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Adaptive feedback cancellation (AFC) techniques are common in modern hearing aid devices

(HADs) since these techniques have been successful in increasing the stable gain. Accordingly, there

has been a significant effort to improve AFC technology, especially for open-fitting and in-ear HADs,

for which howling is more prevalent due to the large acoustic coupling between the loudspeaker and

the microphone. In this paper, the authors propose a hybrid AFC (H-AFC) scheme that is able to

shorten the time it takes to recover from howling. The proposed H-AFC scheme consists of a

switched combination adaptive filter, which is controlled by a soft-clipping-based stability detector to

select either the standard normalized least mean squares (NLMS) algorithm or the prediction-error-

method (PEM) NLMS algorithm to update the adaptive filter. The standard NLMS algorithm is used

to obtain fast convergence, while the PEM-NLMS algorithm is used to provide a low bias solution.

This stability-controlled adaptation is hence the means to improve performance in terms of both con-

vergence rate as well as misalignment, while only slightly increasing computational complexity. The

proposed H-AFC scheme has been evaluated for both speech and music signals, resulting in a signifi-

cantly improved convergence and re-convergence rate, i.e., a shorter howling period, as well as a

lower average misalignment and a larger added stable gain compared to using either the NLMS or the

PEM-NLMS algorithm alone. An objective evaluation using the perceptual evaluation of speech qual-

ity and the perceptual evaluation of audio quality measures shows that the proposed H-AFC scheme

provides very high-quality speech and music signals. This has also been verified through a subjective

listening experiment with N¼ 15 normal-hearing subjects using a multi-stimulus test with hidden ref-

erence and anchor, showing that the proposed H-AFC scheme results in a better perceptual quality

than the state-of-the-art PEM-NLMS algorithm. https://doi.org/10.1121/1.5020269
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I. INTRODUCTION

In many acoustical systems, such as hearing aid devices

(HADs), assisted listening devices, and public address sys-

tems, the microphone signals are amplified and played back

through loudspeakers.1–3 Due to the acoustic coupling

between the loudspeakers and the microphones, acoustic

feedback loops are generated. Here, we only consider the

single-microphone and single-loudspeaker case, also called

single-input single-output system. Depending on the acoustic

transfer function between the loudspeaker and the micro-

phone and the feedforward gain, annoying audible artifacts

such as reverberation echoes and howling (indicating insta-

bility4) may occur. The maximum stable gain (MSG) of the

system is determined by the acoustic feedback path between

the loudspeaker and the microphone. For example, for HAD

users the available maximum gain is an important parameter,

since it determines if their hearing loss can be compensated

or not. At the current time, the feedback problem in HADs

has become more prevalent due to the use of small-sized

HADs as well as open-fitting HADs (e.g., to avoid occlusion

effects),5 for which the acoustic coupling between the hear-

ing aid receiver and the microphone is large.

In the last decades, several algorithms to manage feed-

back have been proposed, which can be broadly classified

into feedforward suppression and feedback cancellation

algorithms.1,2 In feedforward suppression algorithms the sig-

nal is modified prior to being played back through the loud-

speaker, such that undesired processing artifacts may arise.

As a typical example, in notch-filtering-based howling sup-

pression the feedforward gain function is modified using

notch filters after howling has been detected.6 In adaptivea)Electronic mail: s.nordholm@curtin.edu.au
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feedback cancellation (AFC) an adaptive filter, e.g., the nor-

malized least mean squares (NLMS) algorithm, is used to

identify the time-varying acoustic feedback path.7–9 The lat-

ter approach is the most promising, allowing—at least in the-

ory—for a perfect cancellation of the feedback signal.10

However, in order to achieve perfect cancellation, knowl-

edge of the correlation properties of the incoming signal is

required.1,2,11 In general, this correlation cannot be pre-

determined but needs to be estimated directly from the

available microphone signal. Mismatches in this estimate

typically lead to a biased solution and, in the worst-case sce-

nario, it causes the feedback cancellation system to fail.

Different techniques have been proposed to reduce this bias,

thereby increasing the MSG while avoiding howling. Some

of these techniques include phase modification and fre-

quency shifting,2,12 non-linear processing,13 probe noise

injection,11,14,15 or the use of multiple microphones to esti-

mate the incoming signal and whiten it prior to adapting the

feedback canceler.16–18 Furthermore, the use of adaptive

decorrelating pre-filters has been proposed in the framework

of the so-called prediction-error-method AFC (PEM-

AFC).1,19,20 In PEM-AFC, it is assumed that the incoming

signal is white Gaussian noise filtered by a time-varying all-

pole filter. The coefficients of the all-pole filter can be esti-

mated from the microphone signal or from the error signal

after the feedback canceler. The inverse of the estimated all-

pole filter is then used to pre-filter the loudspeaker signal

and the microphone signal prior to adapting the feedback

canceler.

A significant practical challenge is to improve the AFC

performance when there are fast changes in the acoustic

feedback path or when howling occurs. In Ref. 11 recovery

from howling was discussed without explicitly investigating

this topic. In Ref. 13 techniques were presented to improve

the AFC performance during clipping, resulting in a larger

MSG, but no results on recovery from howling were pro-

vided. In addition, an earlier study showed that an affine

combination of adaptive filters can be used to trade off the

convergence rate and misalignment (MIS),21 but again no

results on recovery from howling were presented.

In this paper, we study the recovery of a hearing aid

from a howling period using AFC. Since the standard NLMS

algorithm is known to provide fast re-convergence from a

howling period,1,11 while the PEM-NLMS algorithm pro-

vides low MIS and a low bias solution,1,19,20 we propose a

hybrid switched combination of both adaptive filter algo-

rithms. The proposed hybrid NLMS (H-NLMS) algorithm is

controlled by a stability detector utilizing a soft clipper (SC)

to detect whether the error signal after the feedback canceler

is outside a certain bound, indicating instability. When insta-

bility is detected, the standard NLMS algorithm is used,

whereas otherwise the PEM-NLMS algorithm is used. The

parameters of the stability detector have been designed to

provide both a high sensitivity to detecting instability (in

order to re-converge fast after howling) and to provide low

signal distortion after the AFC has converged. Another fea-

ture of the proposed H-NLMS algorithm is the improved

AFC performance for music signals, where for certain

sounds pre-filtering with the inverse of the estimated all-pole

filter may yield long correlation tails. Since the stability

detector will automatically detect instability occurring in

sections of music with long correlation tails, it dynamically

switches the hybrid combination of adaptive filters to aid the

AFC operation in music. The proposed H-NLMS algorithm

has been evaluated using both speech and music signals. The

evaluation is based on instrumental performance measures,

such as added stable gain (ASG) and MIS, as well as a for-

mal listening test. First, the performance of the H-NLMS

algorithm is investigated for different parameters of the sta-

bility detector. This instrumental evaluation shows that the

H-NLMS algorithm is robust toward different parameter

choices of the stability detector and yields clear improve-

ments compared to the state-of-the-art PEM-NLMS algo-

rithm in terms of convergence rate and recovery from

howling. Next, a listening test has been conducted with

N¼ 15 normal-hearing subjects, evaluating the perceptual

signal quality for the proposed H-NLMS algorithm and the

PEM-NLMS algorithm. Results show that the H-NLMS

algorithm outperforms the PEM-NLMS algorithm both dur-

ing the initial convergence as well as during re-convergence

after a feedback path change.

