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ABSTRACT

In this paper, we investigate robust beamforming techniques for
wideband signal processing in noisy and reverberant environments.
In such environments, steering vector estimation errors are in-
evitable, leading to a degradation of the beamformer performance.
Here, we study two types of beamformers that are robust against
steering vector estimation errors. The first type includes robust
Capon beamformers, where the underlying principle is to add a
steering vector uncertainty constraint and/or a norm constraint to
the optimization problem to improve the beamformer’s robustness.
The second type is the amplitude and phase estimation method,
which utilizes both temporal and spatial smoothing. Experiments
are presented to demonstrate the performance of the considered ro-
bust beamformers in acoustic environments. The results show that
the robust beamformers outperform the non-robust beamformers in
terms of predicted speech quality and intelligibility for different s-
teering vector and covariance matrix estimation errors.

Index Terms— Microphone array, Capon beamforming, steer-
ing vector error, robust beamforming, APES beamforming.

1. INTRODUCTION

Beamforming [1-5] can be used to solve many acoustic problems
and is, therefore, an important topic of research in the field of a-
coustic signal processing. Traditional beamforming methods, such
as the data-independent delay-and-sum (DAS) beamformer and the
standard data-dependent Capon beamformer (SCB) [6], introduce
speech distortion if there are steering vector estimation errors. SCB,
also known as the minimum power distortionless response (MPDR)
beamformer, has been shown to be more sensitive to steering vector
estimation errors than the minimum variance distortionless response
(MVDR) beamformer (using the noise covariance matrix) [7-9].
However, accurately estimating the noise covariance matrix is not
trivial. Herein, we focus on the beamformers based on the noisy sig-
nal covariance matrix, and seek to increase their robustness against
the steering vector errors and covariance matrix estimation errors
by generalizing techniques from robust narrowband beamforming
to broadband speech scenarios.

Robust beamforming [10-16] has been widely investigated in
narrowband signal processing, e.g., in radar and sonar applications.
Based on the SCB, in [10-13] several robust beamformers, namely
the norm constraint Capon beamformer (NCCB), the robust Capon
beamformer (RCB) and the double-constraint robust Capon beam-
former (DCRCB) have been derived to estimate the spectrum of the
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desired signal. By adding steering vector uncertainty and/or norm
constraints to the traditional Capon method, these approaches give
an accurate power estimate of the desired signal and a better perfor-
mance than the SCB in terms of suppressing the interferences. Al-
ternatively, another promising method is the amplitude-and-phase-
estimation (APES) beamformer [17-21], which uses both the tem-
poral as well as spatial averaging to obtain an estimate of the noise
covariance matrix. When processing wideband signals, such as
speech, the narrowband robust Capon and APES beamformers can
be applied at each frequency bin in the STFT domain to form a
wideband beamformer [22-24]. For example, in [22] the RCB was
studied for processing speech signals, but only two channels and a
simple alphabetical task were considered in the simulations.

Although robust beamforming has been extensively studied in
a variety of narrowband applications, its application in wideband
acoustic signal processing is not very common. In this paper, we
hence study and experimentally compare the performance of several
types of wideband robust beamforming algorithms for multichannel
speech processing. On the one hand, we investigate the robustness
against steering vector estimation errors by imposing uncertainty
and norm constraints to the traditional Capon beamformer. On the
other hand, we consider the APES method to deal with covariance
matrix estimation errors.

