considered reverberation time for the moving speaker scenario
was Tgo =~ 1 s. To simulate a diffuse noise field, the back-
ground noise was generated by placing four loudspeakers facing
the corners of the laboratory playing back uncorrelated multi-
talker noise. It should be noted that although this background
noise was not perfectly diffuse, its MSC was rather similar to
the MSC of a diffuse noise field. The speech and the noise sig-
nals were recorded separately such that we were able to mix
them at different input SNRs (iSNRs) afterward. The consid-
ered iSNRs are iSNR € {0 dB,5dB, ..., 20 dB}.

The signals are processed using a weighted overlap-add
framework with a frame size of 512 samples and an overlap
of 50% at a sampling frequency fs = 16 kHz. The first micro-
phone of each hearing aid is arbitrarily selected as the reference
microphone. The DOA of the speech source is estimated us-
ing the binaural DOA estimator in [15]. It should be noted that
the DOA estimate obtained in all considered reverberant and
noisy scenarios is highly accurate. Using the estimated DOA,
the RETF vector apr ({) is computed from anechoic ATFs mea-
sured on the same dummy head [21]. The diffuse coherence
matrix I is calculated using spatially averaged auto- and cross-
correlations of the anechoic ATFs measured for angles rang-
ing between —180° to 175°. To compute the parameter 7(l)
for the MVDR-N beamformer, the desired interference output
MSC is defined based on the frequency-dependent values pro-
posed in [17], which are psychoacoustically motivated [22] and
do not alter the listener’s impression of a diffuse sound field.
The PSD matrices ®y (1) and ®4(!) are estimated using recur-
sive averaging with a time constant of 40 ms. The minimum
gain of the Wiener postfilter G (1) is —20 dB.

The dereverberation and noise reduction performance is
evaluated in terms of the improvement in PESQ (APESQ) [23]
and frequency-weighted segmental SNR (AfSSNR) [24] be-
tween the output signal and the reference microphone signal
for each hearing aid. The PESQ and fSSNR measures are intru-
sive measures comparing the signal being evaluated to a desired
signal. The desired signal for each hearing aid is generated by
convolving the clean speech signal with the measured anechoic

—*— MSCi, —a— MSChiy ™} MSChy PN

0 1 2 3 4 5 6 7 8
Frequency [kHz]

Figure 1: MSC at the input and output of the MVDR and MVDR-
N beamformers.

ATFs corresponding to the true DOAs. The clean speech sig-
nal for the moving speaker scenario is assumed to be the sig-
nal recorded with a close-talk microphone. The APESQ and
AfSSNR presented in the following are average improvements
between the left and right hearing aids.

The postfilters in (17) and (18) are computed using the
blocking matrix-based and eigenvalue decomposition-based
diffuse PSD estimators. Two alternative estimates will be in-
vestigated for the blocking matrix-based estimator, i.e., 5 (1)
denoting the PSD estimate obtained using only the reference
microphones on the left and right hearing aids (corresponding
to the dual-channel PSD estimator in [15]) and églﬁ(l) denot-
ing the PSD estimate obtained using all 4 microphones (corre-
sponding to the maximum likelihood PSD estimator in [6]).

5.2. MSC preservation

Since the common Wiener postfilter does not change the bin-
aural cues, to evaluate the interference MSC preservation per-
formance of the considered techniques the MSC is computed at
the input and output of the MVDR and MVDR-N beamformers
using (9), (10), and (11). Fig. 1 presents the obtained MSC val-
ues. Since the interference PSD matrix is modeled by a scaled
diffuse coherence matrix, the input MSC is time-invariant and
equal to the MSC of a diffuse sound field. Furthermore, the
MSC at the output of the MVDR and MVDR-N beamformers
is also time-invariant, with the MVDR beamformer always dis-
torting the output MSC and the MVDR-N beamformer always
yielding the desired user-defined output MSC. Note that since
the late reverberation and the noise are not perfectly diffuse, the
interference PSD matrix is not equal to a scaled diffuse coher-
ence matrix in practice. Computing the MSC directly from the
signals would yield different results from the ones presented in
Fig. 1. However, the presented MSC values do illustrate that in
all simulations, the MVDR beamformer distorts the cues of the
residual interference whereas the MVDR-N beamformer better
preserves them.

5.3. Dereverberation performance for a stationary speaker

In this section the dereverberation performance is investigated
for several stationary speaker scenarios with different rever-
beration times and speaker positions. The presented APESQ
and AfSSNR are averaged between the considered speaker po-
sitions. Fig. 2(a) presents the average APESQ and AfSSNR
obtained using the MVDR beamformer and a Wiener postfilter
with different diffuse PSD estimators. It can be observed that

in terms of APESQ, using any diffuse PSD estimator yields a
similar improvement, with ég\,’ﬁ resulting in a slightly higher
APESQ than other PSD estimators. In terms of AfSSNR, it can
be observed that the eigenvalue decomposition-based estimators

yield a larger improvement than the blocking matrix-based es-
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Figure 2: Dereverberation performance for a stationary
speaker using a beamformer and a Wiener postfilter: (a) MVDR
and (b) MVDR-N.

timators, with i)}j\ffl resulting in the best performance. In addi-
tion, in terms of both performance measures it appears that the
performance obtained using i)gf\g and i)gﬁ is very similar, sug-
gesting that increasing the number of microphones in the block-
ing matrix-based framework does not increase the diffuse PSD
estimation accuracy. Fig. 2(b) presents the average APESQ
and AfSSNR obtained using the MVDR-N beamformer and a
Wiener postfilter with different diffuse PSD estimators. Overall
it can be observed that the performance improvement obtained
for all considered reverberation times and diffuse PSD estima-
tors is smaller than in Fig. 2(a). This is to be expected, since
the MVDR-N beamformer also (partly) preserves the MSC of
the residual interference component (cf. Fig. 1). In terms of
both performance measures, it can be observed that the eigen-
value decomposition-based estimators yield a larger improve—
ment than the blocking matrix-based estimators, with '1>d X, Te-
sulting in the best performance. In addition, similarly to before
the performance obtained using '1>B and <I>B d.4 18 very similar
in terms of both performance measures.