The paper is structured as follows. Section II presents

the system equations for acoustic feedback cancellation and

the proposed hybrid AFC scheme controlled using a soft-

clipping-based stability detector. In Sec. III the simulation

results using instrumental performance measures and the for-

mal subjective evaluations are presented.

II. HEARING AID SYSTEM DESCRIPTION

A HAD consists of one or more microphones, DSP tech-

nology (e.g., for AFC, noise suppression, equalization, and

compression), an amplifier, and a loudspeaker. Figure 1 depicts

the block diagram of a generic AFC scheme1 for a HAD with

a single microphone, where k denotes the discrete-time index.

The feedback path H(q, k) between the loudspeaker and the

microphone is assumed to be a polynomial transfer function

with Lh time-varying coefficients, i.e., Hðq; kÞ ¼ hTðkÞq,

where the filter coefficients are given by hðkÞ ¼ ½h0ðkÞ;
h1ðkÞ;…hLh�1ðkÞ�T and q ¼ ½1 q�1::: q�Lhþ1�T , with q�1

denoting the delay operator. The microphone signal m(k) con-

sists of the loudspeaker output signal y(k) filtered by the feed-

back path H(q, k) and the incoming signal x(k), i.e.,

mðkÞ ¼ Hðq; kÞyðkÞ þ xðkÞ: (1)

FIG. 1. Block diagram of the generic AFC scheme.
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The microphone signal hence consists of the desired compo-

nent x(k) and the undesired feedback contribution f ðkÞ
¼ Hðq; kÞyðkÞ. When an estimate Ĥðq; kÞ of the feedback

path H(q, k) is available, the feedback contribution can be

estimated as f̂ ðkÞ ¼ Ĥðq; kÞyðkÞ and subtracted from the

microphone signal, forming the error signal

eðkÞ ¼ xðkÞ þ f ðkÞ � f̂ ðkÞ

¼ Hðq; kÞ � Ĥðq; kÞ
� �

yðkÞ þ xðkÞ: (2)

The error signal e(k) is then filtered by the so-called feedfor-

ward path G(q, k), representing the typical hearing aid process-

ing (e.g., amplification, compression, noise suppression), i.e.,

yðkÞ ¼ Gðq; kÞeðkÞ: (3)

By substituting Eq. (3) into Eq. (2), the following relation-

ships between the incoming signal x(k), the loudspeaker out-

put signal y(k), and the error signal e(k) are obtained:

yðkÞ ¼ Gðq; kÞSðq; kÞxðkÞ; (4)

eðkÞ ¼ Sðq; kÞxðkÞ; (5)

with the closed-loop transfer function S(q, k) defined as

Sðq; kÞ ¼ 1

1� G q; kð Þ H q; kð Þ � Ĥ q; kð Þ
� � : (6)

Thus, if the incoming signal x(k) is bounded, i.e.,

jxðkÞj < Mx, and the closed-loop system S(q, k) is stable, the

error signal e(k) and the loudspeaker signal y(k) will be

bounded, i.e., jyðkÞj < My. On the other hand, if the closed-

loop system is unstable, the error signal e(k) and the loud-

speaker signal y(k) will not be bounded. Note that in practice

the microphone signal m(k) will always be bounded due to

the limited range of the analog-to-digital convertor and the

loudspeaker signal y(k) will always be bounded due to the

loudspeaker circuitry and the non-linear loudspeaker charac-

teristics. Nevertheless, if the (linear) closed-loop system S(q,

k) is unstable, there will be a growth in e(k) which is not

related to the incoming signal x(k) but is determined by the

instability of the linear system. The limiting amplitude out-

put by the circuitry and the loudspeaker will result in differ-

ent degrees of howling depending on the gain and the

amplitude limits. Therefore, the error signal e(k) can be used

to monitor the stability of the system, i.e., to design a simple

stability detector (cf. Sec. II C).

A. AFC

In the AFC scheme in Fig. 1, the aim of the filter

Ĥðq; kÞ is to estimate the (time-varying) feedback path H(q,

k). For this purpose, the error signal e(k) in Eq. (2) is used to

form the mean square error (MSE) cost function

JMSE ¼ Efe2ðkÞg; (7)

where eðkÞ ¼ mðkÞ � ĥ
TðkÞyðkÞ; ĥðkÞ are the Lĥ filter

coefficients of the feedback canceler at time instant k,

yðkÞ ¼ ½yðkÞ; yðk � 1Þ;…; yðk � Lĥ þ 1Þ�T is the filter input

vector, and Ef�g is the expectation operator. The signals

m(k) and y(k) are considered realizations of the underlying

stochastic processes. Minimizing Eq. (7) with respect to

ĥðkÞ yields the optimal solution

ĥoðkÞ ¼ R�1
yy ðkÞrymðkÞ; (8)

with RyyðkÞ ¼ EfyðkÞyTðkÞg the correlation matrix of the

loudspeaker signal and rymðkÞ ¼ EfyðkÞmðkÞg the correla-

tion vector between the loudspeaker signal and the micro-

phone signal.

By substituting mðkÞ ¼ xðkÞ þ yTðkÞhðkÞ into Eq. (8),

we obtain

ĥoðkÞ ¼ hðkÞ þ R�1
yy ðkÞryxðkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

bias term

; (9)

which contains a term that depends on the correlation

between the loudspeaker signal y(k) and the incoming signal

x(k). If the correlation ryxðkÞ ¼ 0, then the feedback path

estimate ĥoðkÞ is unbiased. However, since yðkÞ ¼ Gðq; kÞ
Sðq; kÞxðkÞ, it follows that y(k) and x(k) are correlated, i.e.,

ryxðkÞ 6¼ 0, giving rise to a biased estimate.1,11,19

To achieve an unbiased solution, different methods

have been proposed. On the one hand, aiming at reducing

the correlation between the loudspeaker signal and the

incoming signal, methods based on phase modification and

frequency shifting,2,12 non-linear processing,13 and probe

noise injection11,14,15 have been proposed, which as a dis-

advantage typically affect the sound quality of the loud-

speaker output signal. On the other hand, the PEM-AFC

method has been proposed, which aims at reducing the bias

by pre-whitening the incoming signal. This method either

assumes the correlation properties of the incoming signal to

be known,10,24 or in the case of an unknown incoming sig-

nal, estimates the correlation properties.1,19,20 In many

cases, the incoming signal can be adequately modelled

using an auto-regressive (AR) model, which is known to

hold well, e.g., for speech signals. The incoming signal x(k)

can then be modelled as

xðkÞ ¼ A�1ðq; kÞwðkÞ; (10)

with A(q, k) a monic and stable polynomial transfer function

and w(k) a white Gaussian noise sequence. Usually, the error

signal e(k) after the feedback canceller is utilized to estimate

the AR coefficients Âðq; kÞ, e.g., using the block-based

Levinson-Durbin method1 or the sample-based Burg Lattice

method.19

The block diagram of the PEM-AFC scheme is shown

in Fig. 2. Note that this block diagram also includes a SC,

which will be described in detail in Sec. II C, so for the time

being we neglect this SC, i.e., eL(k)¼ e(k). PEM-AFC can be

viewed as a pre-filtered error method which minimizes the

MSE of the error signal, pre-filtered with the estimated AR

coefficients Âðq; kÞ, i.e.,

JMSE;PEM ¼ Ef~e2
LðkÞg ¼ EfðÂðq; kÞeLðkÞÞ2g: (11)