2. SIGNAL MODEL

Let us consider the acoustic scenario with a single source located
in the far field and a uniform linear array (ULA) consisting of M
omnidirectional microphones to pick up the signal radiated from
the source. If we neglect reverberation (this will be considered in
the simulations in Section 4), the signal received by the mth micro-
phone (m 1,2,..., M) can be written as

Ym(t) = T (t) + v (t) = z(t — 7)) + v (t), (€]
where Y (1), Tm(t), and v, (t) are the time domain noisy obser-
vation, the clean speech, and the additive noise (containing both
stationary background noise and interferences), respectively, x(t)
denotes the clean speech received at the first microphone, and
Tm = (m — 1)70 is the time difference of arrival (TDOA) between
the mth and the first microphone, 79 (6 cosba)/c with & be-
ing the spacing between neighboring microphones, 64 denoting the
DOA of the desired signal and ¢ = 340 m/s being the speed of
sound in air. We assume that all the signals are real-valued, zero-
mean and wideband sequences, and the clean speech and the addi-
tive noise are uncorrelated. Without loss of generality, we choose
x(t) as the desired signal.

In the short-time-Fourier-transform (STFT) domain, (1) can be
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written as

Y (n,w) = Xm(n,w) + Vin(n,w)

= MUK (n,0) + Vi (n,w), ()
where (n, w) denote frame index and frequency index, respectively.
In vector form, (2) can be written as

y(n,w) = [Yi(n,w), Ya2(n,w), ..., YM(n,w)]T

= a(n,w)X(n,w) + v(n,w), 3)

where a(n,w) 2 [1, e7¢, ... e IM=Dwr0]T g the steering
vector of the desired signal, and [-] T denotes the transpose operator.
The covariance matrix of y(n, w) is defined as
H
RY(nvw) £ E[y(n7w)y (nvw)]v (4)
where E[-] denotes mathematical expectation, and []* denotes the
conjugate-transpose operator. In practice, Ry (n, w) is estimated by
using a short-time average of the sample vectors, i.e.,
N-1
ﬁy (TL, W) = i
N
k=0

Y(n - k7 w)yH(” - krw)v (5)

where N is the number of recent frames. The mismatch between (4)
and (5) may significantly degrade the beamforming performance.

By applying a spatial filter h(n,w) to the noisy observation in
(3), we get

Z(n,w) = h" (n,w)y(n,w) = Xra(n,w) + Via(n,0),  (6)

where Z(n,w) is an estimate of the desired signal,
while  Xiq(n,w) h* (n,w)x(n,w) and Vin(n,w)
h¥ (n,w)v(n,w) are the filtered desired signal and the resid-
ual noise, respectively. The vectors x(n,w) and v(n,w) are
defined similarly to (3). With the beamforming model given in
(6), the objective of beamforming is then to find an optimal filter
h(n,w) so that Z(n,w) is a good estimate of X (n,w), which will
be discussed in the next section.

3. ROBUST BEAMFORMERS

In this section, we review the narrowband SCB beamformer and its
robust versions as well as the APES beamformer to estimate the
desired signal X (n,w). To process wideband speech signals, these
narrowband beamformers will be applied at each frequency bin.

3.1. Standard Capon beamformer (SCB)

The SCB is obtained by solving the following constrained optimiza-
tion problem [6]:

min h” (w)Ry (w)h(w) s.t. h (w)a(w) = 1,

7
min )
where a(w) is an estimate of the steering vector a(w). Note that
the time frame index in the above formulation is omitted for ease of
presentation. The solution of (7) is given by

Ry (w)a(w)

M SRy )

®)
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3.2. Norm constraint Capon beamformer (NCCB)

To limit the amplification of spatially white noise, i.e., the white
noise gain (WNG), it has been proposed in [25] to add a norm con-
straint to (7), which also improves the robustness of the SCB against
steering vector estimation errors. The corresponding constrained
optimization problem hence becomes

E}lﬁ b (W) Ry (w)h(w) s.t. h (w)a(w) =1

[h@)><¢ O

where ( is a parameter, which will be discussed in Section 4. The
solution of (9) is given by:

Ry (w) + A" "a(w)

(@)7 Ry () + \]-Ta(w)” a0

h(w) = =

where ) is the so-called diagonal loading parameter, which is relat-
ed to ¢ (see also [12,25]), and I denotes the identity matrix of size
M x M.