5.4. Dereverberation and noise reduction performance for
a stationary speaker

In this section the dereverberation and noise reduction perfor-
mance is investigated for several stationary speaker scenarios
with different iSNRs and speaker positions. The considered
reverberation time is Ts0 =~ 1 s. The presented APESQ and
AfSSNR are averaged between the considered speaker posi-
tions. Fig. 3(a) presents the average APESQ and AfSSNR
obtained using the MVDR beamformer and a Wiener postfil-
ter with different diffuse PSD estimators. It can be observed
that in terms of both performance measures, the eigenvalue
decomposition-based estimators yield a larger improvement
than the blocking matrix-based estimators, with @EY)]?I resulting
in the best APESQ and éﬁvﬁz resulting in the best AfSSNR for

low iSNRs. In addition, it can be observed that <I> > and <I>

yield a very similar performance in terms of both performance
measures. Fig. 3(b) presents the average APESQ and AfSSNR
obtained using the MVDR-N beamformer and a Wiener postfil-
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Figure 3: Dereverberation and noise reduction performance for
a stationary speaker using a beamformer and a Wiener postfil-
ter: (a) MVDR and (b) MVDR-N (Tso =~ 1 s).

ter with different diffuse PSD estimators. Overall it can be ob-
served that as expected, the performance improvement obtained
for all considered iSNRs and diffuse PSD estimators is lower
than in Fig. 3(a). Furthermore, the eigenvalue decomposition-
based estimators yield a larger improvement than the block-

ing matrix- based estimators in terms of both performance mea-

sures, with <I>d "\, resulting in the best APESQ and <1>gi2 result-

ing in the best AfSSNR for low iSNRs. Whereas larger differ-
ences can be observed in terms of APESQ between the blocking
matrix-based and eigenvalue decomposition-based estimators,
the obtained AfSSNR for all PSD estimators are rather similar.
In addition, similarly to before, the performance obtained using

@5?@ and @3?1 is very similar.

5.5. Dereverberation and noise reduction performance for
a moving speaker

In this section the dereverberation and noise reduction per-
formance is investigated for a moving speaker scenario with
Tso ~ 1sandiSNR = 10 dB. Since both APESQ and AfSSNR
show very similar patterns, Table 1 presents only the AfSSNR
obtained using the MVDR and MVDR-N beamformers and a
Wiener postfilter. It can be observed that using the eigenvalue
decomposition-based estimate <I>EVD results in the best perfor-
mance. However, the performance obtained using the other con-
sidered diffuse PSD estimators is also comparable. In addition,
it can be observed that as expected, the improvement obtained
for all diffuse PSD estimators when using the MVDR-N beam-
former is lower than when using the MVDR beamformer. How-
ever, the performance loss is rather insignificant, particularly
when using the eigenvalue decomposition-based estimators.

In summary, the simulation results presented in this paper
show the applicability of diffuse PSD estimators for binaural
dereverberation and noise reduction based on beamforming and
spectral filtering. Although all PSD estimators yield a high per-
formance, the eigenvalue decomposition-based estimators re-
sult in the best performance for all considered techniques and
scenarios. It should be noted that although the considered PSD
estimators are based on a diffuse sound field model, the late
reverberation and background noise considered in these simu-



Table 1: Dereverberation and noise reduction performance in
terms of AfSSNR using an MVDR and MVDR-N beamformer
and a Wiener postfilter for a moving speaker (Tso ~ 1 s, iSNR
=10 dB).

@BM @31\1 (PEVD @EVD

d,2 d,\1 d, A2
MVDR 7.42 7.55 6.78 7.86
MVDR-N 6.83 6.89 6.66 7.63

lations were not perfectly diffuse, confirming the applicability
of the considered estimators in realistic acoustic environments.
Informal listening tests suggest that blocking matrix-based es-
timators yield a larger interference suppression while caus-
ing more signal distortions, whereas eigenvalue decomposition-
based estimators yield a smaller interference suppression while
introducing less signal distortions. In the future, formal listen-
ing tests should be conducted to truly assess the quality of these
different late reverberation PSD estimators for binaural derever-
beration and noise reduction.

6. Conclusion

In this paper we investigated the dereverberation and noise
reduction performance of the binaural MVDR and MVDR-N
beamformers followed by a Wiener postfilter when using block-
ing matrix-based and eigenvalue decomposition-based diffuse
PSD estimators. A least-squares generalization of dual-channel
blocking matrix-based estimators to the multi-channel case was
also presented, yielding the same PSD estimate as a recently
proposed multi-channel maximum likelihood estimator. Simu-
lations results show that independently of the technique used,
the eigenvalue decomposition-based PSD estimators yield the
best performance. Furthermore, it is shown that increasing
the number of microphones within the blocking matrix-based
framework does not increase the PSD estimation accuracy.
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