152 J. Acoust. Soc. Am. 143 (1), January 2018 Nordholm et al.



As can be seen from Fig. 2, the pre-filtered error signal is

computed as

~eLðkÞ ¼ ~mðkÞ � ĥ
TðkÞ~yðkÞ; (12)

with the pre-filtered loudspeaker and microphone signals

defined as ~yðkÞ ¼ Âðq; kÞyðkÞ and ~mðkÞ ¼ Âðq; kÞmðkÞ,
respectively. If Âðq; kÞ whitens the incoming signal x(k), i.e.,

Âðq; kÞ ¼ Aðq; kÞ, it has been shown that the bias term in Eq.

(9) is equal to zero when appropriate delays are used.19,25

Since this may be difficult to achieve, particularly for non-

speech signals for which the assumed AR model does not

hold well, PEM-AFC has been combined with frequency

shifting.26

In practice, since the feedback path H(q, k) has dynamic

variations (e.g., when a phone moves toward the HAD), the

optimal filter in Eq. (8) is replaced by an adaptive filter. The

most commonly used adaptive filter in this application is the

NLMS algorithm, i.e.,

ĥðk þ 1Þ ¼ ĥðkÞ þ lðkÞyðkÞeLðkÞ; (13)

with time-varying step-size lðkÞ ¼ l=ðjjyðkÞjj2 þ dÞ and d a

small positive number to avoid division by zero. Similar to

the NLMS algorithm, the corresponding PEM-NLMS algo-

rithm using pre-filtered signals is given by

ĥðk þ 1Þ ¼ ĥðkÞ þ lðkÞ~yðkÞ~eLðkÞ; (14)

with time-varying step-size lðkÞ ¼ l=ðjj~yðkÞjj2 þ dÞ. After

updating the filter coefficients using Eq. (14), they are then

copied to the feedback canceller, cf. Fig. 2.

B. H-NLMS algorithm

When the AFC is not able to estimate the feedback path

H(q, k) accurately enough, the closed-loop system S(q, k) in

Eq. (6) may become unstable. Even though the loudspeaker

signal y(k) is always bounded in practice, annoying tonal

sounds referred to as howling will be generated in this

case.1,2,13 In addition to maximizing the available gain of the

HAD, another objective is hence to make such howling peri-

ods as short as possible. Moreover, since the MSG depends

on how well the AFC is able to estimate the time-varying

feedback path, the AFC should provide both fast tracking as

well as low bias and MIS, which are conflicting requirements

for an adaptive filter algorithm.

When howling occurs, the feedback contribution will be

dominating over the incoming signal x(k), i.e., jðHðq; kÞ
�Ĥðq; kÞÞyðkÞj � jxðkÞj. In Refs. 1 and 11 it was noted that

the standard NLMS algorithm is able to stabilize the system

when it becomes unstable, i.e., it quickly recovers from

howling. On the other hand, from our research we found that

the PEM-NLMS algorithm takes a long time to recover from

howling or in the worst case may not recover at all when the

feedback contribution is not limited. This seems to be related

to the fact that the estimated AR coefficients for an unstable

system tend to model the howling instead of the incoming

signal x(k). To limit the feedback contribution, a SC is hence

used which resembles the maximum loudspeaker level (cf.

Fig. 2). The PEM-NLMS algorithm using a SC will be

referred to as the PEMSC-NLMS algorithm.

Hence, since the standard NLMS algorithm is able to

quickly recover from howling and the PEMSC-NLMS algo-

rithm may provide an unbiased estimate, we propose to com-

bine both in a H-NLMS algorithm, merging the best properties

of both algorithms. The block diagram of the H-NLMS algo-

rithm is depicted in Fig. 3. As a switched combination of the

NLMS update in Eq. (13) and the PEMSC-NLMS update in

Eq. (14), the proposed H-NLMS update is given by

ĥðk þ 1Þ ¼ ĥðkÞ þ 1� aðkÞ½ �l1ðkÞ~yðkÞ~eLðkÞ
þ aðkÞl2ðkÞyðkÞeLðkÞ; (15)

with step-sizes l1ðkÞ ¼ l1=ðjj~yðkÞjj2 þ dÞ and l2ðkÞ ¼ l2=
ðjjyðkÞjj2 þ dÞ, and aðkÞ a binary control signal. This control

signal should be equal to 1 during instability, leading to the

NLMS update using the loudspeaker signal y(k) and the error

signal eL(k), and equal to 0 during stable operation, leading

to the PEMSC-NLMS update using the pre-filtered loud-

speaker signal ~yðkÞ and the pre-filtered error signal ~eLðkÞ.
Since the control signal a(k) is binary, the NLMS update and

the PEMSC-NLMS update do not need to run in parallel,

such that the computational complexity is only slightly

increased due to the stability detector. The computation of

the control signal a(k) using a soft-clipping-based stability

detector will be explained in Sec. II C.

For comparison purposes, we have also used a combina-

tion of two PEMSC-NLMS updates using two different step-

FIG. 2. Block diagram of the PEM-AFC scheme with/without a SC.

FIG. 3. Block diagram of the proposed H-NLMS algorithm with a soft-clip-

ping-based stability detector.
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sizes to a hybrid PEMSC-NLMS algorithm, H-PEMSC-

NLMS, given by

ĥðk þ 1Þ ¼ ĥðkÞ þ 1� aðkÞ½ �l1ðkÞ~yðkÞ~eLðkÞ
þ aðkÞl2ðkÞ~yðkÞ~eLðkÞ: (16)

We call it a hybrid method to be consistent with H-NLMS,

in fact this idea is closer to an affine combination method

such as presented in Refs. 21–23.

To estimate the AR coefficients Âðq; kÞ required for the

PEM-NLMS update, we will use the error signal eL(k) after

the SC, since eLðkÞ ’ xðkÞ when the feedback canceller has

converged (cf. design of SC in Sec. II C). Please note that

the H-NLMS update in Eq. (15) and the H-PEMSC-NLMS

update in Eq. (16) also allow for a non-binary (continuous)

control signal, but the investigation of that case is outside

the scope of this paper.

C. Soft-clipping-based stability detector

This section discusses the stability detector in Fig. 3,

yielding the control signal a(k) which is required for the H-

NLMS update in Eq. (15) and the H-PEMSC-NLMS update

in Eq. (16). The proposed stability detector is based on a SC

on the error signal and a decision threshold. This SC is

instantaneous and operates directly on the level of the error

signal.