3.3. Robust Capon beamformer (RCB) and double-constraint
robust Capon beamformer (DCRCB)

Instead of using a norm constraint, another way to deal with the
steering vector error is to add an uncertainty constraint to (7). As-
suming that the steering vector belongs to the sphere ||a(w) —
a(w)||* < e, where ¢ is a control parameter. The RCB problem is
given by [11,13]

rr(m; a® (WR,  (w)a(w) s.t. a(w) —aW)|* <e A1)

The robustness of the RCB can be further increased by intro-
ducing an additional norm constraint to the estimated steering vec-
tor a(w) in (11). This is also known as the double-constraint RCB
(DCRCB), which is obtained by solving:

min a” (W)Ry  (w)a(w) s.t. [la(w) —aw)|]* <e

a(w)

la(@)* =M. (12)

The constrained optimization problems in (9), (11) and (12) are
known as quadratically constrained quadratic programming prob-
lems (QCQP), which can be solved using the Lagrange multiplier
method [10, 12, 13]. The solutions of the RCB and the DCRCB can
be obtained in a similar way. By solving the optimization problems
in (11) and (12), we first obtain an estimate of the steering vector,
i.e., a(w) [12]. By substituting this estimate into (8), the robust
beamformers are obtained as

R, ' (w)a(w

a(w)"Ry " (w)a(w)’

h(w) = (13)

More details can be found in [12].

3.4. Amplitude-and-phase-estimation (APES) beamformer

As an alternative approach to robust Capon beamformers, in this
subsection we present the APES bemformer, where the microphone
array is divided into several subarrays, and a spatial smoothing tech-
nique is then utilized to improve the robustness against steering vec-
tor and covariance matrix estimation errors.

Let M < M be an integer, which denotes the number of mi-
crophones in the subarray. For the [th subarray, the M x 1 vectors
—lwro o=iHwno L efj(lJrIM—l)wm]T

a(n,w) = [e and
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Figure 1: Performance with different DOA estimation errors, M = 8, Tgo ~ 150 ms, iSNR = 10 dB and iSIR = —5 dB.

yl(nv w) = [Yl (TL,OJ), YL+1(TL,UJ), ) Yl+ﬁ—1(nvw)]T de-
note the subarray steering vector and subarray observed signal vec-
tor, where ] = 0,...,L —1,and L = M — M + 1. With the ULA
assumption, the subarray steering vectors are related as

—jlwrg

a(n,w)=e ap(n,w). (14)
Hence, using (14), ¥,(n,w) can be written as
¥i(n,w) = e 7“8y (n,w) X (n,w) + Vi(n,w).  (15)

Combining (15) with the APES principle, which aims to minimize
the least-squares error between the beamformer output and the de-
sired signal for each subarray [20], an estimate of X (n,w) and the
filter h of length M can be obtained by solving the following prob-
lem

N-1L-1
min Z Z ¥,(n — k,w)e™™ — X (n — k,w)[?

h,X (n,w) k=0 1=0
—H_
s.t. h ag(n,w) = 1. (16)
Letg(n,w) = (1/L) 377 ¥,(n,w)e’™™, and notice that
1l v )
I Z ‘h ¥,(n — k,w)e’™™ — X(n— k,w)‘
[ Zyl —kw)y, (nk,w)]h
-n” g(n —k,w)g" (n — k,w)h
+|X(n—kw)—h gn—kw)l a7
Minimizing (17), we obtain an estimate of X (n,w) as
Z(n,w) = HHg(n,w). (18)
Substituting (18) into (16), the problem reduces to
min EHQE s.t. HHEO(n,w) =1, (19)
h
where
o N 1 L—1
Q:N z”*kWYz (n—k,w)
k=0 = 1=0
| N
-5 28—k wg(n—kw), (20)

e

=0
can be interpreted as an estimate of the noise covariance matrix.
Note that NL > M to ensure that Q is positive-definite. The solu-
tion to (19) is then given by

Q B 150 (n7 UJ)
55[ (TZ7 UJ) Qila() (Tl7 UJ)