Instead of having an unknown non-linearity due to the

loudspeaker characteristics in the feedback loop, it has been

shown in Ref. 13 that for identification purposes it is better

to use a controlled non-linearity, e.g., a SC, on the loud-

speaker output signal, i.e.,

yLðkÞ ¼ bytanh
yðkÞ
by

 !
; (17)

with by a scaling parameter. Since the non-linearity is

known, the AFC can be kept linear, improving the feedback

cancellation performance.13 Instead of applying soft clipping

to the loudspeaker output signal, it is also possible to apply

soft clipping to the error signal (cf. Figs. 2 and 3), i.e.,

eLðkÞ ¼ btanh
eðkÞ
b

� �
: (18)

The scaling parameter b determines how the error signal e(k)

is scaled to the linear range of the tanh-function [cf. Fig. 4(a)].

From this figure, we can observe that different values of b pro-

vide a different range for the linear mapping between e(k) and

eL(k) and hence the amount of non-linear distortion. Please

note that under the assumption that G(q, k) is a broadband

gain G0, Eqs. (17) and (18) are equivalent with by¼G0 b.

However, since the scaling parameter by depends on the

hearing aid processing G(q, k), which is not the case for b, we

will use the SC on the error signal in the remainder of this

paper.

Note that the error signal is given by eðkÞ ¼ xðkÞ
þDf ðkÞ, with Df ðkÞ ¼ f ðkÞ � f̂ ðkÞ. On the one hand, when

the AFC has converged, Df ðkÞ is small, such that the error

signal e(k) is mainly determined by the incoming signal x(k).

On the other hand, when the AFC has not converged or the

system is (conditionally) unstable, Df(k) will be dominant or

at least not small. Hence, when the scaling parameter b is

chosen such that the most likely range of the incoming signal

x(k) lies in the linear range of the tanh-function, i.e., xðkÞ
’ btanhðxðkÞ=bÞ, then eðkÞ � eLðkÞ may be used to detect

instability or misconvergence of the AFC. Thus, we propose

to compute the control signal a(k) in Eq. (15) using the fol-

lowing soft-clipping-based stability detector:

aðkÞ ¼ IfjeðkÞ � eLðkÞj < cg; (19)

where I is a function returning 0 or 1 depending on whether

the inequality holds. c is a decision threshold determining

the sensitivity of the detector. Figure 4(b) shows a plot of

Eq. (19) for different values of b and c. It can be seen that b
has an impact on the linear region of the function and c
determines the sensitivity of detection.

The choice of the parameters b and c depends on multi-

ple considerations. First, the scaling parameter b determines

the linear range of the tanh-function and hence the amount

of non-linear distortion of the incoming signal. Second, the

decision threshold c determines the sensitivity of the detec-

tor, selecting either the NLMS update or the PEMSC-NLMS

update in Eq. (15). It should however be realized that the

choice of the decision threshold is not very critical. False

detection of stability, i.e., a(k)¼ 0 when the system is unsta-

ble, will lead to usage of the PEMSC-NLMS update, slowing

down recovery from howling. False detection of instability,

i.e., a(k)¼ 1 when the system is stable, will lead to usage of

FIG. 4. (Color online) (a) SC with dif-

ferent values of scaling parameter b
(b1¼ 2, b2¼ 1, b3¼ 0.5), and (b)

detection equation with different val-

ues of scaling parameter b and deci-

sion threshold c.
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the NLMS update, possibly increasing the bias. The influ-

ence of different parameter choices on the performance of

the H-NLMS algorithm and a comparison with the H-

PEMSC-NLMS algorithm will be studied in Sec. III B. In

particular, we will compare the performance for different

levels of the incoming signal x[k] (both weak as well as out-

side of the linear range) and forward path gains.

III. EXPERIMENTS AND EVALUATIONS

In this section, the performance of the proposed

stability-controlled H-NLMS algorithm is evaluated and

compared to the PEMSC-NLMS and H-PEMSC-NLMS

algorithms. Section III A presents the used acoustic setup,

the considered performance measures, and the algorithmic

settings. Section III B discusses the evaluation using instru-

mental performance measures, while Sec. III C discusses the

formal listening test.

A. Acoustic setup, performance measures,
and algorithmic settings

Acoustic feedback paths were measured on a dummy

head with adjustable ear canals28 using a two-microphone

behind-the-ear hearing aid and open-fitting earmolds.29 The

measured impulse responses (IRs) were sampled at

fs¼ 16 kHz and truncated to length Lh¼ 100. Figure 5

depicts the amplitude and phase responses of the IRs used in

the evaluation: h1 measured in free-field, and h2 measured

with a telephone receiver in close distance to the HAD. As

incoming signal x(k), we used a speech signal consisting of

female and male speech from the NOIZEUS database30 and

a music signal (“Imagine” by John Lennon), which has been

normalized such that the maximum absolute value is equal

to 1. The normalized incoming signal has been scaled to dif-

ferent values to, e.g., reflect a speaker that is closer or further

away, respectively. Both speech and music signals were

recorded using a microphone placed in the right ear of a

dummy head in an anechoic chamber for two different sound

source positions (in front and on the right side of the dummy

head), resulting in four audio signals (speech 1, speech 2,

music 1, music 2). The reason for using both speech and

music signals is that speech signals can generally be well

modeled using the AR model in Eq. (10), whereas for music

signals there is a model mismatch. All signals were 50 s long

and an instant change of the acoustic feedback path was sim-

ulated after 25 s by switching from h1 to h2.

As instrumental performance measures to evaluate the

performance of the AFC algorithms, we used the normalized

MIS and the ASG. The normalized MIS is defined as the nor-

malized Euclidean distance between the measured and the

estimated IR, i.e.,

MIS ¼ 10 log10

jjh� ĥjj22
jjhjj22

 !
; (20)

while the ASG is defined as1,11

ASG ¼ 10 log10

1

maxXjH Xð Þ � Ĥ Xð Þj2

� 10 log10

1

maxXjH Xð Þj2
; (21)

with HðXÞ and ĤðXÞ the frequency response of the mea-

sured and estimated acoustic feedback paths at the normal-

ized frequency X, respectively. The average MIS, (MIS),

and the average ASG, (ASG), are computed by averaging the

FIG. 5. (Color online) HAD acoustic

feedback paths: (a) amplitude response

and (b) phase response.

(a) (b)

FIG. 6. (Color online) MIS of the

PEMSC-NLMS algorithm for two step-

sizes, the H-NLMS2 algorithm and the

H-PEMSC-NLMS algorithm with

speech 1 as the incoming signal with

(a) G0¼ 30 dB and (b) G0¼ 45 dB.

J. Acoust. Soc. Am. 143 (1), January 2018 Nordholm et al. 155



respective performance measures over the complete signal.

In addition, as instrumental performance measures for

speech quality and audio quality, we used the perceptual

evaluation of speech quality (PESQ) measure from Ref. 30

and the perceptual evaluation of audio quality (PEAQ) mea-

sure.31 The reference signal for both PESQ and PEAQ mea-

sures was the incoming signal x(k), while the test signal was

the error signal after soft clipping eL(k).

(a) (b)

FIG. 7. (Color online) ASG of the H-

PEMSC-NLMS algorithm in (a) and

the H-NLMS2 algorithm in (b), for dif-

ferent values of b and c with speech 1

as the incoming signal and G0¼ 45 dB.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. (Color online) Control

signal a(k) corresponding to dif-

ferent values of b and c for the

H-PEMSC-algorithm (left col-

umn) and the H-NLMS2 algo-

rithm (right column) with

speech 1 as the incoming signal

and G0¼ 45 dB.
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The following algorithmic settings were used for all

evaluations. The prediction-error filter Âðq; kÞ was of order

20 and was updated using the Levinson-Durbin method with

blocks of 10 ms. The feedforward path of the HAD was set

to Gðq; kÞ ¼ G0 expð�jXdGÞ with dG corresponding to a

delay of 6 ms and G0 set to 30 or 45 dB. The feedback can-

celler path was delayed by one sample. The length of the

adaptive filter was Lĥ ¼ 64.

To ensure a fair comparison, the proposed H-NLMS

algorithm is compared to the PEMSC-NLMS algorithm, i.e.,

the PEMSC-NLMS algorithm can be considered a special

case of the H-NLMS algorithm with l2¼ 0 in Eq. (15) or

c ¼ 1 in Eq. (19). In addition, the proposed H-NLMS algo-

rithm is compared with the H-PEMSC-NLMS algorithm in

Eq. (16).

The following step-sizes are used to update the adaptive

filters:

• PEMSC-NLMS algorithm: step-sizes l1 2 ½0:001; 0:01�;
• H-NLMS algorithm: three different pairs of step-sizes,

i.e.,

– H-NLMS1: l1¼ 0.001, l2¼ 0.1;

– H-NLMS2: l1¼ 0.001, l2¼ 0.2;

– H-NLMS3: l1¼ 0.001, l2¼ 0.5;
• H-PEMSC-NLMS algorithm: step-sizes l1¼ 0.001,

l2¼ 0.2.

B. Instrumental evaluation

1. Speech signals

The instrumental evaluation is designed to illustrate dif-

ferences in performance between different algorithms under

parameter and feedback path changes. We have studied the

following parameters: algorithm step-size, forward path

gain, volume of the incoming signal, and SC parameters.

In the first experiment, we compare the performance

of the PEMSC-NLMS algorithm with the H-NLMS2 and

H-PEMSC-NLMS algorithms with normalized speech 1 as

the incoming signal for two different gains in the forward

path, namely G0¼ 30 dB and G0¼ 45 dB. Figure 6 shows the

MIS of the PEMSC-NLMS algorithm for two different step-

sizes l1 2 ½0:01; 0:001� as well as the H-NLMS2 and H-

PEMSC-NLMS with b¼ 2 and c¼ 0.15. Note that the step-

sizes for the H-NLMS2 and H-PEMSC-NLMS algorithms are

equal (l1¼ 0.001 and l2¼ 0.2). We first consider the lower

gain G0¼ 30 dB in Fig. 6(a). As expected for the PEMSC-

NLMS algorithm, there is a trade-off between convergence

rate (both initially as well as when the feedback path changes

after 25 s) and steady-state MIS, i.e., fast convergence but

high steady-state MIS are obtained for a large step-size,

whereas slow convergence but low steady-state MIS are

obtained for a small step-size. In order to obtain a low steady-

state MIS, a step-size l1¼ 0.001 will be used in the following

for the PEMSC-NLMS algorithm. It can also be seen that

both the H-NLMS2 algorithm and the H-PEMSC-NLMS

algorithm have a very similar performance. However, when

the gain is increased to G0¼ 45 dB [Fig. 6(b)], it can be seen

that the PEMSC-NLMS algorithm with the small step-size

has difficulty to converge and re-converge, most likely also

leading to the H-PEMSC-NLMS algorithm having difficulty

to re-converge after a feedback path change. The only algo-

rithm which shows both good convergence, re-convergence,

and low MIS for both gains is the proposed H-NLMS2

algorithm.

In the second experiment, we compare the performance

of the H-PEMSC-NLMS algorithm and the proposed H-

NLMS2 algorithm for different values of the scaling parame-

ter b and the decision threshold c of the stability detector (cf.

Sec. II C). Figure 7 shows the ASG for the H-PEMSC-

(a) (b)

(c) (d)

FIG. 9. (Color online) ASG for the H-

NLMS2 and H-PEMSC-NLMS algo-

rithms (l1¼ 0.001, l2¼ 0.2, b¼ 2,

c¼ 0.15), for different volume levels

[�12, 0, þ6, þ12] dB with speech 1 as

the incoming signal and G0¼ 45 dB.
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NLMS [Fig. 7(a)] and H-NLMS2 [Fig. 7(b)] algorithm

(l1¼ 0.001, l2¼ 0.2) with speech 1 as the incoming signal

and forward path gain G0¼ 45 dB. It can be clearly observed

that b and c have a large impact on the ASG. This is

especially prominent for the H-PEMSC-NLMS algorithm,

whereas the H-NLMS2 algorithm is more robust toward

changes in these parameters. Since the linear input range of

the SC depends on the scaling parameter b, a different

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. (Color online) Loudspeaker

output signals for different volume lev-

els [�12, 0, þ6, þ12] dB with speech

1 as the incoming signal and

G0¼ 45 dB for the H-PEMSC-NLMS

algorithm (left column) and the H-

NLMS2 algorithm (right column).

FIG. 11. (Color online) ASG and MIS

for the PEMSC-NLMS and H-NLMS

algorithms with speech 1 as the incom-

ing signal, b¼ 2, c¼ 0.15, l1¼ 0.001,

and l2 2 ½0:1; 0:2; 0:5�:
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choice of b requires a different choice of the decision thresh-

old c. Figure 8 presents the corresponding control signals

a(k) for the H-PEMSC-NLMS algorithm in the left column

and the H-NLMS algorithm in the right column, respec-

tively. When working properly, the stability detector should

give a small number of false detections, both in terms of sta-

bility and instability. On the one hand, when c is too sensi-

tive, i.e., too small, many false detections of instability occur

[cf. Fig. 8(h)], such that the NLMS update with l2¼ 0.2 is

selected inadvertently in the H-NLMS update in Eq. (15)

and the ASG suffers [cf. Fig. 8(b)]. For the same parameters

a similar behavior can be found for the H-PEMSC-NLMS

[cf. Fig. 8(g)] but even more accentuated due to the PEM

estimate starting to model the feedback path and not the

speech source. On the other hand, when c is not sensitive

enough, i.e., too large, howling might not be detected, such

that the PEMSC-NLMS update is selected in Eq. (15) and

recovery from howling takes a long time (or in the worst

case does not happen at all). The H-PEMSC-NLMS shows a

larger sensitivity to the selection of the parameters b and c.

However, for both algorithms b¼ 2 and c¼ 0.15 gives over-

all good performance. Accordingly, for all following simula-

tions, these parameter values have been chosen since they

seem to provide no false detections, cf. Figs. 8(e) and 8(f).

In the third experiment we compare the performance of

the H-NLMS2 algorithm and the H-PEMSC-NLMS algo-

rithm for different volume levels ½�12; 0;þ6;þ12� dB of

the incoming signal. The volume level is given relative to

the normalized original signal. The incoming signal is

speech 1 and the forward gain is G0 ¼ 45 dB. From the ASG

in Fig. 9 it can be seen that the H-NLMS2 algorithm outper-

forms the H-PEMSC-NLMS algorithms for all considered

volume levels, particularly when the feedback path changes.