=

@n
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4. SIMULATIONS

Now, we study the performance of different robust beamformers
with simulated room acoustics. Reverberation and different noise
levels are considered. The signal model given in Section 2 neglects
the effect of reverberation. Generally, the received signal in rever-
berant environment is approximately written as:

Ym(nrw) = Dm(nrw)s(nvw) + Vm(nvw)’ (22)
where Dy, (n,w) is the STFT of the room impulse response from
the source S(n,w) to the mth microphone. The signal model mis-
match between (2) and (22) may dramatically degrade the beam-
forming performance if robustness is not taken into account in

beamforming.

4.1. Experimental setup

The room impulse response is generated by using the image model
of [26], with a room of size 5 m x 5 m x 3 m. We consider a unifor-
m linear array with 8 microphones located at the center of the room
with 0 being 0.04 m, and the desired signal which is 1 meter away
from the array center propagates from the direction 64 = 30°. To
simulate an acoustic multi-interference scene, we set 5 competing
speakers at 82°, 127°, 230°, 281° and 325° respectively. More-
over, we also consider the DOA estimation error here, assuming the
only information we know about the desired signal is an imprecise
DOA: 0 = 04 + A, where A models the DOA estimation error.
The clean speech signal is taken from the TIMIT database [27] and
downsampled to 8000 Hz in our experiments. The speech signals
from ten different speakers are used. The microphone signal is gen-
erated by convolving the clean speech with the corresponding room
impulse response. After that, both white Gaussian noise and con-
volved interferences are added to the desired speech. The signal is
then transformed into the STFT domain with a 128-point FFT and
the overlap between neighboring frames is 75%. The Ry (n, w) ma-
trix is estimated by using (5) with the most recent N = 20 frames
for M = 8.

4.2. Performance measures

We will now present some performance measures to evaluate the
aforementioned beamformers in Section 3. The output SINR, ac-
cording to the model given in (6), is

B Xa(n,w)[’]

oSINR = ———F—"——+,
E[[Vin(n,w)I?]

(23)
Due to the spatial smoothing of APES method in (18), the defi-
nition of SINR is different from that of other methods. First, we
rewrite (18) as Zaprs(n,w) = Xta,apEs(n, w)+ Vin,apes (1, w),

where X¢q aprs(n,w) " (1/L) EZL;OI X (n, w)e!™™ and
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Figure 2: Performance with different input SIR, M = 8, Tgo = 150 ms, iSNR = 10 dB and A6 = 5°.
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Figure 3: Performance with different M, Tgo ~ 150 ms, iSNR = 10 dB, iSIR = —5 dB and Af = 5°.

Vin,apes(n,w) = HH(l/L) Zl;[)l ¥i(n,w)e’! ™. The output
SINR for the APES beamformer is then defined as

E[|Xta,ares(n,w)|’]
E[|Vin,apes(n,w)|?]”
Besides evaluating the output SINR, we also use PESQ [28] and S-

TOI [29] as performance measures. The speech distortion measures
are more complicated, which will be discussed in a separate study.

oSINR[h] = (24)

4.3. Simulation results

In the first experiment, the influence of the DOA estimation error
on the performance is studied. It is worth noting that for differ-
ent amounts of estimation errors, the smallest possible uncertain-
ty parameter e for RCB and DCRCB should be selected careful-
ly. Here the proper values of those parameters are chosen based
on experiments, which are listed in Table 1. For NCCB, we set
Bo = 1.5/M, and for APES, the subarray microphone number is
chosen as M, = M — 1. As shown in Fig. 1, with the increasing
of the DOA estimation error, the performance decreases for all the
beamforming methods. But the robust beamformers outperforms
the traditional method in most conditions. Furthermore, the APES
beamformer yields good performance with small amount of DOA
estimation errors. While the SCB dose not perform well even with-
out DOA errors. This is caused by the mismatch between Ry (n, w)
and Ry (n,w). Note that even though the APES beamformer al-
ways shows better performance in terms of improving the oSINR,
the definition of oSINR for APES is different from that for the other
methods as seen in (23) and (24).