For high levels of the incoming signal [e.g.,þ 12 dB in Fig.

9(d)] false detection of instability due to the soft-clipping

will happen more often than for low levels of the incoming

signal. As can be observed, the ASG of the H-NLMS algo-

rithm for the high-level incoming signal in Fig. 9(d) is worse

(and more peaky) than the ASGs for lower-level incoming

signals, cf. Figs. 9(a)–9(c). Nevertheless, the obtained ASG

is still very high and the proposed H-NLMS algorithm out-

performs the H-PEMSC-NLMS algorithm (which is a hybrid

combination of two PEMSC-NLMS updates), especially

when the feedback path changes. The corresponding loud-

speaker signals are shown in Fig. 10. It can be observed that

the H-NLMS algorithm recovers fast from howling, even

when the incoming signal is 12 dB larger than the nominally

designed value, see Fig. 10(h), whereas the H-PEMSC-

NLMS, see Fig. 10(g), does not re-converge after the feed-

back path changes. This can be explained by the fact that the

H-PEMSC-NLMS only uses PEMSC-NLMS updates with

two different step sizes and when there is a strong feedback

the PEM starts to model the howling instead of the incoming

signal x½k�. Therefore, the H-PEMSC-NLMS algorithm will

be slow to re-converge, whereas for the proposed H-NLMS2

algorithm the initial adaptation using the NLMS update will

directly suppress the howling and then switch to the

PEMSC-NLMS update.

In the following simulations we have only compared the

H-NLMS and PEMSC-NLMS algorithms since it was estab-

lished that the H-NLMS algorithm outperforms or at least

performs equally well as the H-PEMSC-NLMS algorithm

for all considered scenarios. Figure 11 compares the ASG

and the MIS of the PEMSC-NLMS algorithm (l1¼ 0.001)

and the H-NLMS algorithm (l1¼ 0.001) for three different

values of the step-size l2 with speech 1 as the incoming sig-

nal. It can be observed that the H-NLMS algorithm con-

verges much faster than the PEMSC-NLMS algorithm,

while maintaining a similar steady-state MIS. It also pro-

vides a faster tracking rate when the feedback path changes.

After convergence, the H-NLMS algorithm provides a

FIG. 12. (Color online) Loudspeaker

output signals with speech 1 as the

incoming signal: (a) PEMSC-NLMS

with l1¼ 0.001; (b) H-NLMS2.

TABLE I. Evaluation for different speech and music incoming signals.

AFC methods Incoming signals PESQ ASG MIS

PEMSC-NLMS Speech 1 1.66 18.88 �17.52

H-NLMS1 4.14 21.93 �20.22

H-NLMS2 4.09 21.85 �20.20

H-NLMS3 4.15 22.14 �20.53

PEMSC-NLMS Speech 2 1.90 20.48 �18.66

H-NLMS1 3.97 22.32 �20.59

H-NLMS2 3.6 22.29 �20.65

H-NLMS3 3.78 22.40 �20.82

PEMSC-NLMS Music 1 N/A 15.62 �13.57

H-NLMS1 N/A 17.36 �15.14

H-NLMS2 N/A 17.39 �15.24

H-NLMS3 N/A 17.37 �15.14

PEMSC-NLMS Music 2 N/A 15.49 �13.31

H-NLMS1 N/A 17.71 �14.77

H-NLMS2 N/A 17.77 �14.79

H-NLMS3 N/A 17.83 �14.87
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similar ASG as the PEMSC-NLMS algorithm. Note that the

minor differences can be related to the fact that only a single

realization is used and the weights do not have the same ini-

tial conditions after switching in the H-NLMS. Furthermore,

the usage of a different step-size l2 in the NLMS update has

almost no impact on the results.

Figure 12 illustrates the loudspeaker output signals for

the PEMSC-NLMS algorithm and the H-NLMS2 algorithm

with speech 1 as the incoming signal. It can be observed that

for the PEMSC-NLMS algorithm a long howling period

occurs in the initial phase and when the feedback path

changes. By using the proposed switched combination adap-

tive filter with stability detector, the H-NLMS algorithm can

dramatically shorten the howling period, resulting in a sig-

nificant improvement in speech signal quality. Moreover,

Fig. 12(b) shows that the howling occurrence in the loud-

speaker signal matches well with the control signal a(k) for

this case as presented in Fig. 8(f).

For both speech signals (speech 1, speech 2) Table I

shows the PESQ scores, the average ASGs, ASG, and the

average MISs, MIS, for the PEMSC-NLMS algorithm

(l1¼ 0.001) and the H-NLMS algorithm (different pairs of

step-sizes). The results show that by selecting an adequate

pair of step-sizes the H-NLMS algorithm is able to achieve a

considerable improvement in PESQ (about 2 points), ASG

(about 2–3 dB) and MIS (about 2–3 dB) compared to the

PEMSC-NLMS algorithm. Among the three considered pairs

of step-sizes, l1¼ 0.001 and l2¼ 0.5 (H-NLMS3) seem to

yield the best performance.

2. Music signals

We have also performed similar evaluations using music

as the incoming signal. But due to lack of space no compari-

sons between the H-NLMS algorithm and the H-PEMSC-

NLMS algorithm have been presented. However, from our

extensive simulations using music 1 and music 2 as

incoming signals very similar results have been obtained as

for speech. Figure 13 compares the ASG and the MIS of the

PEMSC-NLMS algorithm and the H-NLMS algorithm (dif-

ferent pairs of step-sizes) when music 1 is used as the incom-

ing signal. All algorithmic parameters are set to the same

values as for the speech signal. It can be clearly observed

that the H-NLMS algorithm outperforms the PEMSC-NLMS

algorithm. Especially when the feedback path changes from

free-field to a telephone receiver in close distance, the H-

NLMS algorithm is able to track the feedback path change

much faster than the PEMSC-NLMS algorithm.

Figure 14 illustrates the loudspeaker output signals with

music 1 as the incoming signal. The howling periods for the

H-NLMS algorithm are clearly much shorter than for the

PEMSC-NLMS algorithm. Similarly as for the speech sig-

nal, Fig. 14(c) shows that the control signal a(k) matches

well with the howling occurrence in the loudspeaker signal

presented in Fig. 14(b).

For both music signals (music 1, music 2), the results in

Table I show that the proposed H-NLMS algorithm yields a

much better average ASG, ASG, and average MIS, MIS,

than the PEMSC-NLMS algorithm. To evaluate the percep-

tual quality for music signals, we have used the PEAQ mea-

sure, where a larger PEAQ score indicates a better signal

integrity. Six different signal segments, covering the initial

convergence phase (0–1 s, 1–10 s), the re-convergence phase

(25–26.5 s, 26.5–32 s), and the steady-state phase (10–25 s,

32–50 s) have been evaluated and the results are given in

Table II. It can be observed that the PEAQ score is approxi-

mately equal to �4 when howling occurs, but it increases

when the system begins to converge. The results also show

that for segments 1–10 s and 26.5–32 s the proposed H-

NLMS algorithm achieves a significant improvement in

PEAQ compared to the PEMSC-NLMS algorithm, corre-

sponding to a shorter howling duration. When the system

has converged (corresponding to segments 10–25 s and

3250 s), both algorithms reach a similar steady-state error,

(a) (b)

FIG. 13. (Color online) ASG and MIS

for the PEMSC-NLMS and H-NLMS

algorithms with music 1 as the incom-

ing signal, b¼ 2, c¼ 0.15, l1¼ 0.001,

and l2 2 ½0:1; 0:2; 0:5�:

(a) (b) (c)

FIG. 14. (Color online) Loudspeaker

output signals with music 1 as the

incoming signal: (a) PEMSC-NLMS

with l1¼ 0.001; (b) H-NLMS2; (c)

control signal a(k).
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resulting in similar PEAQ scores. As will be shown in Sec.

III C, these scores match with the subjective listening test

results.

In conclusion, the proposed stability-controlled hybrid

algorithm provides a stable and well-functioning solution

also for the considered music signals. However, since the

instrumental performance measures do not necessarily reflect

all distortions introduced by the algorithms, it is particularly

important to also perform a perceptual evaluation.

C. Perceptual evaluation

In this section, the perceptual quality of signals proc-

essed by the proposed H-NLMS algorithm is evaluated and

compared to the quality of signals processed by the PEMSC-

NLMS algorithm using a formal listening test. Previously,

the perceptual quality of AFC algorithms has been evaluated

in different studies, e.g., Refs. 7, 9, 27, and 32, where differ-

ent scales have been used to assess the perceived quality.

Similar to the study in Ref. 27, the Multi-Stimulus Test with

Hidden Reference and Anchor (MUSHRA)33 is employed

here.

1. Method

a. Subjects. N¼ 15 self-reported normal-hearing sub-

jects participated in the listening test. The mean age of the

subjects was 28.1 yrs. The subjects participated voluntarily

and were paid a small compensation for their time.

b. Equipment. The evaluations were conducted using a

personal computer and MATLAB software. The stimuli were

pre-computed and stored on a hard-drive prior to the listen-

ing test. An (RME Audio, Haimhausen, Germany, Fireface

Babyface Soundcard) was used and the signals were pre-

sented via (Sennheiser electronic GmbH & Co., KG

Wedemark, Germany, HDA200) headphones in a quiet

office room. All stimuli were sampled at 16 kHz. The sound

signals were calibrated to a level of 60 dB sound pressure

level (SPL) for the reference signals. Note that none of the

presented signals exceeded a level of 80 dB SPL.

c. Procedure. In order to assess the quality of the proc-

essed speech and music signals, the MUSHRA framework is

used. The task of the subjects was to judge the quality of the

processed signals with respect to a reference signal. The ref-

erence signal was chosen to be the signal processed with an

TABLE II. EAQ score for music signals.

AFC methods Incoming signals 0–1 s 1–10 s 10–25 s 25–26.5 s 26.5–32 s 32–50 s

PEMSC-NLMS Music 1 �3.91 �3.90 �2.13 �3.91 �3.90 �2.39

H-NLMS1 �3.91 �2.16 �2.14 �3.91 �2.38 �2.32

H-NLMS2 �3.90 �2.14 �2.13 �3.90 �2.38 �2.33

H-NLMS3 �3.91 �2.17 �2.13 �3.90 �2.34 �2.34

PEMSC-NLMS Music 2 �3.91 �3.90 �2.27 �3.90 �3.90 �2.53

H-NLMS1 �3.86 �2.17 �2.21 �3.89 �2.48 �2.49

H-NLMS2 �3.86 �2.19 �2.24 �3.89 �2.49 �2.48

H-NLMS3 �3.91 �2.19 �2.20 �3.88 �2.41 �2.48

FIG. 15. (Color online) Median quality

scores and interquartile ranges of the

formal listening test for different audio

signals and algorithms for (a) the ini-

tial convergence, (b) the re-

convergence, and (c) steady-state

performance.
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ideal feedback cancellation algorithm, which was also hid-

den as a test signal. From each of the four considered signals

(speech 1, speech 2, music 1, music 2) 3 segments with a

duration of 10 s were selected that included (a) the initial

convergence phase (0–10 s), (b) the re-convergence phase

(22–32 s), and (c) the steady-state phase (35–45 s). This led

to a total of 12 different audio files the subjects compared

the quality of. In total six different algorithmic settings were

judged for each audio file, where in addition to the algorith-

mic settings presented in Sec. III A the following settings

were considered:

• Reference: ideal feedback cancellation, i.e., ĥðkÞ ¼ hðkÞ;
• Anchor: no feedback cancellation, i.e., ĥðkÞ ¼ 0.

In order to allow for a similar use of the rating scale, the

subjects were instructed to rate at least one of the settings

with a score of 100 and at least one other setting with a score

of 0. Since the sound level of the presented signals is

strongly affected by the amount of howling, i.e., the sound

level may be much larger than the calibrated 60 dB SPL, all

signals were limited in level prior to presentation. The limit

level, i.e., the maximum amplitude of the played back signal,

was chosen such that the amplitude limited signals could not

be distinguished from the same signals without limiting as

determined in a preliminary listening test with five subjects.

d. Statistical analysis. A statistical analysis was con-

ducted using R statistics software. Since Shapiro-Wilk tests

showed that not all data could be assumed to be normally

distributed, an aligned rank transform (ART)34 was

employed before using standard analysis of variance

(ANOVA) procedures. Separate two-way ANOVAs were

conducted for each of the three segments with factors algo-

rithm and signal. For a two-factor data-set the ART produces

three different data-sets, i.e., one for each factor and one for

their two-way interaction. Each data-set is then assumed to

TABLE III. Paired comparisons for the initial convergence for (a) speech 1, (b) speech 2, (c) music 1, and (d) music 2. Asterisks indicate significant differ-

ences, i.e., p< 0.05, after Bonferroni correction.

(a)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * * * * *

H-NLMS2 * * n.s. * *

H-NLMS3 * * n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(b)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * * n.s. * *

H-NLMS2 * * n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(c)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * * * * *

H-NLMS2 * * * * *

H-NLMS3 * * * * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(d)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * n.s. n.s. * *

H-NLMS2 * n.s. n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *
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only depend on either one of the main factors or the interac-

tion. For each of these data-sets, a two-way ANOVA is car-

ried out while only the results for the dependent factor may

be interpreted.34 Post hoc analyses were carried out (if

appropriate) using the Wilcoxon-sign-rank test on the origi-

nal data. Differences were assumed to be significant for p-

values smaller than 0.05 and the level of significance was

adjusted using Bonferroni correction when multiple compar-

isons were conducted.

2. Results

The results of the listening test for the different audio

signals, algorithms, and signal segments are shown in Fig.

15. Figure 15(a) depicts the median quality scores and inter-

quartile ranges for the evaluation of the initial convergence.