Table 1: Parameters for RCB and DCRCB

N 0° 5°  10° 15°  20° 25° 30°
RCB(e,) 05 05 05 1 1 1 15
DCRCB (¢,) 0.5 05 1 1 1 15 15

In the second experiment, the performance with different input
SIRs are studied. Fig. 2 shows that the robust beamformers outper-
form DAS and SCB methods both in improving the speech qual-
ity and speech intelligibility. The APES method gives better per-

89

formance under most input SIR conditions, while the other robust
methods behave similarly. However, the results illustrate that SCB
even degrades the signal quality sometimes. This is simply because
it suffers from steering vector and covariance matrix estimation er-
rors, which forces the mainlobe to point to a wrong direction and
higher level of sidelobes.

The last experiment studies the performance versus different
number of microphones. The proper short-time average length for
different M is set according experiments. As shown in Fig. 3, the
performance of RCB and DCRCB first improves with the increase
of microphone number and then begins to decrease after M reaches
10. This is due to the estimation error of the covariance matrix,
which increases with the number of microphones. Additionally,
this also explains why the performance of SCB deteriorates with
increasing number of microphones.

The simulation results indicate that the robust beamformers
perform better than the traditional methods in reverberant environ-
ments. Among the studied robust methods, APES beamformer has
the potential to further improve the speech quality and speech intel-
ligibility with large number of microphones. Moreover, RCB shows
slightly better performance than NCCB and DCRCB. In summary,
with the application of robust methods in acoustic signal process-
ing, the robustness of the beamformer against the steering vector,
covariance matrix and signal model errors are improved.

5. CONCLUSION

In this paper, we studied different robust adaptive beamformers for
wideband acoustic signal processing. Experiments were performed
in reverberant environments with multiple interference sources. The
results illustrated that these methods are able to improve the ro-
bustness of the beamformer against the estimation errors of steer-
ing vector and covariance matrix. Furthermore, these robust adap-
tive beamformers maintain robustness against the signal model mis-
match in reverberant environments. Interestingly, the APES beam-
former shows better performance than the other studied methods in
terms of signal distortion, which maintain a low level of signal dis-
tortion even when there is estimation errors in the steering vector
and the signal covariance matrix.



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

[1]

2

[3]

[4

[5

[6]

[7]

[8]

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

6. REFERENCES

B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile ap-
proach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4-24,
1988.

S. Doclo and M. Moonen, “Design of broadband beamformers robust
against gain and phase errors in the microphone array characteristics,”
IEEE Trans. Signal Process., vol. 51, no. 10, pp. 2511-2526, 2003.

S. Doclo, S. Gannot, M. Moonen, and A. Spriet, Acoustic beamform-
ing for hearing aid applications, S. Haykin and K. Ray Liu, Ed. New
York, NY, USA: Wiley, 2008.

C. Pan, J. Chen, and J. Benesty, “Performance study of the MVDR
beamformer as a function of the source incidence angle,” IEEE Trans.
Audio, Speech, and Lang. Process., vol. 22, no. 1, pp. 67-79, 2014.

E. Hadad, S. Doclo, and S. Gannot, “The binaural LCMV beamformer
and its performance analysis,” IEEE Trans. Audio, Speech, and Lang.
Process., vol. 24, no. 3, pp. 543-558, 2016.

J. Capon, “High-resolution frequency-wavenumber spectrum analy-
sis,” Proc. IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.

H. Cox, “Resolving power and sensitivity to mismatch of optimum
array processors,” J. Acoust. Soc. Amer., vol. 54, no. 3, pp. 771-785,
1973.

H. L. Van Trees, Detection, estimation, and modulation theory. New
York, Wiley, 2004.

L. Ehrenberg, S. Gannot, A. Leshem, and E. Zehavi, “Sensitivity anal-
ysis of MVDR and MPDR beamformers,” 26th Conv. Electr. Electron.
Eng. in Israel (IEEEI), pp. 416-420, 2010

J. Li and P. Stoica, Robust Adaptive Beamforming. New York, Wiley,
2005.

J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and
diagonal loading,” IEEE Trans. Signal Process., vol. 51, no. 7, pp.
1702-1715, 2003.

J. Li, P. Stoica, and Z. Wang, “Doubly constrained robust Capon
beamformer,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2407-
2423, 2004.

P. Stoica, Z. Wang, and J. Li, “Robust Capon beamforming,” /EEE
Signal Process. Lett., vol. 10, no. 6, pp. 172-175, 2003.

S. A. Vorobyov, A. B. Gershman, Z. Luo, and N. Ma, “Adaptive
beamforming with joint robustness against mismatched signal steer-
ing vector and interference nonstationarity,” IEEE Signal Process.
Lett., vol. 11, no. 2, pp. 108-111, 2004.

R. G. Lorenz and S. P. Boyd, “Robust minimum variance beamform-
ing,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684-1696,
2005.

A. Mukherjee and A. L. Swindlehurst, “Robust beamforming for se-
curity in MIMO wiretap channels with imperfect CSI,” IEEE Trans.
Signal Process., vol. 59, no. 1, pp. 351-361, 2011.

J. Li and P. Stoica, “An adaptive filtering approach to spectral estima-
tion and SAR imaging,” IEEE Trans. Signal Process., vol. 44, no. 6,
pp. 1469-1484, 1996.

Z.-S. Liu, H. Li, and J. Li, “Efficient implementation of Capon and
APES for spectral estimation,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 34, no. 4, pp. 1314-1319, 1998.

P. Stoica, H. Li, and J. Li, “A new derivation of the APES filter,” IEEE
Signal Process. Lett., vol. 6, no. 8, pp. 205-206, 1999.

P. Stoica and R. L. Moses, Spectral Analysis of Signals. Upper Saddle
River, NJ: Prentice-Hall, 2005.

M. G. Christensen and A. Jakobsson, “Optimal filter designs for sep-
arating and enhancing periodic signals,” IEEE Trans. Signal Process.,
vol. 58, no. 12, pp. 5969-5983, 2010.

K. Ngo, “Digital signal processing algorithms for noise reduction, dy-
namic range compression, and feedback cancellation in hearing aids,”
Ph.D. dissertation, ESAT, Katholieke Universiteit Leuven, Belgium,
2011.

90

[23]

[24]

[25]

[26]

[27]

[28]

[29]

October 15-18, 2017, New Paltz, NY

J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Process-
ing. Berlin, Germany: Springer-Verlag, 2008.

Q. Zou, Z. L. Yu, and Z. Lin, “A robust algorithm for linearly con-
strained adaptive beamforming,” IEEE Signal Process. Lett., vol. 11,
no. 1, pp. 26-29, 2004.

H. Cox, R. M. Zeskind, and M. H. Owen, “Robust adaptive beam-
forming,” IEEE Trans. Acoust. Speech, Signal Process., vol. 35,
no. 10, pp. 1365-1376, 1987.

E. A. P. Habets, “Room impulse response generator,” Tech. Rep.,
Technische Universiteit Eindhoven, 2006.

1. Garofolo, “DARPA TIMIT acoustic-phonetic continuous speech
corpus,” Gaithersburg, MD, USA: Nat. Inst. of Standards Technol.
1993.

Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement,” IEEE Trans. Audio, Speech, and Lang. Pro-
cess., vol. 16, no. 1, pp. 229-238, 2008.

C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algo-
rithm for intelligibility prediction of time—frequency weighted noisy
speech,” IEEE Trans. Audio, Speech, and Lang. Process., vol. 19,
no. 7, pp. 2125-2136, 2011.