All subjects were able to identify both the hidden reference

and the anchor signal. It can be observed that the proposed

H-NLMS algorithm in general leads to an improved quality

compared to the PEMSC-NLMS algorithm. Depending on

the audio signal, different step-size settings of the H-NLMS

algorithm show the highest median quality score. A two-way

ANOVA after ART was computed to assess the statistical

significance of the results, showing significant effects of the

factors algorithm and signal and their interaction (algorithm:

F5,70¼ 252.93, p< 0.05; signal: F3,42¼ 16.53, p< 0.05;

algorithm � signal: F15,210¼ 11.11, p< 0.05). Due to the

significant interactions, post hoc analyses were carried for

each signal separately. Table III shows the results of the post
hoc analyses, where asterisks indicate significant differences,

i.e., p< 0.05, after Bonferroni correction.

Figure 15(b) depicts the median quality scores and inter-

quartile ranges for the evaluation of the re-convergence. All

subjects were able to identify both the hidden reference and

the anchor signal. It can be observed that the proposed H-

NLMS algorithm in general leads to an improved quality

TABLE IV. Paired comparisons for the re-convergence for (a) speech 1, (b) speech 2, (c) music 1, and (d) music 2. Asterisks indicate significant differences,

i.e., p< 0.05, after Bonferroni correction.

(a)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * n.s. n.s. * *

H-NLMS2 * n.s. n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(b)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * n.s. n.s. * *

H-NLMS2 * n.s. n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(c)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * * n.s. * *

H-NLMS2 * * n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *

(d)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * n.s. n.s. * *

H-NLMS2 * n.s. n.s. * *

H-NLMS3 * n.s. n.s. * *

PEMSC-NLMS * * * * *

ANCHOR * * * * *
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compared to the PEMSC-NLMS algorithm. Depending on

the audio signal, different step-size settings of the H-NLMS

algorithm show the highest median quality score. A two-way

ANOVA after ART was computed to assess the statistical

significance of the results, showing significant effects of the

factors algorithm and signal and their interaction (algorithm:

F5,70¼ 285.97, p< 0.05; signal: F3,42¼ 29.17, p< 0.05;

algorithm � signal: F15,210¼ 12.01, p< 0.05). Similarly as

before, due to the significant interactions, post hoc analyses

were carried for each signal separately. Table IV shows the

results of the post hoc analyses.

Figure 15(c) depicts the median quality scores and inter-

quartile ranges for the evaluation of the steady-state error.

Most subjects were able to identify the hidden reference and

all subjects were able to identify the anchor signal. It can be

observed that for all signals all algorithms in general lead to

a similar quality rating. A two-way ANOVA after ART was

computed to assess the statistical significance of the results,

showing significant effects of the factors algorithm and sig-

nal and their interaction (algorithm: F5,70¼ 131.52, p< 0.05;

signal: F3,42¼ 29.92, p< 0.05; algorithm � signal:

F15,210¼ 29.23, p< 0.05). Similarly as before, due to the sig-

nificant interactions, post hoc analyses were carried for each

signal separately. Table V shows the results of the post hoc
analyses.

3. Discussion

In this study, the perceived quality for different feedback

cancellation algorithms, namely the PEMSC-NLMS algo-

rithm and the H-NLMS algorithm for three different step-

sizes, was evaluated using the MUSHRA framework. The

listening test was conducted for four different audio signals.

While in a previous study27 the complete signal was rated by

the listeners, in this study three different segments of interest

were evaluated separately, i.e., the initial convergence, the

TABLE V. Paired comparisons for the steady-state for (a) speech 1, (b) speech 2, (c) music 1, and (d) music 2. Asterisks indicate significant differences, i.e.,

p< 0.05, after Bonferroni correction.

(a)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE n.s. n.s. n.s. n.s. *

H-NLMS1 n.s. n.s. n.s. n.s. *

H-NLMS2 n.s. n.s. n.s. n.s. *

H-NLMS3 n.s. n.s. n.s. n.s. *

PEMSC-NLMS n.s. n.s. n.s. n.s. *

ANCHOR * * * * *

(b)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE n.s. n.s. n.s. n.s. *

H-NLMS1 n.s. n.s. n.s. n.s. *

H-NLMS2 n.s. n.s. n.s. n.s. *

H-NLMS3 n.s. n.s. n.s. n.s. *

PEMSC-NLMS n.s. n.s. n.s. n.s. *

ANCHOR * * * * *

(c)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE n.s. n.s. n.s. n.s. *

H-NLMS1 n.s. n.s. n.s. n.s. *

H-NLMS2 n.s. n.s. n.s. n.s. *

H-NLMS3 n.s. n.s. n.s. n.s. *

PEMSC-NLMS n.s. n.s. n.s. n.s. *

ANCHOR * * * * *

(d)

REFERENCE H-NLMS1 H-NLMS2 H-NLMS3 PEMSC-NLMS ANCHOR

REFERENCE * * * * *

H-NLMS1 * n.s. n.s. n.s. *

H-NLMS2 * n.s. n.s. n.s. *

H-NLMS3 * n.s. n.s. n.s. *

PEMSC-NLMS * n.s. n.s. n.s. *

ANCHOR * * * * *
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re-convergence after a feedback path change, and the steady-

state performance, allowing for a more detailed analysis of

the different algorithms.

The quality ratings indicate that the proposed H-NLMS

algorithm leads to a significantly improved performance in

the initial convergence and re-convergence than the state-of-

the-art PEMSC-NLMS algorithm. This is in line with the

instrumental evaluation in Sec. III B where an increase in

convergence rate was observed. Furthermore, the H-NLMS

algorithm and PEMSC-NLMS algorithm perform similarly

during the steady-state segment of the signal, which is

expected as well, since the H-NLMS update rule is the same

as for the PEMSC-NLMS algorithm during stable steady-

state segments of the signal.

As indicated by the significant interaction between the

main factors algorithm and signal, there is a dependency of

the step-size l2 on the performance for different scenarios.

This is expected since, in general, the optimal step-size of an

adaptive algorithm depends on the signal characteristics. The

results indicate that a step-size of l2¼ 0.2 or l2¼ 0.5 pro-

vides a better performance than l2¼ 0.1, with l2¼ 0.5 result-

ing in a higher perceived quality in most evaluated conditions.

IV. CONCLUSION

In this paper a hybrid AFC algorithm for HADs has

been proposed, using either the NLMS update rule or the

PEMSC-NLMS update rule based on a stability detector.

The NLMS update rule is used to obtain fast convergence,

while the PEMSC-NLMS update rule is used to provide low

bias and MIS. The parameters of the soft-clipping-based sta-

bility detector have been designed to provide both a high

sensitivity to detecting instability and to provide low signal

distortion after the AFC has converged. The proposed H-

NLMS algorithm has been evaluated for both speech and

music signals for a changing acoustic feedback path. The

results in terms of ASG and MIS show that the proposed

algorithm converges and re-converges quickly while provid-

ing a very stable solution over time. In addition, based on

the PESQ and PEAQ scores and the subjective listening test

it is clear that there is almost no deterioration of the signal

integrity and a significant improvement in perceived quality

can be achieved compared to the state-of-the-art PEMSC-

NLMS algorithm in the initial convergence and after

changes of the acoustic feedback path. In conclusion, these

results show that by utilizing the combined properties of two

adaptive filters and using a simple stability detector, signifi-

cant performance improvements can be achieved with only a

minor increase in computational complexity.
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